this talk is posted at http://chess.eecs.berkeley.edu/pubs/472.html

Part 1

Heraklion, Crete
July 24-28, 2008

Edward A. Lee
Robert S. Pepper Distinguished Professor and

Component Architectures for
Time-Sensitive Systems

The Onassis Foundation Science Lecture Series
The 2008 Lectures in Computer Science
Embedded Networked Systems: Theory and Applications

With thanks to Chihhong Patrick Cheng, Thomas Huning Feng, Slobodan Matic,
Hiren Patel, Eleftherios Matsikoudis,Yang Zhao, and Ye (Rachel) Zhou

Embedded
() Networked
Systems

Embedded Systems are electronic components with
software, that are specifically designed to provide
services in various devices. The great majority (98%)
of microprocessors are embedded, and are used in
industrial sectors such as transport (avionics, space,
automotive, trains), electrical and electronic
appliances, process control, telecommunications, e-
commerce, and e-health. The extensive and
increasing use of embedded systems and their
integration in everyday products marks a significant
evolution in information science and technology.

As opposed to other systems, embedded systems
should meet requirements for autonomy and optimal
use of their resources. This raises fundamental
problems that call for enriching computer science
with new concepts and paradigms, from control
theory and electrical engineering.

The lectures will cover a range of topics spanning
both theoretical and practical aspects of embedded
systems design. This includes Component-based
Design Techniques, Multi-core Architectures and
Supercomputing, Wireless Networks, Formal
Verification, Security and Timing Analysis.

From:
http://www.forth.gr/onassis/lectures/2008-07-21/

Embedded networked Systems: Theory and Applications
Heraklion Crete, July 21-25 2008

JOSEPH SIFAKIS
CNRS Ressanch Dienctor, Fousder of VERIMAG Loboratory
Tueing Awerd 2007

Computer Selence Dept., Columbia University,
f the Metwork Security Lob

EDWARD LEE
Robert 5. Pepper Diatinguished Profeciae, Elecirical Engineering
ond Computer Sciences Depl., University of Califoenia of Berkeley

AMIR PHUEL
rofessar, Computer Selence Depl, Courant Instute, New York Uriversity

rord | 1996

NTINE D. POLYCHRONOPOLLOS
Minzss ot Urbose-Chompa
MATEQ VALERO

Professor, Computer Architecture Department,
Te

ol

Where | am From:
University of California at Berkeley

Berkeley Engineering

UC Berkeley
has arguably

the best

public

engineering

school in the

world.

® Context of my work: Chess: Center for

Hybrid and Embedded Software Systems

e This center, founded in 2002,

blends systems theorists and
application domain experts with
software technologists and
computer scientists.

Board of Directors
o Edward A. Lee
Alberto Sangiovanni-Vincentelli b

o
o Shankar Sastry
o Claire Tomlin

Applications

Executive Director o Building systems
o Christopher Brooks o Automotive

Some Research Projects o Synthetic biology
Other key faculty at Berkeley o Precision-timed (PRET) machines o Medical systems
° gave Au;lgnder o Distributed real-time computing o Instrumentation
o Ruzena Bajcs
o Raz Bodik esy o Systems of systems o Factory automation
o Karl Hedrick o Theoretical foundations of CPS o Avionics
o Kurt Keutzer o
o George Necula o
o Masayoshi Tomizuka o Verificatio
o Pravin Varalya o Intelligent contro

o Modeling and simulation

°?

