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Embedded 
Networked 
Systems

Embedded Systems are electronic components with 
software, that are specifically designed to provide 
services in various devices. The great majority (98%) 
of microprocessors are embedded, and are used in 
industrial sectors such as transport (avionics, space, 
automotive, trains), electrical and electronic 
appliances, process control, telecommunications, e-
commerce, and e-health. The extensive and 
increasing use of embedded systems and their 
integration in everyday products marks a significant 
evolution in information science and technology.

As opposed to other systems, embedded systems 
should meet requirements for autonomy and optimal 
use of their resources. This raises fundamental 
problems that call for enriching computer science 
with new concepts and paradigms, from control 
theory and electrical engineering.

The lectures will cover a range of topics spanning 
both theoretical and practical aspects of embedded 
systems design. This includes Component-based 
Design Techniques, Multi-core Architectures and 
Supercomputing, Wireless Networks, Formal 
Verification, Security and Timing Analysis.

From:
http://www.forth.gr/onassis/lectures/2008-07-21/
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Where I am From:
University of California at Berkeley

UC Berkeley 
has arguably 
the best 
public 
engineering 
school in the 
world.

Berkeley Engineering
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Context of my work: Chess: Center for 
Hybrid and Embedded Software Systems

Board of Directors
Edward A. Lee
Alberto Sangiovanni-Vincentelli
Shankar Sastry
Claire Tomlin

Executive Director
Christopher Brooks

Other key faculty at Berkeley
Dave Auslander
Ruzena Bajcsy
Raz Bodik
Karl Hedrick
Kurt Keutzer
George Necula
Masayoshi Tomizuka
Pravin Varaiya

This center, founded in 2002, 
blends systems theorists and 
application domain experts with 
software technologists and 
computer scientists.

Some Research Projects
Precision-timed (PRET) machines
Distributed real-time computing
Systems of systems
Theoretical foundations of CPS
Hybrid systems
Design technologies
Verification
Intelligent control
Modeling and simulation

Applications
Building systems
Automotive
Synthetic biology
Medical systems
Instrumentation
Factory automation
Avionics
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Today

Morning:
Why time sensitivity changes everything

Afternoon:
What to do about it

Lee, Berkeley 6

Time-sensitive systems integrate 
physical processes, computation, and 
communication

medical devices and systems
assisted living and elder care
energy conservation
environmental control
process control
critical infrastructure (power, water) 
telepresence
distributed physical games
traffic control and safety
financial networks
advanced automotive systems,
aviation systems
distributed robotics
military systems
smart structures
biosystems (morphogenesis,…)

Potential impact
integrated medical systems
safe/efficient transportation
distributed micro power generation 
disaster recovery
alternative energy
social networking and games
fair financial networks
military dominance
economic dominance
energy efficient buildings
pervasive adaptive communications
distributed service delivery
…

Dec. 11, 2006: Dancers 
in Berkeley dancing in 

real time with dancers in 
Urbana-Champagne
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An Emerging Buzzword:
Cyber-Physical Systems (CPS)

CPS: Orchestrating networked computational 
resources with physical processes.
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The CPS Vision

“The integration of physical systems and processes with 
networked computing has led to the emergence of a new 
generation of engineered systems: Cyber-Physical 
Systems (CPS). Such systems use computations and  
communication deeply embedded in and interacting with 
physical processes to add new capabilities to physical 
systems. These cyber-physical systems range from  
miniscule (pace makers) to large-scale (the national 
power-grid). Because computer-augmented devices are 
everywhere, they are a huge source of economic 
leverage.”

- Charter for CPS Summit, St. Louis, April 25, 2008
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CPS Intellectual Challenge

“…it is a profound revolution that turns entire 
industrial sectors into producers of cyber-
physical systems. This is not about adding 
computing and communication equipment to 
conventional products where both sides maintain 
separate identities. This is about merging 
computing and networking with physical systems 
to create new revolutionary science, technical 
capabilities and products.”
- Charter for CPS Summit, St. Louis, April 25, 2008
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Cyber Physical Systems:
Computational +

Physical

CPS is Multidisciplinary 

Computer Science:

Carefully abstracts the 
physical world

System Theory:

Deals directly with 
physical quantities
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CPS is Multidisciplinary
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A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, PDEs, dynamics
computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic 
frameworks, and theories of computation must be viewed as 
alternative ways of talking about dynamics.
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First Challenge on the Cyber Side:
Real-Time Software
Correct execution of a program in C, C#, Java, 
Haskell, etc. has nothing to do with how long it 
takes to do anything. All our computation and 
networking abstractions are built on this premise.

Timing of programs is not repeatable, 
except at very coarse granularity. 

