
The Semantics of Dataflow with Firing?

Edward A. Lee and Eleftherios Matsikoudis

University of California, Berkeley
{eal,ematsi}@eecs.berkeley.edu

Abstract.

Dataflow models of computation have intrigued computer scientists
since the 1970s. They were first introduced by Jack Dennis as a basis for
parallel programming languages and architectures, and by Gilles Kahn
as a model of concurrency. Interest in these models of computation has
been recently rekindled by the resurrection of parallel computing, due
to the emergence of multicore architectures. However, Dennis and Kahn
approached dataflow very differently. Dennis’ approach was based on an
operational notion of atomic firings driven by certain firing rules. Kahn’s
approach was based on a denotational notion of processes as continuous
functions on infinite streams. This paper bridges the gap between these
two points of view, showing that sequences of firings define a continuous
Kahn process as the least fixed point of an appropriately constructed
functional. The Dennis firing rules are sets of finite prefixes satisfying
certain conditions that ensure determinacy. These conditions result in
firing rules that are strictly more general than the blocking reads of the
Kahn-MacQueen implementation of Kahn process networks, and solve
some compositionality problems in the dataflow model.

1 Introduction

Three major variants of the dataflow model of computation have emerged in
the literature: Kahn process networks [15], Dennis dataflow [10], and dataflow
synchronous languages [2]. The first two are closely related, while the third
is quite different. This paper deals only with the first two, which have a key
difference. In Dennis dataflow, a process is implemented as an execution of
atomic firings of actors. Although Dennis dataflow can be viewed as a special
case of Kahn process networks [18], the notion of firing has been absent from
semantic models, which are most developed for Kahn process networks and
dataflow synchronous languages.

Dennis and Kahn approach dataflow very differently. Dennis’ approach is
based on an operational notion of atomic firings driven by the satisfaction of

?This work was supported in part by the Center for Hybrid and Embedded Software Sys-
tems (CHESS) at UC Berkeley, which receives support from the National Science Foundation
(NSF awards #0720882 (CSR-EHS: PRET), #0647591 (CSR-SGER), and #0720841 (CSR-
CPS)), the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force
Office of Scientific Research (MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-1-0244),
the Air Force Research Lab (AFRL), the State of California Micro Program, and the following
companies: Agilent, Bosch, DGIST, National Instruments, and Toyota.

eal
Typewritten Text
Chapter in From Semantics to Computer Science: Essays in memory of Gilles Kahn, Gérard Huet, Gordon Plotkin, Jean-Jacques Lévy, Yves Bertot, editors, Preprint Version, March 07, 2008, Copyright (c) Cambridge University Press, 2008.

eal
Typewritten Text

Lee and Matsikoudis

firing rules. Kahn’s approach is based on a denotational notion of processes as
continuous functions on infinite streams. Dennis’ approach influenced computer
architecture [1, 26], compiler design, and concurrent programming languages
[14]. Kahn’s approach has influenced process algebras (see for example [6]) and
semantics of concurrent systems (see for example [4, 20]). It has had practical
realizations in stream languages [28] and operating systems (such as Unix pipes).
Recently, interest in these models of computation has been rekindled by the
resurrection of parallel computing, motivated by multicore architectures [8].
Dataflow models of computation are being explored for programming parallel
machines [30], distributed systems [17, 21, 24], and embedded systems [19, 13].
Considerable effort is going into improved execution policies [31, 11, 32, 18] and
standardization [22, 12].

This paper bridges the gap between Dennis and Kahn, showing that the
methods pioneered by Kahn extend naturally to Dennis dataflow, embracing
the notion of firing. This is done by establishing the relationship between a
firing function and the Kahn process implemented as a sequence of firings of
that function. A consequence of this analysis is a formal characterization of
firing rules and firing functions that preserve determinacy.

2 Review of Kahn Process Networks

2.1 Ordered Sets

We begin with a brief review of ordered sets [9].
An order relation 6 on a set A is a binary relation on A that is reflexive

(a 6 a′), transitive (if a 6 a′ and a′ 6 a′′, then a 6 a′′), and antisymmetric
(if a 6 a′ and a′ 6 a, then a = a′). Of course, we can define a corresponding
irreflexive relation, denoted by <, with a < a′ if and only if a 6 a′ and a 6= a′.
The structure 〈A,6〉 is an ordered set. If the order relation is partial, in the
sense that there exist a, a′ ∈ A such that a 66 a′ and a′ 66 a, then we will often
refer to 〈A,6〉 as a partially ordered set, or simply a poset. If, on the other
hand, the order relation is total, in the sense that for all a, a′ ∈ A, a 6 a′ or
a′ 6 a, then we will refer to 〈A,6〉 as a totally ordered set, or a chain.

For any ordered set 〈A,6〉 and any B ⊆ A, an element a is an upper bound
of B in 〈A,6〉, iff for any b ∈ B, b 6 a. a is the least upper bound of B in
〈A,6〉 iff it is an upper bound of B, and for any other upper bound a′ of B,
a 6 a′. We write

∨
B to denote the least upper bound of B. The notion of

lower bound and that of greatest lower bound are defined dually. In the case
of two elements a1 and a2, we typically write a1 ∨ a2 and a1 ∧ a2, instead of∨
{a1, a2} and

∧
{a1, a2}. These are called the join and meet of a1 and a2.

A set D ⊆ A is directed in 〈A,6〉 iff it is non-empty and every finite subset
of D has an upper bound in 〈A,6〉. If every directed subset of A has a least
upper bound in 〈A,6〉, then 〈A,6〉 is a directed-complete ordered set. If 〈A,6〉
is directed-complete and has a least element, then 〈A,6〉 is a complete partial
order, or cpo. If 〈A,6〉 is directed-complete, and every non-empty subset of A
has a greatest lower bound in 〈A,6〉, then 〈A,6〉 is a complete semilattice.