o Today
Morning:
o Why time sensitivity changes everything
Afternoon:
o What to do about it
Lee, Berkeley 5
Time-sensitive systems integrate
o physical processes, computation, and
communication
o medical devices and systems Dec. 11, 2006: Dancers
i L. in Berkeley dancing in
o assisted living and elder care real time with dancers in
o energy conservation Urbana-Champagne
o environmental control Potential impact
© process control o integrated medical systems
o critical infrastructure (power, water) o safelefficient transportation
o telepresence o distributed micro power generation
o distributed physical games o disaster recovery
o traffic control and safety o alternative energy
o financial networks o social networking and games
o advanced automotive systems, © U (IEEE MERDE
it t o military dominance
° aY'a,'O” SYysS emS_ o economic dominance
o distributed robotics o energy efficient buildings
o military systems o pervasive adaptive communications
o smart structures o distributed service delivery
o biosystems (morphogenesis,...) o

Lee, Berkeley 6

o3

An Emerging Buzzword:

[;
Cyber-Physical Systems (CPS)
CPS: Orchestrating networked computational
resources with physical processes.
Lee, Berkeley 7
) The CPS Vision

“The integration of physical systems and processes with
networked computing has led to the emergence of a new
generation of engineered systems: Cyber-Physical
Systems (CPS). Such systems use computations and
communication deeply embedded in and interacting with
physical processes to add new capabilities to physical
systems. These cyber-physical systems range from
miniscule (pace makers) to large-scale (the national
power-grid). Because computer-augmented devices are
everywhere, they are a huge source of economic
leverage.”

- Charter for CPS Summit, St. Louis, April 25, 2008

Lee, Berkeley 8

o4

o CPS Intellectual Challenge

“...itis a profound revolution that turns entire
industrial sectors into producers of cyber-
physical systems. This is not about adding
computing and communication equipment to
conventional products where both sides maintain
separate identities. This is about merging
computing and networking with physical systems
to create new revolutionary science, technical
capabilities and products.”

- Charter for CPS Summit, St. Louis, April 25, 2008

Lee, Berkeley 9

[CPS is Multidisciplinary

System Theory:

y

Lee, Berkeley 10

Carefully abstracts the
physical world

Cyber Physical Systems:

e5

CPS is Multidisciplinary
i 7
Lifts O . (L | - _P_HHEQEI
Security [= = — = =% .
= o O e H
in! . é. ; ’g: 'E; & Foofiop unit ?chan:irEmeerm ’ E:;%OI
==}
-
2 CCTV evator] it - \‘}'f I I E
Pow er D . =) o 9 Air terminal 10 Thermostat 1.1 EMS
room
3 UPS Systam [d 138
I . Fire W
X R d ——
i | B[]
= { —
4 Power - =
distribytion — J 138
Dﬁ Bactricity 4 | 5 |E| 12 Frebarel Tt
_ L= g
5 Ganerator aMs o
Lee, Berkeley 11

A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, PDEs, dynamics
computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks, and theories of computation must be viewed as
alternative ways of talking about dynamics.

Lee, Berkeley 12

(]3]

First Challenge on the Cyber Side:
Real-Time Software

Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Timing of programs is not repeatable,
except at very coarse granularity.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 13

O 0O 0OO0OO0OO0OOOOOODO O

Techniques that Exploit this Fact

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)

Lee, Berkeley 14

o7/

A Story - \

In “fly by wire” aircraft, certification of the
software is extremely expensive. Regrettably, it
Is not the software that is certified but the entire
system. If a manufacturer expects to produce a
plane for 50 years, it needs a 50-year stockpile
of fly-by-wire components that are all made from
the same mask set on the same production line.
Even a slight change or “improvement” might
affect timing and require the software to be re-
certified.

Lee, Berkeley 15

Related Problems

o Product families

It is difficult to maintain and evolve families of products
together.

It is difficult to adapt existing designs because small
changes have big consequences

o Forced redesign

A part becomes unavailable, forcing a redesign of the
system.

o Lockin

Cannot take advantage of cheaper or better parts.
o Risky in-field updates

In the field updates can cause expensive failures.

