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ABSTRACT
In a hard real-time embedded system, the time at which a result
is computed is as important as the result itself. Modern proces-
sors go to extreme lengths to ensure their function is predictable,
but have abandoned predictable timing in favor of average-case
performance. Real-time operating systems provide timing-aware
scheduling policies, but without precise worst-case execution time
bounds they cannot provide guarantees.

We describe an alternative in this paper: a SPARC-based pro-
cessor with predictable timing and instruction-set extensions that
provide precise timing control. Its pipeline executes multiple, inde-
pendent hardware threads to avoid costly, unpredictable bypassing,
and its exposed memory hierarchy provides predictable latency. We
demonstrate the effectiveness of this precision-timed (PRET) archi-
tecture through example applications running in simulation.

Categories and Subject Descriptors
C.1.3 [Computer Systems Organization]: Processor Architec-
tures—Other Architectures Styles;
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and Embedded Systems
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1. INTRODUCTION
Developing hard real-time software on modern processors has

grown very difficult because their complexity has made predicting
execution speed nearly impossible. Between multi-stage pipelines
with hazards, bypassing, and complex interactions between related
instructions, superscalar out-of-order instruction fetch units that al-
most recompile the program on-the-fly, three-level memory hierar-
chies with complex cache replacement policies, it is extremely dif-
ficult to accurately predict exactly how many cycles it will take to
execute a sequence of simple instructions [10], let alone code with
conditional branches. Modern processors are truly chaotic [6].

Unfortunately, worst-case execution time bounds are the founda-
tion on which all real-time software engineering is built. Of course,
one can always be conservative with over-estimates, but this has
become unrealistic since the difference between hitting level one
cache and main memory can be a thousand cycles.

We believe the solution for real-time embedded software is no
less than a rethinking of processor architecture. As has been ar-
gued elsewhere [9], it is time to consider architectures that provide
timing as predictable as their function. In this paper, we propose
a concrete example of such a precision-timed (PRET) architec-
tures: a multithreaded processor based on the SPARC instruction
set architecture (ISA) that delivers predictable timing along with
predictable function and performance. Below, we present a cycle-
accurate model of the PRET architecture using SystemC [23] and
an application running on it to demonstrate how software can take
advantage of PRET architectures. In the future, we plan an FPGA
implementation as well.

2. THE PRET PHILOSOPHY
The philosophy behind PRET [9] is that modern processor ar-

chitecture has gone down an unpredictability hole due to its single-
minded focus on average-case performance. It needs to be rethought
to be effective for real-time embedded systems. Patterson and Ditzel’s
similar observation [25] started the RISC revolution. In the same
way, we must rethink real-time embedded processor architectures.

The complexity of modern processors [13] has made the task of
calculating or even bounding the execution time of a sequence of
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Figure 1: Block Diagram of PRET Architecture

operations very difficult [10]. While this is not critical for best-
effort computing, it is a disaster for hard real-time systems.

The PRET philosophy is that temporal characteristics should be
as predictable as function. Much like how arithmetic on a proces-
sor is always consistent, predictable, and documented, we want its
speed to be equally consistent, predictable, and documented. While
turning the clock back to the era of eight-bit microprocessors is one
obvious way to achieve this, instead the goal of PRET is to re-think
many of the architectural features enabled by rising integration lev-
els and render them predictable.

Thus, PRET espouses software-managed scratchpad memories [3],
thread-interleaved pipelines with no bypassing [20, 11], explicit
timing control at the ISA level [15], time-triggered communica-
tion [17] with global time synchronization [16], and high-level lan-
guages with explicit timing [14]. In this paper, we propose an archi-
tecture that embodies many of these tenants, and demonstrate how
it can be programmed. In particular, we focus on integrating tim-
ing instructions to a thread-interleaved pipeline and a predictable
memory system. We then show how to program such a predictable
architecture.

3. RELATED WORK
The Raw processor of Agarwal et al. [29] shares certain elements

of the PRET philosophy. It, too, employs a software-managed
scratchpad instead of an instruction cache [22], and definitely takes
communication delay into account (the name “raw” is a reminder
that its ISA is exposed to wire delay). However, it sports multiple
single-threaded pipelines with bypassing, a fairly traditional data
cache, and focuses almost purely on performance, as usual at the
expense of predictability.

The Raw architecture is designed as a grid of single-threaded
processors connected by a novel interconnection network. While
we envision a similar configuration for high-end PRET processors,
the implementation we present here does not consider inter-core
communication. We may adopt a Raw-like communication net-
work in the future.

