
1

Component Architectures for
Time-Sensitive Systems
Part 1

Edward A. Lee
Robert S. Pepper Distinguished Professor and

The Onassis Foundation Science Lecture Series
The 2008 Lectures in Computer Science
Embedded Networked Systems: Theory and Applications

With thanks to Chihhong Patrick Cheng, Thomas Huning Feng, Slobodan Matic,
Hiren Patel, Eleftherios Matsikoudis,Yang Zhao, and Ye (Rachel) Zhou

Heraklion, Crete
July 24-28, 2008

this talk is posted at http://chess.eecs.berkeley.edu/pubs/472.html

Lee, Berkeley 2

Embedded
Networked
Systems

Embedded Systems are electronic components with
software, that are specifically designed to provide
services in various devices. The great majority (98%)
of microprocessors are embedded, and are used in
industrial sectors such as transport (avionics, space,
automotive, trains), electrical and electronic
appliances, process control, telecommunications, e-
commerce, and e-health. The extensive and
increasing use of embedded systems and their
integration in everyday products marks a significant
evolution in information science and technology.

As opposed to other systems, embedded systems
should meet requirements for autonomy and optimal
use of their resources. This raises fundamental
problems that call for enriching computer science
with new concepts and paradigms, from control
theory and electrical engineering.

The lectures will cover a range of topics spanning
both theoretical and practical aspects of embedded
systems design. This includes Component-based
Design Techniques, Multi-core Architectures and
Supercomputing, Wireless Networks, Formal
Verification, Security and Timing Analysis.

From:
http://www.forth.gr/onassis/lectures/2008-07-21/

2

Lee, Berkeley 3

Where I am From:
University of California at Berkeley

UC Berkeley
has arguably
the best
public
engineering
school in the
world.

Berkeley Engineering

Lee, Berkeley 4

Context of my work: Chess: Center for
Hybrid and Embedded Software Systems

Board of Directors
Edward A. Lee
Alberto Sangiovanni-Vincentelli
Shankar Sastry
Claire Tomlin

Executive Director
Christopher Brooks

Other key faculty at Berkeley
Dave Auslander
Ruzena Bajcsy
Raz Bodik
Karl Hedrick
Kurt Keutzer
George Necula
Masayoshi Tomizuka
Pravin Varaiya

This center, founded in 2002,
blends systems theorists and
application domain experts with
software technologists and
computer scientists.

Some Research Projects
Precision-timed (PRET) machines
Distributed real-time computing
Systems of systems
Theoretical foundations of CPS
Hybrid systems
Design technologies
Verification
Intelligent control
Modeling and simulation

Applications
Building systems
Automotive
Synthetic biology
Medical systems
Instrumentation
Factory automation
Avionics

3

Lee, Berkeley 5

Today

Morning:
Why time sensitivity changes everything

Afternoon:
What to do about it

Lee, Berkeley 6

Time-sensitive systems integrate
physical processes, computation, and
communication

medical devices and systems
assisted living and elder care
energy conservation
environmental control
process control
critical infrastructure (power, water)
telepresence
distributed physical games
traffic control and safety
financial networks
advanced automotive systems,
aviation systems
distributed robotics
military systems
smart structures
biosystems (morphogenesis,…)

Potential impact
integrated medical systems
safe/efficient transportation
distributed micro power generation
disaster recovery
alternative energy
social networking and games
fair financial networks
military dominance
economic dominance
energy efficient buildings
pervasive adaptive communications
distributed service delivery
…

Dec. 11, 2006: Dancers
in Berkeley dancing in

real time with dancers in
Urbana-Champagne

4

Lee, Berkeley 7

An Emerging Buzzword:
Cyber-Physical Systems (CPS)

CPS: Orchestrating networked computational
resources with physical processes.

Lee, Berkeley 8

The CPS Vision

“The integration of physical systems and processes with
networked computing has led to the emergence of a new
generation of engineered systems: Cyber-Physical
Systems (CPS). Such systems use computations and
communication deeply embedded in and interacting with
physical processes to add new capabilities to physical
systems. These cyber-physical systems range from
miniscule (pace makers) to large-scale (the national
power-grid). Because computer-augmented devices are
everywhere, they are a huge source of economic
leverage.”

- Charter for CPS Summit, St. Louis, April 25, 2008

5

Lee, Berkeley 9

CPS Intellectual Challenge

“…it is a profound revolution that turns entire
industrial sectors into producers of cyber-
physical systems. This is not about adding
computing and communication equipment to
conventional products where both sides maintain
separate identities. This is about merging
computing and networking with physical systems
to create new revolutionary science, technical
capabilities and products.”
- Charter for CPS Summit, St. Louis, April 25, 2008

Lee, Berkeley 10

Cyber Physical Systems:
Computational +

Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the
physical world

System Theory:

Deals directly with
physical quantities

6

Lee, Berkeley 11

CPS is Multidisciplinary

Lee, Berkeley 12

A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, PDEs, dynamics
computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks, and theories of computation must be viewed as
alternative ways of talking about dynamics.