Lee, Berkeley 16

o3

[‘ Abstraction Layers

actor-oriented
model X E
g ————————\" threa

S
N
i N \ “task-level models

Y N\
j \C \
synthesizable
VHDL programs
VHDL programs
\ Vi

&
N
tandard ‘
= ava byte codé programs
~ designs \\
FPGA configurations \ Yovu
X86 programs
executablgs /7 \ .

silicon chips

Microprocessors

The purpose for an
abstraction is to
hide details of the
implementation
below and provide a
platform for design
from above.

Lee, Berkeley 17

o ‘ Abstraction Layers

actor-oneTies,
B =
ance el
== S
S

perform

silicon chips

Every abstraction
layer has failed for
real-time programs.

The design is the
implementation.

Lee, Berkeley 18

o9

-

How about “raising
/ actor-oriented \
perf‘urman(e models b the Ievel Of
Pasix nuX processes H ”
Va threads e mocs abstraction” to solve
these problems?
.

C++ programs Java programs’

VHDL programs w
e programs

\ standard L

‘| " cell Java byte code programs
| . designs /

| H

|

| FPGA configurations Y ivm

I 7 x86 programs

| executables /

/N g
1
ASICchips P4-M 1.6GHz
FPGAs

MiCroprocessors

silicon chips

Lee, Berkeley 19

But these higher abstractions rely on an
increasingly problematic fiction: WCET

A war story:

Ferdinand et al. determine the WCET of astonishingly simple
avionics code from Airbus running on a Motorola ColdFire 5307,
a pipelined CPU with a unified code and data cache. Despite
the software consisting of a fixed set of non-interacting tasks
containing only simple control structures, their solution required
detailed modeling of the seven-stage pipeline and its precise
interaction with the cache, generating a large integer linear
programming problem. The technique successfully computes
W?ET, but only with many caveats that are increasingly rare in
software.

Fundamentally, the ISA of the processor has failed to provide
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 20

010

The Key Problem

Electronics technology delivers highly reliable
and precise timing...

... and the overlaying software abstractions
discard it.

Lee, Berkeley 21

Second Challenge on the Cyber Side:
Concurrency

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.
Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources
of many problems:

Deadlock

Priority inversion
Scheduling anomalies
Timing variability
Nondeterminism
Buffer overruns
System crashes

Lee, Berkeley 22

oll

o My Claim

Nontrivial software written with threads is
incomprehensible to humans. It cannot
deliver repeatable and predictable timing,
except in trivial cases.

Lee, Berkeley 23

o Consider a Simple Example

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN:
0201633612):

Lee, Berkeley 24

el2

® Observer Pattern in Java

public void addListener(/istener) {.}

public void setValue(newValue) {
myValue = newValue;

for (int 7 = 0; 1 < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)
by

Will this work in a
multithreaded context?
Thanks to Mark S. Miller for the details

of this example. Lee, Berkeley 25

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(/istener) {.}

public synchronized void setValue(newlvalue) {
myValue = newValue;

for (int 7 = 0; i1 < myListeners.length; i++) {

myListeners[i].valueChanged(newValue)

}

Javasoft recommends against this.
What's wrong with it?

Lee, Berkeley 26

el3

o Mutexes are Minefields

public synchronized void addListener([/istener) {.}

public synchronized void setValue(newVvalue) {
myValue = newValue;

for (int 7 = 0; 1 < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)
by

valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls

addListener(), deadlock!
Lee, Berkeley 27

public void addChangelistener (ChangelListener listener) {
NawedChj container = (NawedChj) getContainer():
if (container != null) |
container. addChangelistener (listener) »
1 else {
if [_changslListeners == null)] {
_changelisteners = new LinkedLisci):
_changelisteners.add(0, listener):
} else if (! changelListeners.containsilistener)) {
_changelisteners.add(0, listener):

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

el

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(/istener) {.}

public void setValue(newvalue) {
Synch ronized (th i S) { while holding lock, make copy
of listeners to avoid race
myValue = newValue; conditions

listeners = myListeners.clone();

} notify each listener outside of
synchronized block to avoid
deadlock

for (int 7 = 0; 1 < listeners.length; i++) {
listeners[i].-valueChanged(newVvalue)
}
} This still isn’t right.