2

Lee and Matsikoudis

2.2 Sequences

We henceforth assume a non-empty set V of values. Each value represents a
token, an atomic unit of data exchanged between the autonomous computing
stations. We consider the set of all finite and infinite sequences over V.

A finite sequence of values, or simply a finite sequence, is a function from
the set {0, . . . , n− 1} for some natural number n into the set V. Notice that
in the case of n = 0, {0, . . . , n− 1} → V = ∅ → V = {∅}. The empty set is
therefore a finite sequence, which we call the empty sequence and denote by ε.
We denote the set of all finite sequences of values by V∗. This is of course the
well known Kleene closure of the set V.

An infinite sequence of values, or simply an infinite sequence, is a function
from the set of all natural numbers ω into the set V. We denote the set of all
infinite sequences of values by Vω. This is just another notation for the set
ω → V. We denote the set of all such sequences of values, finite or infinite, by
S; that is, S = V∗ ∪ Vω.

For any finite sequence s, the length of s is the cardinal number of dom s,
which we denote by |s|. This is just the number of elements in s.

Informally, a sequence is just an ordered list of values. For any particular
sequence s, we often list its values explicitly, writing 〈v0, v1, . . . , v|s|−1〉 if s is
finite, and 〈v0, v1, . . .〉 if s is infinite. If s is the empty sequence ε, then we
simply write 〈 〉.

A sequence s1 is a prefix of a sequence s2, and we write s1 v s2, if and only if
s1 ⊆ s2. We make use of the set-theoretic definition of function here, according
to which the graph of a function is the function itself. We caution the reader
not to misread our statement: not every subset of a sequence is a prefix. If that
subset is a sequence, however, then it must be a prefix of the original sequence.

Informally, s1 is a prefix of s2 if and only if the first |s1| values of s2 are
the values of s1 in the same order as in s1; that is, for any natural number
i ∈ dom s1, s2(i) = s1(i).

The prefix relation v ⊂ S × S is of course an order relation, and for any
sequence s, ε v s. The ordered set 〈S,v〉 is actually a complete semilattice.
For any subset X of S, we write

d
X to denote the greatest lower bound of X

in 〈S,v〉, namely the greatest common prefix of the sequences in X, and
⊔
X

to denote the least upper bound of X in 〈S,v〉, provided of course that this
exists. In the case of two sequences s1 and s2, we typically write s1 u s2 and
s1 t s2 for the meet and join of s1 and s2.

If s1 is a finite sequence and s2 an arbitrary sequence, then we write s1.s2
to denote the concatenation of s1 and s2. It is the unique sequence s with
dom s = {0, . . . , |s1|+ |s2| − 1} if s2 is finite, and dom s = ω otherwise, such
that for any i ∈ dom s, s(i) = s1(i) if i < |s1|, and s(i) = s2(i− |s1|) otherwise.

Informally, s1.s2 is the result of appending the ordered list of values of s2
right after the end of s1. Note that any finite s1 is a prefix of a sequence s iff
there is a sequence s2 such that s1.s2 = s. It should be clear that s2 is unique.

3

Lee and Matsikoudis

2.3 Tuples of Sequences

A sequence of values models the traffic of tokens over a single communication
line. A typical process network will have several communication lines, and a
typical process will communicate over several of those. Thus, it will be useful
to group together several different sequences and manipulate them as a single
object. We do this using the notion of tuple.

A tuple is just a finite enumeration of objects. Here we are interested in
tuples of sequences. For any natural number n, an n-tuple of sequences, or
simply a tuple, is a function from {0, . . . , n− 1} into S. We let Sn denote the
set of all n-tuples of sequences. For convenience, we identify S1 with S. Note
that when n = 0, Sn = ∅ → S = {∅}. The empty set is thus a tuple, which we
call the empty tuple.

We use boldface letters to denote tuples. If s is an n-tuple, then for any
i ∈ {0, . . . , n− 1}, we often write si instead of s(i). Also, we often list the
sequences within a tuple explicitly, writing 〈s0, . . . , sn−1〉.

We say that an n-tuple is finite if and only if for any i ∈ {0, . . . , n− 1}, si
is a finite sequence. This is of course vacuously true for the empty tuple.

The prefix order on sequences induces an order on n-tuples for any fixed
n. The order we have in mind is the pointwise order. We say that an n-tuple
s1 is a prefix of an n-tuple s2, and we write s1 v s2, if and only if for any
i ∈ {0, . . . , n− 1}, s1(i) v s2(i). Notice that the n-tuple of empty sequences,
denoted by εn, is a prefix of every other n-tuple. The ordered set 〈Sn,v〉
is a complete semilattice, where infima and suprema are calculated pointwise,
simply because 〈S,v〉 is a complete semilattice itself.

If s1 is a finite n-tuple and s2 an arbitrary n-tuple, then we write s1.s2 to
denote the pointwise concatenation of s1 and s2. It is the unique n-tuple s such
that for any i ∈ {0, . . . , n− 1}, s(i) = s1(i).s2(i).

When n = 0, Sn has only one element, the empty tuple ∅. Hence, it must
be the case that ∅.∅ = ∅. This is precisely what the pointwise concatenation
evaluates to. Note again that for any finite s1, s1 v s if and only if there is
some tuple s2 such that s1.s2 = s, in which case, this tuple s2 is unique.

2.4 Kahn Processes

Before we can formalize the notion of a process, we must review a technical
condition that we will need to impose.

A function F : Sm → Sn is monotone if and only if for all s1, s2 ∈ Sm,

s1 v s2 =⇒ F (s1) v F (s2).