The Java Optimized Processor [27] enables accurate worst-case
execution time bounds, but does not provide support for controlling
execution time. The SPEAR [8] processor prohibits conditional
branches, which we find overly restrictive. The REMIC [26] and

KIEL [21] are predictable in the PRET sense, but they only allow
Esterel [5] as an entry language. Again, we find this overly restric-
tive; a central goal of our work was to provide a C development
environment.

Ip and Edwards [15] first implemented the deadline instruction
in a very simple non-pipelined processor that did not have C com-
piler support. This deadline instruction allowed a programmable
method to specify the lower bound execution time on segments of
program code. Our work extends theirs to a new architecture by
borrowing the deadline instruction semantics and integrating it into
a thread-interleaved pipeline. We introduce a replaying mechanism
to stall particular threads without stalling the entire pipeline. This
replaying mechanism is again employed with the deadline instruc-
tions.

The Giotto language [14] is a novel approach to specifying sys-
tem timing at the software level. However, it relies on the usual
RTOS infrastructure that assumes worst-case execution time is known
to establish schedulability [7]. Our PRET processor would be an
ideal target for the Giotto programming environment; constructing
one is future work.

Thread-interleaved pipelines date to at least 1987 [20], proba-
bly much earlier. Thread-interleaving reduces the area, power and
complexity of a processor [11, 18], but more importantly, it pro-
motes predictable execution of instructions in the pipeline. Access
to main memory in thread-interleaved pipelines is usually pipelined
[11, 18], but modern, large memories usually are not, so instead
our approach presents each thread with a window in which it can
access main memory. This provides predictable access to memory
and mutual exclusion between the threads. We call this a memory
wheel.

The goal of the Virtual Simple Architecture of Mueller et al. [2]
is to enable hard real-time operation of unpredictable processors.
They run real-time tasks on a fast, unpredictable processor and a
slower, more-predictable one simultaneously, and switch over if the
slow ever overtakes the fast. The advantage is that the faster pro-
cessor will have time to run additional, non-time-critical tasks. By
contrast, our PRET approach guarantees detailed timing, not just
task completion times, allowing timing to be used for synchroniza-
tion.

Scratchpad memories have long been proposed for embedded
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systems because they consume less power than caches [4], but here
we adopt them purely because they enable better predictability.
Since scratchpad memories are software managed, the issue of mem-
ory allocation schemes become important. Our future work is to
build on top of the current PRET architecture and develop a mem-
ory allocation scheme.

4. OUR ARCHITECTURE
In this section, we present the design of the PRET processor, its

memory system, and ISA extensions to support deadline counters.
We have prototyped the PRET architecture (block diagram shown
in Figure 1) with a cycle-accurate SystemC [23] model that exe-
cutes programs written in C and compiled with the GNU C com-
piler. Our simulator implements an extended SPARC v8 ISA [28].

The PRET PROCESSOR component in Figure 1 implements a
six-stage thread-interleaved pipeline in which each stage executes
a separate hardware thread to avoid the need for bypasses [20,
11]. Each hardware thread has its own register file, local on-chip
memory, and assigned region of off-chip memory. The THREAD
CONTROLLER component is a simple round-robin thread scheduler—
at any time, each thread occupies exactly one pipeline stage. To
handle the stalling of the pipeline predictably, we introduce a re-
play mechanism that simply repeats the same instruction until the
operation completes. Thus, the stalling of one thread does not af-
fect any of the others. The round-robin execution of threads avoids
memory consistency issues.

The memory hierarchy follows a Harvard architecture [13] that
consists of separate fast on-chip scratchpad memories (SPM) for
instruction and data, and a large off-chip main memory. They are
connected to a direct memory access (DMA) controller responsi-
ble for moving data between main memory and the SPMs. Cur-
rently, we assume program code fits entirely in the SPMs because
we have not developed an automatic program memory manage-
ment scheme [3]. The DMA component currently only transfers
the program code and data for each thread from main memory to
their respective SPMs at power on. As mentioned earlier, memory
reads and writes employ the replay mechanism. Each thread has its
own access window managed by the MEMORY WHEEL. If a thread
misses its window, it blocks until it reaches the start of its window.