What's wrong with it?
Lee, Berkeley 29

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(/istener) {.}

public void setValue(newValue) {
synchronized(this) {
myValue = newValue;
listeners = myListeners.clone();

}

for (int 7 = 0; 1 < listeners.length; i1++) {
listeners[i]-valueChanged(newvalue)

}

Suppose two threads call setValue(). One of them will set the value last,
} leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

Lee, Berkeley 30

el5

J*
Cri

op
@P

*/

pu

If the simplest design patterns yield such
problems, what about non-trivial designs?

*

ossRefList is a list that maintains pointers to other CrossRefLists.

uthor Geroncio Galicia, Contributor: Edward A. Lee

ersion $1d: CrossReflList.java,v 1.78 2004/04/29 14:50:00 eal Exp $

ince Ptolemy 11 0.2

t.ProposedRating Green (eal)

t.AcceptedRating Green (bart) .
Code that had been in

blic final class CrossRefList implements Serializable { use for four years,
central to Ptolemy Il,

i with an extensive test
// NOTE: It is essential that this method not be suite with 100% code
// synchronized, since it is called by _farContainer(),

// which is. Having it synchronized can lead to cov_erage, deSIQn

// deadlock. Fortunately, it is an atomic action, reviewed to yellow, then
// so it need not be synchronized. code reviewed to green

private Object _n<_earCz_)ntainer() { in 2000, causes a
return _container; .
1 deadlock during a demo

on April 26, 2004.

protected class CrossRef implements Serializable{

private synchronized Object _farContainer() {
if (_far !'= null) return _far._nearContainer();
else return null;

Lee, Berkeley 31

What it Feels Like to Use the synchronized
Keyword in Java

software and disk drives, Scientific American, September 1999.

Image "borrowed” from an Iomega advertisement for Y2K

Lee, Berkeley 32

016

o Perhaps Concurrency is Just Hard...

Sutter and Larus observe:

‘humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 33

Is Concurrency Hard?

It is not
concurrency that
IS hard...

Lee, Berkeley 34

el7

...Itis Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that...

Lee, Berkeley 35

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Lee, Berkeley 36

el18

O O 0O 0O O 0O 0O

We Can Incrementally Improve Threads

Object Oriented programming

Coding rules (Acquire locks in the same order...)
Libraries (Stapl, Java 5.0, ...)

Patterns (MapReduce, ...)

Transactions (Databases, ...)

Formal verification (Blast, thread checkers, ...)
Enhanced languages (Split-C, Cilk, Guava, ...)
Enhanced mechanisms (Promises, futures, ...)

But is it enough to refine a mechanism
with flawed foundations?

Lee, Berkeley 37

The Result: Brittle Designs

Small changes have big consequences...

Patrick Lardieri, Lockheed Martin ATL, about a vehicle

management system in the JSF program:
“Changing the instruction memory layout of the Flight
Control Systems Control Law process to optimize ‘Built in
Test’ processing led to an unexpected performance change
- System went from meeting real-time requirements to
missing most deadlines due to a change that was expected
to have no impact on system performance.”

National Workshop on High-Confidence Software

Platforms for Cyber-Physical Systems (HCSP-CPS)

Arlington, VA November 30 -December 1, 2006

Lee, Berkeley 38

e19

The Current State of Affairs

We build real-time
software on abstractions
where time is irrelevant
using concurrency
models that are
incomprehensible.

Just think what we could do with the
right abstractions!

Lee, Berkeley 39

The Solution Space

Reintroduce time into the core abstractions:

o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.
o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 40

020

Foundations:
Timed-Computational Semantics. [suerdense

—— concurrent actor-

time

oriented models

Signal: s: R, x N — V.