7

Lee, Berkeley 13

First Challenge on the Cyber Side:
Real-Time Software
Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Timing of programs is not repeatable,
except at very coarse granularity.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 14

Techniques that Exploit this Fact

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…

8

Lee, Berkeley 15

A Story

In “fly by wire” aircraft, certification of the
software is extremely expensive. Regrettably, it
is not the software that is certified but the entire
system. If a manufacturer expects to produce a
plane for 50 years, it needs a 50-year stockpile
of fly-by-wire components that are all made from
the same mask set on the same production line.
Even a slight change or “improvement” might
affect timing and require the software to be re-
certified.

Lee, Berkeley 16

Related Problems

Product families
It is difficult to maintain and evolve families of products
together.
It is difficult to adapt existing designs because small
changes have big consequences

Forced redesign
A part becomes unavailable, forcing a redesign of the
system.

Lock in
Cannot take advantage of cheaper or better parts.

Risky in-field updates
In the field updates can cause expensive failures.

9

Lee, Berkeley 17

Abstraction Layers
The purpose for an
abstraction is to
hide details of the
implementation
below and provide a
platform for design
from above.

Lee, Berkeley 18

Abstraction Layers
Every abstraction
layer has failed for
real-time programs.

The design is the
implementation.

10

Lee, Berkeley 19

Abstraction Layers
How about “raising
the level of
abstraction” to solve
these problems?

Lee, Berkeley 20

But these higher abstractions rely on an
increasingly problematic fiction: WCET

A war story:

Ferdinand et al. determine the WCET of astonishingly simple
avionics code from Airbus running on a Motorola ColdFire 5307,
a pipelined CPU with a unified code and data cache. Despite
the software consisting of a fixed set of non-interacting tasks
containing only simple control structures, their solution required
detailed modeling of the seven-stage pipeline and its precise
interaction with the cache, generating a large integer linear
programming problem. The technique successfully computes
WCET, but only with many caveats that are increasingly rare in
software.

Fundamentally, the ISA of the processor has failed to provide
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor.” EMSOFT 2001.

11

Lee, Berkeley 21

The Key Problem

Electronics technology delivers highly reliable
and precise timing…

… and the overlaying software abstractions
discard it.

Lee, Berkeley 22

Second Challenge on the Cyber Side:
Concurrency

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.
Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources
of many problems:

Deadlock
Priority inversion
Scheduling anomalies
Timing variability
Nondeterminism
Buffer overruns
System crashes

12

Lee, Berkeley 23

My Claim

Nontrivial software written with threads is
incomprehensible to humans. It cannot
deliver repeatable and predictable timing,
except in trivial cases.

Lee, Berkeley 24

Consider a Simple Example

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN:
0201633612):

13

Lee, Berkeley 25

Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details
of this example.

Will this work in a
multithreaded context?

Lee, Berkeley 26

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this.
What’s wrong with it?

14

Lee, Berkeley 27

Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls
addListener(), deadlock!

Lee, Berkeley 28

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

15

Lee, Berkeley 29

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy
of listeners to avoid race
conditions

notify each listener outside of
synchronized block to avoid
deadlock

This still isn’t right.
What’s wrong with it?

Lee, Berkeley 30

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

16

Lee, Berkeley 31

If the simplest design patterns yield such
problems, what about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is. Having it synchronized can lead to
// deadlock. Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in
use for four years,
central to Ptolemy II,
with an extensive test
suite with 100% code
coverage, design
reviewed to yellow, then
code reviewed to green
in 2000, causes a
deadlock during a demo
on April 26, 2004.

Lee, Berkeley 32

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e
“b

or
ro

we
d”

fr
om

 a
n

Io
m

eg
a

ad
ve

rt
is

em
en

t
fo

r
Y2

K
so

ft
wa

re
 a

nd
 d

is
k

dr
iv

es
, S

ci
en

ti
fi

c
Am

er
ic

an
, S

ep
te

m
be

r
19

99
.

17

Lee, Berkeley 33

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 34

Is Concurrency Hard?

It is not
concurrency that
is hard…

18

Lee, Berkeley 35

…It is Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 36

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

19

Lee, Berkeley 37

We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

But is it enough to refine a mechanism
with flawed foundations?

Lee, Berkeley 38

The Result: Brittle Designs

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle
management system in the JSF program:

“Changing the instruction memory layout of the Flight
Control Systems Control Law process to optimize ‘Built in
Test’ processing led to an unexpected performance change
- System went from meeting real-time requirements to
missing most deadlines due to a change that was expected
to have no impact on system performance.”

National Workshop on High-Confidence Software
Platforms for Cyber-Physical Systems (HCSP-CPS)
Arlington, VA November 30 –December 1, 2006

20

Lee, Berkeley 39

The Current State of Affairs

We build real-time
software on abstractions
where time is irrelevant
using concurrency
models that are
incomprehensible.

Just think what we could do with the
right abstractions!