We incorporate a deadline instruction [15] into our SPARC-based
ISA. Such an instruction blocks until a software-programmable dead-

line counter reaches zero. Each counter is controlled by a thread-
local phase-locked loop, which can be programmed to count at a ra-
tional multiple of the system clock frequency. Below, we describe
our implementation in detail. We present the memory system, the
memory wheel, the memory map, the thread interleaved pipeline,
extension of the timing instructions and the toolchain flow.

4.1 Memory System
Caches are known to be a major source of timing unpredictabil-

ity [30], but simply removing them is unacceptable. Instead, we
use scratchpad memories for bridging the processor-memory gap.
Scratchpad memories are software-managed on-chip memories of-
ten employed in hard real-time embedded processors. SPMs are
managed by software through DMA transfers, thus avoiding the un-
predictability of (often subtle) hardware replacement policies. Each
thread-local SPM is 64 KB with 1 cycle latency. We use a 16 MB
main memory which we assume to have a realistic latency of 50 ns.
This translates to 12.5 cycles on a PRET processor running at ap-
proximately 250 MHz, and we round this up to 13 cycles.

If all threads were able to access the off-chip main memory at ar-
bitrary times, then the off-chip memory access time for one thread
could depend on the memory access pattern of another. This type
of behavior introduces timing unpredictability and is undesirable.
In order to ensure predictable timing, all reads and writes to main
memory, such as shared data, must do so through our memory
wheel. Like the “hub” in the Parallax Propeller Chip [24], this
wheel has a fixed round robin schedule for determining which thread
is allowed to access memory. Based on the fixed schedule and the
time that a thread requests access to main memory, the access can
take between 13 and 90 cycles. It is important to note that the exact
number of cycles depends only on the cycle in which the request is
made, and not on the behavior of other threads or memory access
patterns.

Instead of blocking the entire pipeline during a multi-cycle mem-
ory access, we use the replay mechanism as described in the pipeline
section. A simple memory management unit selects among the
SPMs, the main memory, and memory-mapped I/O based on the
address.

4.1.1 Memory Wheel
The memory wheel controls access to the off-chip main memory

in a deterministic and predictable fashion. Each thread is allocated
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Figure 3: Compilation Flow for PRET Simulator

a 13-cycle window in which it must complete its memory access;
the wheel schedule repeats every 78 cycles. If a thread starts its
access on the first cycle of its window, the access takes exactly 13
cycles. Otherwise, the thread blocks until its window reappears,
which may take up to 77 cycles. A successful access after just
missing the first cycle of its window results in 77 + 13 = 90 cycles.
While this mechanism can cause a thread to block, there is no inter-
thread interaction and the behavior of the window is predictable.

4.1.2 Memory Map
Figure 2 shows the system memory map (addresses are 32 bits).

Each piece of memory in the system has a unique global address
(main memory and SPMs), but each thread only has access to part
of the overall memory map. Addresses 0x3F800000 – 0x405FFFFF
(14 MB) are main memory, visible to every thread. This layout al-
lows for future expansion: the shared data space can extend down-
ward; thread-local memory can extend upward. Our current im-
plementation has 512 bytes of boot code, 8 MB of shared data
and 1 MB total for SPMs. Peripherals start at 0x80000000; we
placed a UART at 0x80000200.

4.2 Pipeline
Our architecture implements a six stage thread-interleaved pipeline

that supports six independent hardware threads. Each thread has its
own set of registers. By design, we implemented one thread per
pipeline stage to eliminate dependencies among instructions in the
same thread. Thus, it does not need any data hazard detection logic
or bypassing.

The thread controller schedules the threads according to a round-
robin policy and passes a thread identifier to the pipeline that is used
to index thread-specific registers and SPMs. In the fetch stage,
the instruction pointed to by the current program counter is fetched
from the SPM. Because of the thread interleaving, we do not update
the program counter of the current thread. Instead, we update the
program counter in the except stage. This is acceptable because
the current thread will not be fetched until it exits the pipeline at
the except stage. This removes the need for any speculative ex-
ecution because we are sure the program counter is always correct
when it is fetched. The decode stage decodes the instruction and
sets the corresponding pipeline controls. The regacc stage reads
the source operands from the register file and selects between im-
mediate and registered data for the operands. The execute stage
performs ALU operations. The mem stage accesses either SPM or
main memory. The except stage catches exceptions and writes

any results to the register file if there are no exceptions. We update
the program counter in this stage after determining its next value
depending on stalls and branches.

Even though we do not need data hazard detection, we do have to
consider structural hazards. We address them with a replay mecha-
nism, which we elaborate below.