Set of signals: S

:

)
y
L]

Tuples of signals: s € SV

Actor; F: SN — M

A unique least fixed point,

b e
& ® _on |se SN suchthat F(s) =s,
exists and be constructively
found if S is a CPO and
L i F I is (Scott) continuous.
D6
fixed-point Causal systems operating on
©) S’;enaggg) signals are usually naturally
(Scott) continuous.
Lee, Berkeley 41
Papers:
Some [1] Lee and Matsikoudis, "The Semantics of
Dataflow with Firing," in From Semantics to
) i Computer Science: Essays in memory of Gilles
Readlng_ on Kahn, Cambridge 2008.
Foundatlons [2] Zhou and Lee. "Causality Interfaces for Actor

Ph.D. Theses:

[1] Haiyang Zheng, "Operational

Semantics of Hybrid Systems,"

May 18, 2007.

[2] Ye Zhou, "Interface Theories
for Causality Analysis in Actor
Networks," May 15, 2007.

[3] Xiaojun Liu, "Semantic
Foundation of the Tagged
Signal Model," December 20,
2005.

Networks," ACM Trans. on Embedded
Computing Systems, April 2008.

[3] Lee, " Application of Partial Orders to Timed
Concurrent Systems," article in Partial order
techniques for the analysis and synthesis of
hybrid and embedded systems, in CDC 07.

[4] Liu and Lee, "CPO Semantics of Timed
Interactive Actor Networks," Technical Report
No. UCB/EECS-2007-131, November 5, 2007
(under review).

[5] Lee and Zheng, "Leveraging Synchronous
Language Principles for Heterogeneous
Modeling and Design of Embedded Systems,"
EMSOFT '07.

[6] Liu, Matsikoudis, and Lee. "Modeling Timed
Concurrent Systems,” CONCUR '06.

[7] Cataldo, Lee, Liu, Matsikoudis and Zheng "A
Constructive Fixed-Point Theorem and the
Feedback Semantics of Timed Systems,"
WODES'06

etc. ... Lee, Berkeley 42

21

Our Solution

Reintroduce time into the core abstractions:

o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.

o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 43

Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines
Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:
Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
ISAs with timing (deadline instructions?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of the Design Automation

Conference (DAC), June 2007.
Lee, Berkeley 44

022

® Our Solution

Reintroduce time into the core abstractions:

o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.

o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 45

[Object Oriented vs. Actor Oriented

The established: Object-oriented:

r

call

class name

data

methods 1

return

The alternative: Actor oriented:

)

actor name

data (state)

parameters ‘

ports

Input data Output data

What flows through
an object is
sequential control

Things happen to objects

Actors make things happen

What flows through
an object is
evolving data

Lee, Berkeley 46

023

New Component Technology is more
Palatable than New Languages

o lItleverages:
Language familiarity
Component libraries
Legacy subsystems
Design tools
The simplicity of sequential reasoning
o It allows for innovation in
Distributed time-sensitive system design
Hybrid systems design
Service-oriented architectures
o Software is intrinsically concurrent
Better use of multicore machines
Better use of networked systems
Better potential for robust design

Lee, Berkeley 47

The First (?) Actor-Oriented Programming Language
[The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer ~ Bert Sutherland with a light pen

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming language (which had a visual syntax).

Partially constructed actor-oriented model with

a class definition (top) and instance (below). Lee, Berkeley 48

024

O O O OO O0OO O O OO0

Examples of Actor-Oriented Systems

SCADE (synchronous, based on Lustre and Esterel)

CORBA event service (distributed push-pull) Most of these are
ROOM and UML-2 (dataflow, Rational, IBM) domain specific.
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)

LabVIEW (structured dataflow, National Instruments)

Modelica (continuous-time, constraint-based, Linkoping) ’f\’gav’;yv‘;;g?se
OPNET (discrete events, Opnet Technologies) syntaxes.