Informally, feeding a computing station that realizes a monotone function with
additional input can only cause it to produce additional output. This is really
a notion of causality, in that “future input concerns only future output” (see
[15]).

4

Lee and Matsikoudis

A function F : Sm → Sn is Scott-continuous, or simply continuous, if and
only if F is monotone, and for any subset D of Sm that is directed in 〈Sm,v〉,

F (
⊔
D) =

⊔
{F (s) | s ∈ D}.

Notice here that since F is monotone, the set {F (s) | s ∈ D} is itself directed
in 〈Sn,v〉, and hence has a least upper bound therein.

In order to better understand the importance of this notion, we must take
notice of the additional structure that our ordered sets have. For any natural
number m, the complete semilattice 〈Sm,v〉 is algebraic: for every s ∈ Sm,

s =
⊔
{s′ v s | s′ is finite}.

The set {s′ v s | s′ is finite} is of course directed in 〈Sm,v〉. Hence, we can
obtain every m-tuple as the least upper bound of a set of finite tuples that is
directed in 〈Sm,v〉. The response of a continuous function to an input tuple is
therefore completely defined by its responses to the finite prefixes of that tuple.
This is really a computability notion, in that a computing station cannot churn
out some output only after it has received an infinite amount of input.

We remark here that continuity in this context is exactly the topological
notion of continuity in a particular topology, which is called the Scott topology.
In this topology, the set of all tuples with a particular finite prefix is an open
set, and the collection of all these sets is a base for the topology.

A Kahn process, or just a process, is a continuous function F : Sm → Sn for
some m and n. If m = 0, then we say that F is a source; Sm = S0 = {∅} has
a single member, the empty tuple, and hence F is trivially constant. If n = 0,
then we say that F is a sink. In either case, F is trivially continuous.

Not every monotone function is continuous, and thus a Kahn process. For
instance, consider a function F : S → S such that for any sequence s,

F (s) =

{
〈 〉 if s is finite;
〈v〉 otherwise.

Here v is some arbitrary value. It is easy to verify that F is monotone but not
continuous.

For an example of a continuous function, consider the unit delay process
Dv : S → S, such that for any sequence s,

Dv(s) = 〈v〉.s, (1)

where v is an arbitrary but fixed value. The effect of this process is to output
an initial token of value v before starting to churn out the tokens arriving at its
input, in the same order in which they arrive. We will have more to say about
the unit delay below.

2.5 Compositions of Kahn Processes and Determinacy

A finite composition of Kahn processes is a collection {s1, . . . , sp} of sequences
and a collection {F1, . . . , Fq} of processes relating them, such that no sequence

5

Lee and Matsikoudis

s1

s3

s2

s4

s1

s3

s2

s1 s3s2
s1

s2

s3

s4 s5

Figure 1. Examples of compositions of processes.

is the output of more than one process. Any sequence that is not the output of
any of the functions is an input to the composition.

A composition is determinate if and only if given the input sequences, all
other sequences are uniquely determined. Obviously, a Kahn process by itself
is determinate, since it is a functional mapping from input sequences to output
sequences.

Examples of finite compositions of Kahn processes are shown in Figure 1.
In each of these examples, given the component processes, it is obvious how
to construct a processes that maps the input sequences (those that are not
outputs of any process) to the other sequences. Each of these compositions
is thus determinate. Following Broy [5], we can iteratively compose processes
using patterns like those in Figure 1 to argue that arbitrary compositions are
determinate. The most challenging part of this strategy is to handle feedback.
(An alternative approach to this composition problem is given by Stark [27]).

Feedback compositions of Kahn processes may or may not be determinate.
Consider for example the identity function I, such that for any sequence s,
I(s) = s. I is trivially continuous, and thus a Kahn process. Suppose that
we form a very simple composition of the identity process by feeding back the
output to the input, letting F = I in Figure 2. There are no inputs to the
composition, which is therefore determinate if and only if the sequence s is
uniquely determined. However, any sequence s satisfies the constraint of the
composition, so it is not uniquely determined.

Figure 2. Feedback (a directed self-loop).

6

Lee and Matsikoudis

2.6 Least-Fixed-Point Semantics

There is an alternative interpretation due to Kahn [15] that makes the example
in Figure 2 determinate. Under this interpretation, any process composition
is determinate. Moreover, this interpretation is consistent with the execution
policies often used for such systems (their operational semantics), and hence
it is an entirely reasonable denotational semantics for the composition. This
interpretation is known as the least-fixed-point semantics, and in particular as
the Kahn principle.

The Kahn principle is based on a well-known fixed-point theorem stating
that a continuous function F : X → X on a cpo 〈X,6〉 has a least fixed point
x in 〈X,6〉; that is, there is an x ∈ X such that F (x) = x, and for any other
y ∈ X for which F (y) = y, x 6 y. Furthermore, the theorem is constructive,
providing an algorithmic procedure for finding the least fixed point: the least
fixed point of F is the least upper bound of all finite iterations of F starting
from the least element in 〈X,6〉.

To put it into our context, suppose that F : Sn → Sn is a process, and
consider the following sequence of n-tuples:

s0 = εn, s1 = F (s0), s2 = F (s1), (2)

Since F is monotone, and the tuple of empty sequences εn is a prefix of any
other n-tuple, si v sj if and only if i ≤ j. Hence, {s0, s1, . . .} is a chain, and
thus directed in 〈Sn,v〉, and since the latter is directed-complete, {s0, s1, . . .}
has a least upper bound in 〈Sn,v〉. The fixed-point theorem states that this
least upper bound is the least fixed point of F .

This theorem is quite similar to the well-known Knaster-Tarski fixed-point
theorem, which applies to complete lattices rather than complete partial orders.
For this reason, this approach to semantics is sometimes called Tarskian. The
application of the theorem to programming language semantics was pioneered
by Scott [25]. However, Kahn [15] was the first to recognize its potential in
modeling and design of complex distributed systems.