4.2.1 Stalls and the Replay Mechanism
Our pipeline only updates registers in the except stage. This

stage writes data to the register file only if no exception has oc-
curred. This gives a single commit point for each thread. We decide
at this commit point whether an instruction needs to be replayed.

By replaying instructions, we ensure each thread stays in exactly
one pipeline stage per cycle before advancing, even for multi-cycle
operations such as memory accesses. On a memory stall, for exam-
ple, the stalled instruction is repeatedly replayed every six cycles
until the data is fetched from memory and the thread can continue.
Replay thus provides a predictable method for blocking a thread
independently of the others, rather than stalling the whole pipeline.
The exception stage checks an instruction’s replay bit and commits
only if the bit is clear. Otherwise, the fetch stage checks and
determines the next program counter to be fetched. Therefore, the
next iteration of that thread will re-run the same instruction until
the multi-cycle operation is complete.

4.3 Timing Instructions
To provide precise timing control to software, we add a “dead-

line” instruction that allows the programmer to set and access cycle-
accurate timers [15]. This instruction sets a lower bound dead-
line on the execution time of a segment of code. We provide two
types of deadline timers that can be accessed by this instruction:
one group counts according to the main clock, the other counts ac-
cording to a clock generated by a programmable phase-locked loop
(PLL). These timers appear as additional registers (Figure 1) that
can only be accessed through the deadline instruction.

4.3.1 Syntax
We take the syntax of the deadline instruction from Ip and Ed-

wards [15]. There is an immediate form, deadi $ti,v, and a reg-
ister form, dead $ti,$r j . Each thread has twelve deadline regis-
ters (t0–t11), eight of which count instruction cycles, the other four
are driven by the PLL; and 32 global registers (r0–r31). v is a 13-bit
immediate value.



int main() {
  DEAD(28); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26);
    *buf = i;
  }
  return 0;
}

Producer
int main() {
  DEAD(41);
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  int arr[8];
  for (i =0; i<8; i++)
    arr[i] = 0;
  for (i = 0; ; i++) {
    DEAD(26);
    register int tmp = *buf;
    arr[i%8] = tmp;
  }
  return 0;
}

Consumer
int main() {
  DEAD(41); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  volatile unsigned int * fd =  
 (unsigned int*)(0x80000600);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26); 
    *fd = *buf;
  }
  return 0;
}

Observer

Figure 4: Simple Producer/Consumer Example

4.3.2 Semantics
The deadline instruction can only enforce a lower bound on the

execution time of code segment; using replay, the deadline instruc-
tion blocks the thread whenever the deadline register ti being writ-
ten is not yet zero.

Unlike Ip and Edwards [15], our processor is pipelined, so we
decrease each deadline register once every six clock cycles, i.e., at
the instruction execution rate, and the PLL registers at the rate set
by the PLL. When a deadline instruction attempts to set a deadline
register, it blocks until the deadline register reaches zero, at which
point it reloads the register and passes control to the next instruc-
tion. Thus, an earlier deadline instruction can set the minimum
amount of time that can elapse before the next deadline instruction
terminates.

Currently, if a deadline expires (i.e., the register reaches zero be-
fore a deadline instruction reaches it), we do nothing: the deadline
instruction simply loads the new value immediately and continues.
Later, we plan to allow the architecture to throw an exception when
a deadline is missed.

4.3.3 Implementation
To implement the deadline instruction, we chose an unused op-

code and followed the usual SPARC instruction coding format,
which allowed us to include both register and immediate forms of
the instruction. Figure 5 shows two concrete encodings.

Support for the deadline instruction requires some extra pipeline
control logic and deadline registers.

00010 01111111111111 101100 00000 1
op rs1 i simm13rd op3

00010  00001xxxxxxxx11 101100 00000 0
op rs1 i asi rs2rd op3

Figure 5: Encoding of dead $t2,0xFF and dead $t2,$g1

In our pipeline, we check the deadline register in the register
access stage and use the replay mechanism to block a deadline in-
struction until its deadline register is zero.

4.4 Compilation Flow
We adapted the SPARC toolchain used by the open-source LEON3

implementation [12]. Figure 3 shows our compilation flow.

We require the user to provide a main() function for each hard-
ware thread in separate files (e.g., thread0.c). We compile each
at locations dictated by our memory map by passing the -Ttext
and -Tdata options to the linker. For example, thread0.c
starts at address 0x40000000 and thread1.c at 0x40010000.
We merge the resulting object files with the setup code and convert
them to Motorola S-record (SREC) format. Our simulator then ini-
tializes memory with the contents of the SREC files. We plan to
use the same SREC files as input to our FPGA implementation of
the PRET processor.