SDL (process networks)

Occam (rendezvous)

Simulink (Continuous-time, The MathWorks)

SPW (synchronous dataflow, Cadence, CoWare)

The semantics of these differ considerably,
with significantly different approaches to concurrency.

Lee, Berkeley 49

Challenges

The technology is immature:

Commercial actor-oriented systems are domain-specific
Development tools are limited

Little language support in C++, C#, Java

Modularity mechanisms are underdeveloped

Type systems are primitive

Compilers (called “code generators”) are underdeveloped
Formal methods are underdeveloped

Libraries are underdeveloped

O O O 0O 0O 0O OO

We are addressing these problems.

Lee, Berkeley 50

e25

Ptolemy II: Our Laboratory for Experiments with

Actor-

Oriented Design

Concurrency management supporting
dynamic model structure.

Director from a library

@@I@HPWI#F*%%%O

defines component

| Ukilites ~
|| Directors

(S Sources

__| GenericSources

! 4 TimedSources

B Clock.

CurrentTime

M PoissonClock

TimedSinewave

B TriggeredClock

Yariableclock
ceSaurces

DE Director

interaction semantics
rd Assembler actor composes a

a record token, which is then passed through a channel that
has random delay. The tokens arrive possibly in another
order. The Record Disassembler actor separates the string
from the sequence number. The strings are displayed as
received (possible out of order), and resequenced by the
Sequencer actor, which puts them back in order. This example
demonstrates how types propagate through record composition
and decomposition.

Master Clock String Sequence Display As Received

Record Assembler
Channel Model

| Flowcentral

Recol

polymorphic co

Large, behaviorally-

mponent | Type system for

I|brary
: =l

transported data

The channel is modeled
by a variable delay, which

H | Visual editor supporting an abstract syntax |

AUTTOTS: COWar A CEE arma TuTomg 70Ty

| |Berkeley 51

Approach: Concurrent Composition of
Components designed with Conventional

Langu

£ file:/C:/ptll/ptolemy/data/type/demo/Router/Router. xml Fie felp

File View Edit Graph Dsbug Help

R?! £ Comsteuce am acter wich che Qiven container and name.
Qearaf) |||.|-; Tl (R Toetptbohuac b

ages

£ files/Captil plolemy actor lib/Gaussian. java
pu1ie elass Caussian extends BasdenSoures |

* Bparam name The mame of chis actor.

J Utiities
|| Directors

) GeneticSources
(=] J T\medSDur(as

B wvariableClock.
| SequenceSources
) Sinks
" Array
| Conwversions
| FlowCantrol
| Highercrderactars

T Rexception 11egalietion

ception If ke actor camnot be contabped
DE Dirsctor This model| by the progoacd o ainer.
Record As: * Hesception NameDuplicaticaBwception If the contaiser already has an
a record to ' actor with this name.
hasrandor] " .)
public Gaumsian|CompomitsaEntity container, SEring name|
order. The throws WameDuplseationfxception, [8legalherlontrception |
from the sd super jsastaines, nams) @
received (S
Sequencer
demonstraf meAn = neu PartPArAmerer (this, “mess®, new DoubleToken(0.0)):
i mean, St TypeEuuals (SaseTrpe. DOUBLE) ;
Master Clock Siring Sequence standardbeviacion = new iehis, JH

mtandaTdbeviacion. setExpransion (71,07 ;
standardbaviation. satTrpabmenle (DanaTyps, BOUILE) ¢

.r H R R]
porcs and paramecers £

STT The masn of tha Eandam numbar,

=—reistan type double, initinlly with value 0.

