
1

Component Architectures for 
Time-Sensitive Systems
Part 2

Edward A. Lee
Robert S. Pepper Distinguished Professor and

The Onassis Foundation Science Lecture Series
The 2008 Lectures in Computer Science
Embedded Networked Systems: Theory and Applications

With thanks to Thomas Huning Feng, Yang Zhao, and Ye (Rachel) Zhou

Heraklion, Crete
July 24-28, 2008

this talk is posted at http://chess.eecs.berkeley.edu/pubs/472.html

Lee, Berkeley 2

Our Solution

Reintroduce time into the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.



2

Lee, Berkeley 3

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

evolving data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 4

Our Agenda

I will show a particular approach to the design of 
concurrent and distributed time-sensitive systems that is 
an actor-oriented component technology.

The approach is called PTIDES (pronounced “tides”), for 
Programming Temporally Integrated Distributed 
Embedded Systems.

[1] Y. Zhao, E. A. Lee, and J. Liu, "A Programming Model for Time-Synchronized 
Distributed Real-Time Systems," in Real-Time and Embedded Technology and Applications 
Symposium (RTAS), Bellevue, WA, USA, 2007.
[2] T. H. Feng, E. A. Lee, H. D. Patel, and J. Zou, "Toward an Effective Execution Policy for 
Distributed Real-Time Embedded Systems," in 14th IEEE Real-Time and Embedded 
Technology and Applications Symposium (RTAS), St. Louis, MO, USA, 2008.



3

Lee, Berkeley 5

Our Approach is based on
Discrete Events (DE)

Concurrent actors
Exchange time-stamped messages

A correct execution is one where every actor 
reacts to input events in time-stamp order.

Time stamps are in “model time,” which typically 
bears no relationship to “real time” (wall-clock 
time).

Lee, Berkeley 6

Example
DE Director specifies that 
this will be a DE model



4

Lee, Berkeley 7

Example
Model of regularly spaced 
events (e.g., a clock signal).

Lee, Berkeley 8

Example
Model of irregularly spaced 
events (e.g., a failure event).



5

Lee, Berkeley 9

Example
Model of a subsystem that 
goes down on error events

Lee, Berkeley 10

Example
Model of an observer 
subsystem



6

Lee, Berkeley 11

Example
Events on the two input 
streams must be seen in 
time stamp order.

Note that DE MoCs have 
considerable subtleties when 
it comes to simultaneous 
events and events that 
prevent time from progressing 
(Zeno conditions).

Lee, Berkeley 12

This is a Component Technology
Model of a subsystem given 
as a state machine.



7

Lee, Berkeley 13

This is a Component Technology
Model of a subsystem given 
as an imperative program.

Other types of components:

• Functional expressions.

• Submodels in DE

• Submodels in other MoCs

Lee, Berkeley 14

Using DE Semantics in Distributed Real-
Time Systems

DE is usually a simulation technology.
Distributing DE is done for acceleration.
Hardware design languages (e.g. VHDL) use DE where 
time stamps are literally interpreted as real time, or 
abstractly as ticks of a physical clock.

We are using DE for distributed real-time software, 
binding time stamps to real time only where necessary.
PTIDES: Programming Temporally Integrated 
Distributed Embedded Systems



8

Lee, Berkeley 15

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Consider a simpler scenario:

Lee, Berkeley 16

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Assumption: Wall clocks on the distributed platforms are 
synchronized to some known precision (e.g. NTP, IEEE 1588)



9

Lee, Berkeley 17

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Bind model time to real time at the sensors:
Output time stamps 

are ≤ real time

Output time stamps 
are ≤ real time

Lee, Berkeley 18

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Bind model time to real time at the actuators:
Input time stamps are 

≥ real time

Input time stamps are 
≥ real time



10

Lee, Berkeley 19

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Schedulability is not violating these timing inequalities.
Input time stamps are 

≥ real time

Input time stamps are 
≥ real time

Output time stamps 
are ≤ real time

Output time stamps 
are ≤ real time

Lee, Berkeley 20

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

PTIDES uses static causality analysis to determine 
when events can be safely processed.