Lee, Berkeley 40

The Solution Space

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

21

Lee, Berkeley 41

Foundations:
Timed-Computational Semantics.

s ∈ S N

Causal systems operating on
signals are usually naturally
(Scott) continuous.

concurrent actor-
oriented models

abstraction

fixed-point
semantics

super-dense
time

Lee, Berkeley 42

Some
Reading on
Foundations

Papers:
[1] Lee and Matsikoudis, "The Semantics of

Dataflow with Firing," in From Semantics to
Computer Science: Essays in memory of Gilles
Kahn, Cambridge 2008.

[2] Zhou and Lee. "Causality Interfaces for Actor
Networks," ACM Trans. on Embedded
Computing Systems, April 2008.

[3] Lee, " Application of Partial Orders to Timed
Concurrent Systems," article in Partial order
techniques for the analysis and synthesis of
hybrid and embedded systems, in CDC 07.

[4] Liu and Lee, "CPO Semantics of Timed
Interactive Actor Networks," Technical Report
No. UCB/EECS-2007-131, November 5, 2007
(under review).

[5] Lee and Zheng, "Leveraging Synchronous
Language Principles for Heterogeneous
Modeling and Design of Embedded Systems,"
EMSOFT ’07.

[6] Liu, Matsikoudis, and Lee. "Modeling Timed
Concurrent Systems," CONCUR ’06.

[7] Cataldo, Lee, Liu, Matsikoudis and Zheng "A
Constructive Fixed-Point Theorem and the
Feedback Semantics of Timed Systems,"
WODES'06

etc. ...

Ph.D. Theses:

[1] Haiyang Zheng, "Operational
Semantics of Hybrid Systems,"
May 18, 2007.

[2] Ye Zhou, "Interface Theories
for Causality Analysis in Actor
Networks," May 15, 2007.

[3] Xiaojun Liu, "Semantic
Foundation of the Tagged
Signal Model," December 20,
2005.

22

Lee, Berkeley 43

Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 44

Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines
Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:
Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
ISAs with timing (deadline instructions?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of the Design Automation
Conference (DAC), June 2007.

23

Lee, Berkeley 45

Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 46

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

24

Lee, Berkeley 47

New Component Technology is more
Palatable than New Languages

It leverages:
Language familiarity
Component libraries
Legacy subsystems
Design tools
The simplicity of sequential reasoning

It allows for innovation in
Distributed time-sensitive system design
Hybrid systems design
Service-oriented architectures

Software is intrinsically concurrent
Better use of multicore machines
Better use of networked systems
Better potential for robust design

Lee, Berkeley 48

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming language (which had a visual syntax).

25

Lee, Berkeley 49

Examples of Actor-Oriented Systems

SCADE (synchronous, based on Lustre and Esterel)
CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Most of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
with significantly different approaches to concurrency.

Lee, Berkeley 50

Challenges

The technology is immature:

Commercial actor-oriented systems are domain-specific
Development tools are limited
Little language support in C++, C#, Java
Modularity mechanisms are underdeveloped
Type systems are primitive
Compilers (called “code generators”) are underdeveloped
Formal methods are underdeveloped
Libraries are underdeveloped

We are addressing these problems.

26

Lee, Berkeley 51

Ptolemy II: Our Laboratory for Experiments with
Actor-Oriented Design

Director from a library
defines component
interaction semantics

Large, behaviorally-
polymorphic component
library.

Visual editor supporting an abstract syntax

Type system for
transported data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 52

Approach: Concurrent Composition of
Components designed with Conventional
Languages

27

Lee, Berkeley 53

Example: Discrete Event Models
DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal

Components send time-
stamped events to other
components, and components
react in chronological order.

Lee, Berkeley 54

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

Distributed execution under DE semantics, with “model time”
and “real time” bound at sensors and actuators.

Input time stamps are
≥ real time

Input time stamps are
≥ real time

Output time stamps
are ≤ real time

Output time stamps
are ≤ real time

28

Lee, Berkeley 55

Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 56

Hierarchical
Multimodeling
Hierarchical compositions
of models of computation.
Maintaining temporal
semantics across MoCs is a
main challenge.

29

Lee, Berkeley 57

Multi-View Modeling:
Distinct and separate models of the same
system are constructed to model different
aspects of the system.

Functional model in Statecharts

Functional
model in
Ptolemy II

Deployment
model in
Ptolemy II

Verification
model in SMV

Reliability
model in
Excel

This example is a test
case for a
collaborative project
with Lockheed-Martin

Lee, Berkeley 58

Model Engineering Projects

Data ontologies
Property annotations
Model transformations
Higher-order actors
Workflow management

30

Lee, Berkeley 59

Making Time Essential in Computation

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.
Abstract semantics on super-dense time

Bottom up: Make timing repeatable.
Precision-timed (PRET) machines

Top down: Timed, concurrent components.
Distributed real-time discrete-events (PTIDES)

Holistic: Model engineering.
Mulimodeling, ontologies, property system, …