Customize:

Documentation p [rParemecer mean:
Appearance P landacd deviacion of che random mavber,
Save fictar In Library J;:iz doubile, initimlly with value 1.
Listen to Actor t eer standardbeviation:
{ Set Breakpoints
FEREEREEE R R TR L E TR LR F TR LR FETELE 8T IELEE

Conwert bo Class FuBILE methads FHE

Authors: Edward Al
|

1 Cpen mtence | |Berkeley 52

026

Example: Discrete Event Models

DE Director implements
timed semantics using an

DE Director

event queue

TimedPlotter

-
Reactive actors ‘
[

T
200

180

Event source ‘

Components send time-
stamped events to other
components, and components
react in chronological order.

,,,mnlﬂﬂmm M | M H

|]
M 15 20 25 30

1]

Lee, Berkeley 53

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

Distributed execution under DE semantics, with “model time”
and “real time” bound at sensors and actuators.

Output time stamps Input time stamps are

are < real time > real time
network communication
Platform 1
Computation1 »
Platform 3
Input time stgmps are X Gomputation3

= real time » »

Pla 2

fm* Sensor2 H Computation2 # Me

L . Actuatori

Clock
b@ Computationd
Output time stamps
are < real time Lee, Berkeley 54

027

® Our Solution

Reintroduce time into the core abstractions:

o Foundations: Timed computational semantics.

o Bottom up: Make timing repeatable.

o Top down: Timed, concurrent components.

o Holistic: Model engineering.

Lee, Berkeley 55

DE Direcior Tralficight
aFred: Sec Prad
opom: > . -
En*ru uard: OF_iPrsnt Pam
puns: 1
o sl (Comr) . crag watp: Cred = 0 ol = 13 Cm = & 2"
GClack TrafficLigh » guard: Emi Timasnt e (it} (aliowon i
s\ weard. Gas_i@ sl -
@ oetput Cywl =0 geard Soc_ iPremnt
cgml || 0 it Cyel = 1 g
L IS (Fessmor) -
MNormal -
PaissonCiock | TimipdOe SR Dimcior rror e
E? SRDI Normal.PedestrianLight
BE : }—) [— —'r_ - D
et st P, Pt -
o L Eeipt Poedn; Pgeeed
& R e
Preg -

Sec
>
Ok

>

PedestianLight Pgm

I.CatLight

Hierarchical
Multimodeling

Hierarchical compositions
of models of computation.
Maintaining temporal
semantics across MoCs is a
main challenge.

T Trod
output:
" sard; Sac_igProsnt B8 count < 2 *
Cysisg; l: Gound = cousd + 1 -
s Gyt
i count = 0 *
Gy X s o
(Eint) outpst: Cyul=1; Patap=
= count =0 *
(=t Pgo
(T — L
put Pt
Pgo=1; A
e -
Cyelsn:
Com=0 d: Sec_iPremnt
i count =0 1 Crant; Cyainty; Cqme1
b count = 0
OGO) W —
#count 0 =
iy goard: Sec_iPresent B4 coud == 1
» tpul: Cyei=1; Cyme=0

28

Multi-View Modeling:

o Distinct and separate models of the same
system are constructed to model different
aspects of the system.

. A e -

Functional model in Statecharts

rmilf e

‘=45 F model in

' E« Deployment

Verification
model in SMV

"‘;j” = = Ptolemy Il
Functional f:h‘\——“ E é
model in =) T_.__* This example is a test | Reliability
Ptolemy Il | & =% .. | casefora ==| model in
E=5"" | collaborative project == Excel
with Lockheed-Martin Lee, Berkeley 57
® Model Engineering Projects

o Data ontologies

o Property annotations

o Model transformations
o Higher-order actors

o Workflow management

Lee, Berkeley 58

029

Making Time Essential in Computation

Reintroduce time into the core abstractions:

o Foundations: Timed computational semantics.
Abstract semantics on super-dense time

o Bottom up: Make timing repeatable.
Precision-timed (PRET) machines

o Top down: Timed, concurrent components.
Distributed real-time discrete-events (PTIDES)

o Holistic: Model engineering.
Mulimodeling, ontologies, property system, ...

Lee, Berkeley 59

e30