Programmers have to step outside the 
programming abstractions to specify 
timing behavior.
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Techniques that Exploit this Fact

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…
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A Story

In “fly by wire” aircraft, certification of the 
software is extremely expensive. Regrettably, it 
is not the software that is certified but the entire 
system. If a manufacturer expects to produce a 
plane for 50 years, it needs a 50-year stockpile 
of fly-by-wire components that are all made from 
the same mask set on the same production line. 
Even a slight change or “improvement” might 
affect timing and require the software to be re-
certified.
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Related Problems

Product families
It is difficult to maintain and evolve families of products 
together.
It is difficult to adapt existing designs because small 
changes have big consequences

Forced redesign
A part becomes unavailable, forcing a redesign of the 
system.

Lock in
Cannot take advantage of cheaper or better parts.

Risky in-field updates
In the field updates can cause expensive failures.
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Abstraction Layers
The purpose for an 
abstraction is to 
hide details of the 
implementation 
below and provide a 
platform for design 
from above.
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Abstraction Layers
Every abstraction 
layer has failed for 
real-time programs.

The design is the 
implementation.
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Abstraction Layers
How about “raising 
the level of 
abstraction” to solve 
these problems?
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But these higher abstractions rely on an 
increasingly problematic fiction: WCET

A war story:

Ferdinand et al. determine the WCET of astonishingly simple 
avionics code from Airbus running on a Motorola ColdFire 5307, 
a pipelined CPU with a unified code and data cache. Despite 
the software consisting of a fixed set of non-interacting tasks 
containing only simple control structures, their solution required 
detailed modeling of the seven-stage pipeline and its precise 
interaction with the cache, generating a large integer linear 
programming problem. The technique successfully computes 
WCET, but only with many caveats that are increasingly rare in 
software. 

Fundamentally, the ISA of the processor has failed to provide 
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor.” EMSOFT 2001.



11

Lee, Berkeley 21

The Key Problem

Electronics technology delivers highly reliable 
and precise timing…

… and the overlaying software abstractions 
discard it.
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Second Challenge on the Cyber Side:
Concurrency

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.
Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources 
of many problems:

Deadlock
Priority inversion
Scheduling anomalies
Timing variability
Nondeterminism
Buffer overruns
System crashes
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My Claim

Nontrivial software written with threads is 
incomprehensible to humans. It cannot 
deliver repeatable and predictable timing, 
except in trivial cases.
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Consider a Simple Example

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John 
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN: 
0201633612): 
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Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details 
of this example.

Will this work in a 
multithreaded context?
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Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this. 
What’s wrong with it?
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Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire 
a lock on some other object and stall. If 
the holder of that lock calls 
addListener(), deadlock!
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After years of use without problems, a Ptolemy Project code review found 
code that was not thread safe. It was fixed in this way. Three days later, a 
user in Germany reported a deadlock that had not shown up in the test suite.
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Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy 
of listeners to avoid race 
conditions

notify each listener outside of 
synchronized block to avoid 
deadlock

This still isn’t right.
What’s wrong with it?
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Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value changes in the wrong order!
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If the simplest design patterns yield such 
problems, what about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is.  Having it synchronized can lead to
// deadlock.  Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in 
use for four years, 
central to Ptolemy II, 
with an extensive test 
suite with 100% code 
coverage, design 
reviewed to yellow, then 
code reviewed to green 
in 2000, causes a 
deadlock during a demo 
on April 26, 2004.
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What it Feels Like to Use the synchronized
Keyword in Java
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Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings
among even simple collections of partially 
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005.
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Is Concurrency Hard?

It is not 
concurrency that 
is hard…
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…It is Threads that are Hard!

Threads are sequential processes that 
share memory. From the perspective of 
any thread, the entire state of the universe 
can change between any two atomic 
actions (itself an ill-defined concept).

Imagine if the physical world did that…
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Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design).



19

Lee, Berkeley 37

We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

But is it enough to refine a mechanism 
with flawed foundations?
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The Result: Brittle Designs

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle 
management system in the JSF program:

“Changing the instruction memory layout of the Flight 
Control Systems Control Law process to optimize ‘Built in 
Test’ processing led to an unexpected performance change 
- System went from meeting real-time requirements to 
missing most deadlines due to a change that was expected 
to have no impact on system performance.”

National Workshop on High-Confidence Software 
Platforms for Cyber-Physical Systems (HCSP-CPS) 
Arlington, VA November 30 –December 1, 2006
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The Current State of Affairs

We build real-time 
software on abstractions 
where time is irrelevant 
using concurrency 
models that are 
incomprehensible.