Under this least-fixed-point principle, the value of s in Figure 2 is uniquely
determined as the empty sequence ε when F is the identity process I. This is
consistent with our intuition; the identity process will not produce an output
token, unless there is some input token to cause it to.

Notice that (2) might suggest a reasonable execution policy for a network:
start with every sequence empty, and begin iterating the evaluation of every
process. In the limit, every sequence will converge to the least fixed point of
the composite process, in accordance with the interpretation suggested by the
Kahn principle.

2.7 Practical Issues

There are serious practical problems with using (2) as an execution policy. If
any process in the composition evaluates to an infinite tuple at some stage
of the iteration, then the execution of that process will never terminate, and

7

Lee and Matsikoudis

s1 s2

s4

Figure 3. Composition with a source of an infinite sequence.

thus preclude the progress of the iteration. This will happen immediately in
a composition like the one in Figure 3, where the process F2 is a source of an
infinite sequence.

In practice, we need to partially evaluate processes, carefully controlling the
length of each sequence. The problem is addressed by Parks [23], who devises
a general strategy to avoid accumulating unbounded numbers of unconsumed
tokens, whenever it is possible to do so. All partially evaluated sequences are
guaranteed to be prefixes of the sequences corresponding to the denotational
semantics of the process composition (although, as pointed out in [11], there
is no assurance of convergence to those sequences, which may not be desirable
anyway).

3 Dataflow with Firing

3.1 Dataflow Actors

We begin with a simple definition and generalize later. Our first attempt will
serve as a gentle introduction, and help motivate the need for the more general
case.

A dataflow actor, or dimply an actor, with m inputs and n outputs is a pair
〈R, f〉, where

(i) R is a set of finite m-tuples;

(ii) f : Sm → Sn is a (possibly partial) function defined at least on R;

(iii) f(r) is finite for every r ∈ R;

(iv) for all r, r′ ∈ R, if r 6= r′, then {r, r′} does not have an upper bound in
〈Sm,v〉.

We call each r ∈ R a firing rule, and f the firing function of the actor.
The last condition is equivalent to the following statement: for any given

m-tuple s, there is at most one firing rule r in R such that r v s. We remark
here that because 〈Sm,v〉 is a complete semilattice, r and r′ have an upper
bound in 〈Sm,v〉 if and only they have a least upper bound in 〈Sm,v〉, or
alternatively, if their join r u r′ is defined.

If m = 0, then R is a subset of the singleton set {∅}, and condition (iv) is
trivially satisfied. If n = 0, then condition (iii) is trivially satisfied.

8

Lee and Matsikoudis

3.2 Dataflow Processes

Let 〈R, f〉 be a dataflow actor with m inputs and n outputs. We want to define
a Kahn process F : Sm → Sn based on this actor, and a reasonable condition
to impose is that for any m-tuple s,

F (s) =

{
f(r).F (s′) if there exists r ∈ R such that s = r.s′;
εn otherwise.

(3)

Of course, this is not a definition. It is by no means obvious that such an F
exists, nor that this F is unique, or even a process. Nonetheless, it is possible
to use the least-fixed-point principle to resolve these issues, and turn (3) into
a proper definition. But before we can do this, we will need to review some
order-theoretic facts about functions over tuples of sequences.

For fixed m and n, we write Sm → Sn to denote the set of all functions
from Sm into Sn. The prefix order on n-tuples induces a pointwise order on
this set. We shall say that the function F : Sm → Sn is a prefix of the function
G : Sm → Sn, and write F v G, if and only if F (s) v G(s) for any m-tuple
s. Notice that the function s 7→ εn mapping every m-tuple s to the n-tuple of
empty sequences is a prefix of any other function in the set. The ordered set
〈Sm → Sn,v〉 is a complete semilattice, simply because 〈Sn,v〉 is a complete
semilattice. But for our purposes here, is suffices to know that 〈Sm → Sn,v〉
is a cpo.

Now consider the functional φ : (Sm → Sn) → (Sm → Sn) associated with
the actor 〈R, f〉, defined such that for any F ∈ Sm → Sn and any m-tuple s,

φ(F)(s) =

{
f(r).F (s′) if there exists r ∈ R such that s = r.s′;
εn otherwise.

(4)

Theorem 3.1. φ is monotone.

Proof. Let F1 and F2 be arbitrary functions of type Sm → Sn, and suppose
that F1 v F2.

If there is a firing rule r ∈ R such that r v s, then by condition (iv), r is
unique, and hence φ(F1)(s) = f(r).F1(s′) and φ(F2)(s) = f(r).F2(s′), where
s = r.s′. However, by assumption, F1(s′) v F2(s′) for any m-tuple s′, and
hence φ(F1)(s) v φ(F2)(s).

Otherwise, φ(F1)(s) = εn = φ(F2)(s).
In either case, φ(F1)(s) v φ(F2)(s), and hence φ is monotone.

Since φ is a monotone function over the cpo 〈Sm → Sn,v〉, it has a least
fixed point F in 〈Sm → Sn,v〉 [9], which must satisfy (3). This is reassuring,
but we can actually go a step further, and give a constructive procedure for
finding that least fixed point.

Theorem 3.2. φ is continuous.

9

Lee and Matsikoudis

Proof. Let D ⊆ Sm → Sn be directed in 〈Sm → Sn,v〉, and s an arbitrary
m-tuple.

If there is a firing rule r ∈ R such that r v s, then by condition (iv), r
is unique, and hence for every F ∈ Sm → Sn, φ(F)(s) = f(r).F (s′), where
s = r.s′. Thus, ⊔

{φ(F)(s) | F ∈ D} =
⊔
{f(r).F (s′) | F ∈ D}

= f(r).
⊔
{F (s′) | F ∈ D}

= f(r).(
⊔
D)(s′)

= φ(
⊔
D)(s).