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e

Assume bounded 
sensor delay s



11

Lee, Berkeley 21

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

The execution model prevents remote processes from 
blocking local ones, and does not require backtracking.

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Lee, Berkeley 22

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

However, this program is not schedulable!
The resulting event here 
with time stamp t cannot 
be presented to the 
actuator until real time 
exceeds t + s + d + e + 
max(c1, c2) +c3



12

Lee, Berkeley 23

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Remote events also trigger real-time violations.
Schedulability analysis tells us the program is flawed.

Event with time stamp t 
available at real time ≥ t

Event with time stamp 
t cannot possibly be 
available here before 
real time t !

Event with time stamp t 
available at real time ≥ t

Event with time stamp t 
available at real time ≥ t

Lee, Berkeley 24

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

The program can be fixed with actors that increment 
the time stamps (model-time delays).



13

Lee, Berkeley 25

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

This relaxes scheduling constraints...

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e − d2
+ max(c1, c2) +c3

Lee, Berkeley 26

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Through static analysis we can derive sufficient 
conditions for schedulability…

The model is schedulable if:
1) s + d + e − d2 + c1 + c3 < 0
2) s + d + e − d2 + c2 + c3 < 0
3) …



14

Lee, Berkeley 27

PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

… and being explicit about time delays means that we 
can analyze control system dynamics…

The system is stable if …

Feedback through the physical world

Lee, Berkeley 28

Compare with Classical Distributed DE 
Simulation Technologies

Conservative distributed DE (Chandy & Misra) would 
block actuation unnecessarily.



15

Lee, Berkeley 29

Compare with Classical Distributed DE 
Simulation Technologies

Optimistic distributed DE (Jefferson) would require 
being able to roll back the physical world.

Lee, Berkeley 30

But this schedulability analysis is not quite 
as easy as it might look

Bounding computation time requires careful analysis 
of execution time and scheduling policies.

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e

Assume bounded 
sensor delay s



16

Lee, Berkeley 31

But this schedulability analysis is not quite 
as easy as it might look

Bounding clock error requires network time 
synchronization (IEEE 1588, NTP)

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e

Assume bounded 
sensor delay s

Lee, Berkeley 32

But this schedulability analysis is not quite 
as easy as it might look

Bounding network delay requires a real-time network 
(FlexRay, TTP, …)

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e

Assume bounded 
sensor delay s



17

Lee, Berkeley 33

But this schedulability analysis is not quite 
as easy as it might look

Bounding sensor delay requires bounding interrupt 
latency and thread context switching.

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + s + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e

Assume bounded 
sensor delay s

Lee, Berkeley 34

Making this Systematic

Levels of analysis:
1. Assume zero execution time for actors (exposes 

modeling errors)
2. Assume known worst-case execution time 

(WCET) for actors, unbounded compute 
resources (exposes complexity problems).

3. Assume WCET and a scheduling policy over 
finite resources (exposes resources limitations).



18

Lee, Berkeley 35

Exposing Modeling Errors

Levels of analysis:
1. Assume zero execution time for actors (exposes 

modeling errors)
2. Assume known worst-case execution time 

(WCET) for actors, unbounded compute 
resources (exposes inadequate compute speed).

3. Assume WCET and a scheduling policy over 
finite resources (exposes resources limitations).

Do this using causality interfaces.
[1] Y. Zhou and E. A. Lee, "Causality Interfaces for Actor Networks," ACM 

Transactions on Embedded Computing Systems (TECS), April 2008.