Just think what we could do with the 
right abstractions!
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The Solution Space

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.
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Foundations: 
Timed-Computational Semantics.

s ∈ S N

Causal systems operating on 
signals are usually naturally 
(Scott) continuous.

concurrent actor-
oriented models

abstraction

fixed-point 
semantics

super-dense 
time

Lee, Berkeley 42

Some
Reading on
Foundations

Papers:
[1] Lee and Matsikoudis, "The Semantics of 

Dataflow with Firing," in From Semantics to 
Computer Science: Essays in memory of Gilles 
Kahn, Cambridge 2008.

[2] Zhou and Lee. "Causality Interfaces for Actor 
Networks," ACM Trans. on Embedded 
Computing Systems, April 2008.

[3] Lee, " Application of Partial Orders to Timed 
Concurrent Systems," article in Partial order 
techniques for the analysis and synthesis of 
hybrid and embedded systems, in CDC 07.

[4] Liu and Lee, "CPO Semantics of Timed 
Interactive Actor Networks," Technical Report 
No. UCB/EECS-2007-131, November 5, 2007 
(under review).

[5] Lee and Zheng, "Leveraging Synchronous 
Language Principles for Heterogeneous 
Modeling and Design of Embedded Systems," 
EMSOFT ’07.

[6] Liu, Matsikoudis, and Lee. "Modeling Timed 
Concurrent Systems," CONCUR ’06.

[7] Cataldo, Lee, Liu, Matsikoudis and Zheng "A 
Constructive Fixed-Point Theorem and the 
Feedback Semantics of Timed Systems," 
WODES'06

etc. ...

Ph.D. Theses:

[1] Haiyang Zheng, "Operational 
Semantics of Hybrid Systems," 
May 18, 2007.

[2] Ye Zhou, "Interface Theories 
for Causality Analysis in Actor 
Networks," May 15, 2007.

[3] Xiaojun Liu, "Semantic 
Foundation of the Tagged 
Signal Model," December 20, 
2005.
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Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.
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Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines
Make temporal behavior as important as logical function. 

Timing precision with performance: Challenges:
Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
ISAs with timing (deadline instructions?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) 
Machine," in the Wild and Crazy Ideas Track of the Design Automation 
Conference (DAC), June 2007.
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Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.
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Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

evolving data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen
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New Component Technology is more 
Palatable than New Languages

It leverages:
Language familiarity
Component libraries
Legacy subsystems
Design tools
The simplicity of sequential reasoning

It allows for innovation in
Distributed time-sensitive system design
Hybrid systems design
Service-oriented architectures

Software is intrinsically concurrent
Better use of multicore machines
Better use of networked systems
Better potential for robust design
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The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming language (which had a visual syntax).
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Examples of Actor-Oriented Systems

SCADE (synchronous, based on Lustre and Esterel)
CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Most of these are 
domain specific.

Many of these 
have visual 
syntaxes.

The semantics of these differ considerably, 
with significantly different approaches to concurrency.
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Challenges

The technology is immature:

Commercial actor-oriented systems are domain-specific
Development tools are limited
Little language support in C++, C#, Java
Modularity mechanisms are underdeveloped
Type systems are primitive
Compilers (called “code generators”) are underdeveloped
Formal methods are underdeveloped
Libraries are underdeveloped

We are addressing these problems.
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Ptolemy II: Our Laboratory for Experiments with 
Actor-Oriented Design

Director from a library 
defines component 
interaction semantics

Large, behaviorally-
polymorphic component 
library.

Visual editor supporting an abstract syntax

Type system for 
transported data

Concurrency management supporting 
dynamic model structure.
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Approach: Concurrent Composition of 
Components designed with Conventional 
Languages
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Example: Discrete Event Models
DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Reactive actors

Signal

Components send time-
stamped events to other 
components, and components 
react in chronological order.
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Distributed execution under DE semantics, with “model time”
and “real time” bound at sensors and actuators.

Input time stamps are 
≥ real time

Input time stamps are 
≥ real time

Output time stamps 
are ≤ real time

Output time stamps 
are ≤ real time
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Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.
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Hierarchical 
Multimodeling
Hierarchical compositions
of models of computation. 
Maintaining temporal 
semantics across MoCs is a 
main challenge.
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Multi-View Modeling:
Distinct and separate models of the same 
system are constructed to model different 
aspects of the system.

Functional model in Statecharts

Functional 
model in 
Ptolemy II

Deployment 
model in 
Ptolemy II

Verification 
model in SMV

Reliability 
model in 
Excel

This example is a test 
case for a 
collaborative project 
with Lockheed-Martin
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Model Engineering Projects

Data ontologies
Property annotations
Model transformations
Higher-order actors
Workflow management
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Making Time Essential in Computation

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.
Abstract semantics on super-dense time

Bottom up: Make timing repeatable.
Precision-timed (PRET) machines

Top down: Timed, concurrent components.
Distributed real-time discrete-events (PTIDES)

Holistic: Model engineering.
Mulimodeling, ontologies, property system, …