Notice that since D is directed in 〈Sm → Sn,v〉, it has a least upper bound
therein, 〈Sm → Sn,v〉 being a cpo.

Otherwise, for every F ∈ Sm → Sn, φ(F)(s) = εn, and hence⊔
{φ(F)(s) | F ∈ D} = εn = φ(

⊔
D)(s).

In either case, ⊔
{φ(F)(s) | F ∈ D} = φ(

⊔
D)(s),

and hence φ is continuous.

Since φ is continuous, not only does it have a least fixed point, but there
is a constructive procedure for finding that least fixed point [9]. We can start
with the least element in 〈Sm → Sn,v〉, the function s 7→ εn mapping every
m-tuple s to the empty sequence, and iterate φ to obtain the following sequence
of functions:

F0 = s 7→ εn, F1 = φ(F1), F2 = φ(F1), (5)

Since φ is monotone, and s 7→ εn is a sequence of every other function, the set
{F0, F1, . . .} is a chain, and hence directed in 〈Sm → Sn,v〉. Thus, it has a
least upper bound therein, which is the least fixed point of φ.

Let us examine this chain more closely for some fixed m-tuple s. Suppose
that there is some sequence of firing rules 〈r1, r2, . . .〉 such that s = r1.r2.
Then, for this particular m-tuple, we can rewrite (5) in the following form:

F0(s) = εn

F1(s) = f(r1)
F2(s) = f(r1).f(r2)
. . .

(6)

This is an exact description of the operational semantics in Dennis dataflow,
with respect to a single actor. Start with the actor producing only the empty
sequence. Then find the prefix of the input that matches a firing rule, and
invoke the firing function on that prefix, producing a partial output. Notice
here that because of condition (iv), no more than one firing rule can match a
prefix of the input at any time. Then find the prefix of the remaining input

10

Lee and Matsikoudis

that matches another firing rule, invoke the firing function on that prefix, and
concatenate the result with the output.

In general, even when s is infinite, it is possible that there is only a finite
sequence of firing rules 〈r0, . . . , rp〉 such that s = r0.rp.s

′, with s′ having
no prefix in R. In both the operational semantics of Dennis dataflow and the
denotational interpretation of (6), the firings simply stop, and the output is
finite.

When m = 0, the least fixed point of φ is a source process, and if ∅ ∈ R,
then it produces the sequence f(∅).f(∅). · · · . If f(∅) is non-empty, then this
is infinite and periodic. This might seem limiting for dataflow processes that
act as sources, but in fact it is not; a source with a more complicated output
sequence can be constructed using a feedback composition, as in Figure 2.

When n = 0, the least fixed point of φ is a sink process, producing the
sequence ∅.∅. · · · = ∅.

In view of this perfect coincidence with the operational semantics, we are
tempted to define a Kahn process based on the actor 〈R, f〉 as this least fixed
point of φ. But in order to do this, we still need to prove that in the general
case, this least fixed point of φ is actually a continuous function, and thus a
Kahn process. It suffices to prove the following theorem:

Theorem 3.3. For any F : Sm → Sn, if F is continuous, then φ(F) is also
continuous.

Proof. Let F : Sm → Sn be a continuous function, and D ⊆ Sm directed in
〈Sm,v〉.

Suppose, toward contradiction, that there are r1, r2 ∈ R and s1, s2 ∈ D
such that r1 6= r2, but r1 v s1 and r2 v s2. Then since D is directed in
〈Sm,v〉, {s1, s2} has an upper bound in D, which is also an upper bound of
{r1, r2}, in contradiction to (iv).

Therefore, there is at most one r ∈ R that is a prefix of some tuple in D.
If there is such an r ∈ R, then⊔

{φ(F)(s) | s ∈ D} =
⊔
{f(r).F (s′) | r.s′ ∈ D}

= f(r).
⊔
{F (s′) | r.s′ ∈ D}

= f(r).F (
⊔
{s′ | r.s′ ∈ D})

= φ(F)(
⊔
D).

Notice that since D is directed in 〈Sm,v〉, {s′ | r.s′ ∈ D} is also directed in
〈Sm,v〉, and in particular, r.

⊔
{s′ | r.s′ ∈ D} =

⊔
D.

Otherwise, there is no firing rule in R that is a prefix of some tuple in D,
and hence ⊔

{φ(F)(s) | s ∈ D} = εn = φ(F)(
⊔
D).

In either case, ⊔
{φ(F)(s) | s ∈ D} = φ(F)(

⊔
D),

and hence φ(F) is continuous.

11

Lee and Matsikoudis

Since s 7→ εn is trivially continuous, and continuous functions are closed
under pointwise suprema [9], an easy induction suffices to see that the least
fixed point of φ is a continuous function. Note here that the firing function f
need not be continuous. In fact, it does not even need to be monotone. The
continuity of the least fixed point of φ is guaranteed if 〈R, f〉 is a valid actor
description according to conditions (i) through (iv).

3.3 Examples of Firing Rules

Consider a system where the set of token values is V = {0, 1}. Let us examine
some possible sets R ⊂ S of firing rules for unary firing functions f : S → S.

The following sets of firing rules all satisfy condition (iv) above:

{〈 〉};
{〈0〉};
{〈0〉, 〈1〉};

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}.

(7)

The first of these corresponds to a function that consumes no tokens from its
input sequence, and can fire infinitely regardless of the length of the input
sequence. The second consumes only the leading zeros from the input sequence,
and then stops firing. The third consumes one token from the input on every
firing, regardless of its value. The fourth consumes two tokens on the input on
every firing, again regardless of the values.