Lee, Berkeley 36

δ : P × P → R+ U {∞} yields the minimum model-time delay 
between any two ports (a causality interface).
(P – set of ports; R+ – set of non-negative real numbers)

Infer causality from causality interfaces using a min-plus algebra.
Example: δ(i5, o1) = min{δ5+δ1, δ5+δ4+δ2}, where δ1 , …, δ6 ∈ R+

are pre-defined.

i1

i2

i3

o1

o2

i5 o5
δ5

δ6

i6

i4
δ4

δ4'

o3

o4

δ1

δ2δ3

Causality Interfaces



19

Lee, Berkeley 37

When is it safe to process e = (v, t) at i1?
1. future events at i1, i2 and i3 have time stamps ≥ t (conventional), 

or
2. future events at i1 and i2 have time stamps ≥ t, or
3. future events at i1 have time stamps ≥ t, and

future events at i2 depend on events at i4 with time stamps ≥ t –
δ4, or

4. future events at i1 and i2 depend on events at i5 and i6 with time 
stamps ≥ t – min{δ5, δ6, δ5 + δ4, δ6 + δ4}.

e = (v, t) i1
i2

i3

o1

o2

i5 o5
δ5

δ6

i6

i4
δ4

δ4'

o3

o4

δ1

δ2δ3

From Causality Interfaces to an
Execution Strategy

Lee, Berkeley 38

i ~ i' iff they are input of the same actor and affect a common 
output. An equivalence class is a transitive closure of ~.

Construct a collapsed graph, and compute relevant dependency
between equivalence classes.

d(ε', ε) = mini'∈ε', i∈ε {δ(i', i)}

i1

i2

i3

o1

o2

i5 o5
δ5

δ6

i6

i4
δ4

δ4'

o3

o4

δ1

δ2δ3

min{δ5 , δ6}

ε3

ε1

ε2

min{δ5, δ6, δ5 + δ4, δ6 + δ4}ε4

δ4

δ4'

min{δ5 + δ4', δ6 + δ4'}

Relevant Dependency [Ye Zhou]



20

Lee, Berkeley 39

A dependency cut for ε is a minimal but complete set 
of equivalence classes that needs to be considered to 
process an event at ε.

Example: C1 and C2 are both dependency cuts for ε1.

min{δ5 , δ6}

ε3

ε1

ε2

min{δ5, δ6, δ5 + δ4, δ6 + δ4}ε4

δ4

δ4'

min{δ5 + δ4', δ6 + δ4'}

C1

C2

Dependency Cut [T. Feng, Y. Zhou, J. Zou]

Lee, Berkeley 40

Determine earliest event e = (v, t) at ε1 safe to process
If we choose C1: all unprocessed events at ε1 will 
have time stamps ≥ t.
If we choose C2: for any ε ∈ C2, all unprocessed 
events at in ε1 depend on events at ε with time 
stamps ≥ t – d(ε, ε1).
We can freely choose a dependency cut.

min{δ5 , δ6}

ε3

ε1

ε2

min{δ5, δ6, δ5 + δ4, δ6 + δ4}ε4

δ4

δ4'

min{δ5 + δ4', δ6 + δ4'}

C1

C2

Choosing a Dependency Cut



21

Lee, Berkeley 41

n cameras located around a football field, all connected to a 
central computer.
Events at blue ports satisfy t ≤ τ
(t – time stamp of any event; τ – real time)
Events at red ports satisfy t ≥ τ

Reference Application: 
Distributed Cameras

Lee, Berkeley 42

Make event-processing decisions locally
Guarantee timely command delivery to the Devices
Guarantee real-time update at the Display
Tolerate images loss or corruption at Image Processor

Problems to solve



22

Lee, Berkeley 43

n + 1 platforms with synchronized clocks (IEEE 1588).
Choose dependency cuts at platform boundary.
A queue stores events local to the platform.
At real time τ, future events have time stamps ≥ τ – dn.

network latency dn

…
Queue

Choose Dependency Cuts at 
Platform Boundaries

Lee, Berkeley 44

Time-sensitive computation 
is significantly different 
from other computation

Some misleading statements:

“Computing takes time”

“Time is a resource”

“Time is a non-functional property”

“Real time is a quality of service problem”