An example of a set of firing rules that does not satisfy condition (iv) is:

{〈 〉, 〈0〉, 〈1〉}. (8)

Such firing rules would correspond to an actor that could nondeterministically
consume or not consume an input token upon firing.

The firing rules in (8) would also correspond to the firing rules of the unit
delay defined in (1), so such a process cannot be a dataflow actor under this
definition. In fact, delays in dataflow actor networks are usually implemented
directly as initial tokens on an arc. Thus, if we admit such an implementation,
then there is no loss of generality here. The implementation cost is lower, and
this strategy avoids having to have special firing rules for delays that, if allowed
in general, could introduce non-determinism. Furthermore, once we admit this
sort of implementation for the unit delay, it is easy to model arbitrary actors
with state using a single self-loop initialized to their initial state.

Let us examine now some possible sets R ⊂ S2 of firing rules for binary
firing functions f : S2 → S.

The following sets of firing rules all satisfy condition (iv):

{〈〈0〉, 〈0〉〉, 〈〈0〉, 〈1〉〉, 〈〈1〉, 〈0〉〉, 〈〈1〉, 〈1〉〉};
{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈0〉〉, 〈〈1〉, 〈1〉〉};

{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈 〉〉}.
(9)

12

Lee and Matsikoudis

Figure 4. If F is an identity process, the appropriate firing rules are (10).

The first of these corresponds to an actor that consumes one input token from
each of its inputs. For example, this could implement a logic function such as
AND or OR. The second corresponds to a conditional actor, where the first
input provides a control token on every firing. If the control token has value
‘1’, then a token is consumed from the second input. Otherwise, no token is
consumed from the second input. The third corresponds to an actor that has
effectively one input, never consuming a token from the second input.

The following set of firing rules does not satisfy condition (iv):

{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈 〉〉, 〈〈 〉, 〈0〉〉, 〈〈 〉, 〈1〉〉}. (10)

These would be the firing rules of a non-determinate merge, a process that can
consume a token on either input and copy it to its output. The non-determinate
merge is not a monotone process, and so use of it in a Kahn process network
could result in non-determinism.

It is interesting to notice that the sets of firing rules of (7) and (9) can all
be implemented in a blocking-read fashion, according to the Kahn-MacQueen
implementation of Kahn process networks [16]. An example of a process that
cannot be implemented using blocking reads has the firing rules:

{〈〈1〉, 〈0〉, 〈 〉〉, 〈〈0〉, 〈 〉, 〈1〉〉, 〈〈 〉, 〈0〉, 〈1〉〉}. (11)

These firing rules satisfy (iv) and correspond to the Gustave function [3], a
function defining a process which is stable, but not sequential as the other
examples.

While actors that satisfy conditions (i) through (iv) above yield continuous
Kahn processes, these conditions are somewhat more restrictive than what is
really necessary. The firing rules in (10), for example, are not only the firing
rules for the dangerous non-determinate merge, but also the firing rules for a
perfectly harmless two-input two-output identity process. At first glance, it
might seem that this sort of identity process could be implemented using the
first set of firing rules of (9), though this will not work. The two examples in
Figure 4 show why not. In the first example, the first (top) input and output
should be the empty sequence under the least-fixed-point semantics, so there
will never be a token to trigger any firing rule of (9). In the second of these
examples, the second (bottom) input and output present the same problem.
The firing rules of (10), however, have no difficulty with these cases. We next
replace condition (iv) with a more general rule that solves such problems.

13

Lee and Matsikoudis

Figure 5. A two-input two-output identity process described as an aggregation
of two one-input one-output identity processes.

3.4 Commutative Firings

Many dataflow models having a notion of firing are not compositional. These
compositionality issues are discussed in a very general framework by Talcott
[29]. In our context, the problem is simply that an aggregation of actors that
can be individually described using firing rules and firing functions cannot be
collectively described in this way. This problem was alluded to in the final
example of the last subsection, which is the simplest example illustrating the
problem. It is possible to think of a two-input two-output identity process as
an aggregation of two one-input one-output identity processes, as in Figure 5.
One-input one-output identity processes are trivially described as actors that
satisfy conditions (i) through (iv), but a two-input two-output identity process
cannot be so described.

In order to solve this problem, we replace condition (iv) with the following
more elaborate condition:

(iv′) for all r, r′ ∈ R, if r 6= r′ and {r, r′} has an upper bound in 〈Sm,v〉,
then f(r).f(r′) = f(r′).f(r) and r u r′ = εm.

This condition states that if any two firing rules are consistent, namely they
have a common upper bound, and therefore can possibly be enabled at the
same time, then it makes no difference in what order we use these firing rules;
the values of the firing function at these consistent rules commute with respect
to the concatenation operator. Furthermore, any two consistent firing rules have
no common prefix other than the m-tuple of empty sequences.

It is easy to see that when condition (iv′) is satisfied,

r t r′ = r.r′ = r′.r; (12)

that is, the least common extension (least upper bound) of any two consistent
firing rules is their concatenation, in either order.

We also need to reconstruct the functional that we used to define the Kahn
process. For convenience, let PR(s) denote the set {r ∈ R | r v s}. This is a
possibly empty finite set. The functional φ′ is defined such that for any function
F : Sm → Sn and any m-tuple s,

φ′(F)(s) =

{
f(r1). · · · .f(rp).F (s′) if PR(s) 6= ∅ and {r1, . . . , rp} = PR(s);
εn otherwise.

14

Lee and Matsikoudis

Figure 6. A composition that is invalid under condition (iv), but not under
condition (iv′).

Here, we assume, as before, that s = r1.rp.s
′. Notice that because of (12),

for any permutation π on {1, . . . , p},

r1.rp = rπ(1).rπ(p),

and similarly, because of condition (iv′),

f(r1). · · · .f(rp) = f(rπ(1)). · · · .f(rπ(p)).

Therefore, it makes no difference in what order we invoke the enabled firing
rules. As before, we define the Kahn process F corresponding to the dataflow
actor 〈R, f〉 to be the least fixed point of the functional φ′.

Although notationally tedious, it is straightforward to extend the results
on φ to conclude that both the functional φ′ and its least fixed point F are
continuous; the proofs are practically identical.

Going back to the example of Figure 5, we see that we can use the firing
rules of (10), and a firing function f : S2 → S2 such that for any firing rule
r, f(r) = r, to obtain a dataflow actor for the two-input two-output identity
process that is valid under condition (iv′). More interestingly, we can use the
same firing rules to implement a process with firing function f : S2 → S such
that for each firing rule r,

f(r) =

{
〈1〉 if r = 〈〈1〉, 〈 〉〉 or r = 〈〈 〉, 〈1〉〉;
〈 〉 otherwise.

This process is interesting because it is neither sequential nor stable, and thus
cannot be implemented under condition (iv).

As a final example, consider the composition of Figure 6. The top process
is an identity process, and the bottom one a source of the infinite sequence
〈0, 0, . . .〉. A reasonable firing function for the source process would be the
function ∅ 7→ 〈0〉. The question now is how to define the firing rules R and
firing function f of the composition.

A first, naive attempt would be to let R = {〈0〉, 〈1〉}. However, with the
feedback arc in Figure 6, this results in no firing rule ever becoming enabled.
Instead, we need R = {〈0〉, 〈1〉, 〈 〉}, which violates condition (iv). However, if

15

Lee and Matsikoudis

we define the firing function such that

f(〈0〉) = 〈〈0〉, 〈 〉〉,
f(〈1〉) = 〈〈1〉, 〈 〉〉, and
f(〈 〉) = 〈〈 〉, 〈0〉〉,

then condition (iv′) is satisfied and the composition behaves as an aggregate of
its parts.

3.5 Compositionality

The examples of Figure 5 and 6 indicate certain compositionality issues that
can be successfully resolved using the notion of commutative firings. We can
generalize this to every composition of the same type.

Consider a slight generalization of Figure 1(a), where s1 is an m-tuple, s2

is an n-tuple, s3 is a p-tuple, and s4 is a q-tuple. It is possible to prove that
the aggregation of F1 and F2 is compositional, in the sense that it can always
be described as a set of firing rules and a firing function.

Assume for simplicity that m > 0 and p > 0 (generalizing to allow zero
values is easy), and suppose that F1 is defined by 〈R1, f1〉 and F2 by 〈R2, f2〉.
Let

R′1 = {r1 × εp | r1 ∈ R1}

and
R′2 = {εm × r2 | r2 ∈ R2},

where we loosely write r1 × εp to denote the unique (m + p)-tuple s that has
s(i) = r1(i) if i < m, and s(i) = εp(i −m) otherwise, etc. The set R of firing
rules for the composite process F : Sm+p → Sn+q is defined by

R = R′1 ∪R′2.

The firing function f : Sm+p → Sn+q of the composite process is defined such
that for any finite (m+ p)-tuple r,

f(r) =


f1(r1)× εq if r ∈ R′1 and r = r1 × εp;
εn × f2(r2) if r ∈ R′2 and r = εm × r2;
εn+q otherwise.

It is now straightforward to verify that if 〈R1, f2〉 and 〈R2, f2〉 both satisfy
condition (iv′), then so does 〈R, f〉.

3.6 Practical Issues

The constructive procedure given by (6) ensures that repeated firings converge
to the appropriate Kahn process defined by the actor. If any such sequence of
firings is finite, then it is only necessary to invoke a finite number of firings.

16

Lee and Matsikoudis

Figure 7. An example of a process network where it might be undesirable from
a practical perspective to insist that the operational semantics coincide with the
denotational semantics.

In practice, it is common for such firing sequences to be infinite, in which case
a practical issue of fairness arises. In particular, since there are usually many
actors in a system, in order to have the operational semantics coincide with
the denotational semantics, it is necessary to fire each actor infinitely often, if
possible.

It turns out that such a fairness condition is not always desirable. It may
result in unbounded memory requirements for execution of a dataflow process
network. In some such cases, there is an alternative firing schedule that is also
infinite, but requires only bounded memory. That schedule may not conform to
the denotational semantics, and nonetheless be preferable to one that does.

A simple example is shown in Figure 7. The actor labeled ‘SELECT’ has
the following set of firing rules:

{〈〈1〉, 〈 〉, 〈1〉〉, 〈〈0〉, 〈 〉, 〈1〉〉, 〈〈 〉, 〈1〉, 〈0〉〉, 〈〈 〉, 〈0〉, 〈0〉〉},

where the order of inputs is top-to-bottom. If the bottom input (the control
input) has value ‘1’ (for TRUE), then a token of any value is consumed from
the top input, and no token is consumed from the middle input. If the control
input has value ‘0’ (for FALSE), then a token of any value is consumed from
the middle input, and no token is consumed from the top input.

Suppose that the actors A, B, and D, all of which are sources, are defined
to each produce an infinite sequence, and that C, which is a sink, is defined
to consume an infinite sequence. Suppose further that the output from D is
the constant sequence 〈0, 0, . . .〉. Then tokens produced by actor A will never
be consumed. In most practical scenarios, it is preferable to avoid producing
them if they will never be consumed, despite the fact that this violates the
denotational semantics, which state that the output of actor A is an infinite
sequence. This problem is solved by Parks [23], who also shows that the obvious
solution for the example in Figure 7, the demand-driven execution, does not
solve the problem in general. Another, more specialized solution, achieved by
restricting the semantics, is presented by Caspi in [7].

17

Lee and Matsikoudis

4 Conclusion

We have shown how the formal semantic methods of Kahn dataflow can be
adapted to Dennis dataflow, which is based on the notion of an actor firing.
Kahn dataflow is defined in terms of continuous processes, which map input
sequences to output sequences, while Dennis dataflow is defined in terms of
firing functions, which map input tokens to output tokens, and are evaluated
only when input tokens satisfy certain firing rules. We have formally defined
firing rules and firing functions, and have shown how a Kahn process can be
defined as the least fixed point of a continuous functional that is constructed
using the firing rules and firing function of an actor. Furthermore, we have
specified conditions on the firing rules and firing functions that solve certain
compositionality problems in dataflow, in the sense that certain compositions
of actors are actors themselves.

References

1. Arvind, L. Bic, and T. Ungerer. Evolution of data-flow computers. In J.-L.
Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow Computing. Prentice-
Hall, 1991.

2. A. Benveniste, P. Caspi, P. L. Guernic, and N. Halbwachs. Data-flow synchronous
languages. In J. W. d. Bakker, W.-P. d. Roever, and G. Rozenberg, editors, A
Decade of Concurrency Reflections and Perspectives, volume 803 of LNCS, pages
1–45. Springer-Verlag, Berlin, 1994.

3. G. Berry. Bottom-up computation of recursive programs. Revue Franaise dAu-
tomatique, Informatique et Recherche Oprationnelle, 10(3):47–82, 1976.

4. J. D. Brock and W. B. Ackerman. Scenarios, a model of non-determinate com-
putation. In Conference on Formal Definition of Programming Concepts, volume
LNCS 107, pages 252–259. Springer-Verlag, 1981.

5. M. Broy. Functional specification of time-sensitive communicating systems. ACM
Transactions on Software Engineering and Methodology, 2(1):1–46, 1993.

6. M. Broy and G. Stefanescu. The algebra of stream processing functions. Theoret-
ical Computer Science, 258:99–129, 2001.

7. P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94(1),
1992.

8. M. Creeger. Multicore CPUs for the masses. ACM Queue, 3(7):63–64, 2005.

9. B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, 1990.

10. J. B. Dennis. First version data flow procedure language. Technical Report MAC
TM61, MIT Laboratory for Computer Science, 1974.

11. M. Geilen and T. Basten. Requirements on the execution of kahn process networks.
In European Symposium on Programming Languages and Systems, LNCS, pages
319–334. Springer, April 7-11 2003.

18

Lee and Matsikoudis

12. C.-J. Hsu, F. Keceli, M.-Y. Ko, S. Shahparnia, and S. S. Bhattacharyya. DIF: An
interchange format for dataflow-based design tools. In International Workshop on
Systems, Architectures, Modeling, and Simulation, Samos, Greece, July 2004.

13. A. Jantsch and I. Sander. Models of computation and languages for embedded
system design. IEE Proceedings on Computers and Digital Techniques, 152(2):114–
129, 2005.

14. W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow pro-
gramming languages. ACM Computing Surveys, 36(1):1–34, 2004.

15. G. Kahn. The semantics of a simple language for parallel programming. In Proc.
of the IFIP Congress 74. North-Holland Publishing Co., 1974.

16. G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist, editor, Information Processing, pages 993–998. North-Holland Pub-
lishing Co., 1977.

17. D. Lazaro Cuadrado, A. P. Ravn, and P. Koch. Automated distributed simulation
in Ptolemy II. In Parallel and Distributed Computing and Networks (PDCN). Acta
Press, February 13 15 2007.

18. E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

19. Y. Lin, R. Mullenix, M. Woh, S. Mahlke, T. Mudge, A. Reid, and K. Flautner.
SPEX: A programming language for software defined radio. In Software Defined
Radio Technical Conference and Product Exposition, Orlando, November 13-17
2006.

20. S. G. Matthews. An extensional treatment of lazy data flow deadlock. Theoretical
Computer Science, 151(1):195–205, 1995.

21. A. G. Olson and B. L. Evans. Deadlock detection for distributed process networks.
In ICASSP, 2005.

22. O. M. G. (OMG). A UML profile for MARTE, beta 1. OMG Adopted Specification
ptc/07-08-04, August 2007.

23. T. M. Parks. Bounded Scheduling of Process Networks. Phd, UC Berkeley, 1995.

24. T. M. Parks and D. Roberts. Distributed process networks in Java. In Interna-
tional Parallel and Distributed Processing Symposium, Nice, France, April 2003.

25. D. Scott. Outline of a mathematical theory of computation. In 4th annual Prince-
ton conf. on Information sciences and systems, pages 169–176, 1970.

26. V. Srini. An architectural comparison of dataflow systems. Computer, 19(3), 1986.

27. E. W. Stark. An algebra of dataflow networks. Fundamenta Informaticae, 22(1-
2):167–185, 1995.

28. R. Stephens. A survey of stream processing. Acta Informatica, 34(7), 1997.

29. C. L. Talcott. Interaction semantics for components of distributed systems. In
Formal Methods for Open Object-Based Distributed Systems (FMOODS), 1996.

30. W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-
ing applications. In 11th International Conference on Compiler Construction,
volume LNCS 2304, Grenoble, France, April 8-12, 2002 2002. Springer-Verlag.

19

Lee and Matsikoudis

31. W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Teleport
messaging for distributed stream programs. In PPoPP, Chicago, Illinois, USA,
June 1517 2005. ACM.

32. A. Turjan, B. Kienhuis, and E. Deprettere. Solving out-of-order communication
in Kahn process networks. Journal on VLSI Signal Processing-Systems for Signal,
Image, and Video Technology, 2003.

20