5. BASIC PRET PROGRAMMING
To illustrate how PRET timing precision can be used for syn-

chronization, we present a simple producer/consumer example with
an observer that displays the transferred data. This is a classical
mutual exclusion problem in that we must deal with the issue of
shared resources. Unlike the classical approach, however, the time
that a thread must wait for a lock in our approach is determinis-
tic in that it does not depend on the behavior of the other threads
accessing the lock.

Our approach uses deadline counters and precise knowledge of
the timing of instructions to synchronize access to a shared vari-
able used for communication. We take on the role of a worst-case
execution time (WCET) analysis tool to analyze the instructions
generated from the C programs and compute the exact values for
the deadline counters to ensure correct synchronization.

5.1 Mutual Exclusion
A general approach to managing shared data across separate threads

is to have mutually exclusive critical sections that only a single
thread can access at a time. Our memory wheel already guarantees
that any accesses to a shared word will be atomic, so we only need
to ensure that these accesses occur in the correct order.

Figure 4 shows the C code for the producer, consumer, and an
observer all accessing the shared variable buf (underlined). The
producer iterates and writes an integer value to the shared data.
The consumer reads this value from this shared data and stores it in
an array. For simplicity, our consumer does not perform any other
operations on the consumed data. It just stores the data in the array.
The observer also reads the shared data and writes it to a memory-
mapped peripheral.

The deadline instructions in Figure 4 are marked in bold. We
use staggered deadlines at the beginning of each thread to offset
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the threads and force the producer to start before the consumer and
observer. Inside each thread, deadlines force each loop to run in
lock-step with one another, each thread progressing at the same
rate. Every loop iteration first executes the critical section of the
producer, and then the observer and the consumer in parallel.

The offsets to achieve this are given by deadlines at the beginning
of the program. The deadline of 41, or 41 ∗ 6 = 246 cycles, is the
same for the consumer and observer, and this forces both of these
threads to enter the loop at the same time. This value is computed
from the assembly language instructions and is the minimum dead-
line that the consumer thread can make. The offset of the producer
loop is 28∗6 = 168 cycles, which is 78 cycles less than the offset
of 246 for the consumer and observer. Since this difference is the
same as the frequency with which the wheel schedule repeats, this
guarantees the producer thread will access the shared data during
an earlier rotation of the wheel.

Once inside the loop, deadlines force each thread to run at the
same rate, maintaining the memory access schedule. It is impor-
tant for this rate to be a multiple of the wheel rate to maintain the
schedule. In this example, we would like each loop iteration to take
two rotations of the wheel. This allows us to write to the buffer
in the first rotation of the wheel, and perform the reads for both
the consumer and the observer in the second rotation of the wheel.
This also means that our program will function correctly regardless
of which C threads are partitioned to which hardware threads. To
achieve this, we have set the deadlines in each of the loops to be
26, as 26∗6 = 156 cycles corresponds exactly two rotations of the
wheel.

6. A SAMPLE APPLICATION: A VIDEO
GAME

Inspired by an example game supplied with the Hydra develop-
ment board [19], we implemented a simple video game in C tar-
geted to our PRET architecture. Our example centers on render-
ing graphics and is otherwise fairly simple. The objective of the

game is to avoid moving obstacles coming at the player’s ship. The
game ends when the player’s ship collides with an obstacle. It uses
multiple threads and both types of deadlines to meet its real-time
requirements.

Signal Time period Pixel periods
Vertical sync 64µs 1641
Vertical back-porch 1.02ms 26153
Drawing 480 lines 15.25ms
Vertical front-porch 350µs 8974
Horizontal sync 3.77µs 96
Horizontal back-porch 1.89µs 48
Drawing 640 pixels 25.17µs
Horizontal front-porch 0.94µs 32

Table 1: VGA Real-time Constraints

Our example consists of three main tasks (Figure 6) running in
separate threads: the video driver, which sends pixels in a frame-
buffer to a VGA port; the graphics controller, which is responsible
for depositing pixels in the framebuffer; and the game logic. To
the PRET simulator, we added a memory-mapped I/O interface to
a VGA controller. The simulator dumps the pixel stream sent to
this interface as PBM files for debugging. User input is currently
read from an array.

For safety, we use a double-buffered command queue for com-
munication between the game logic and the graphics controller, and
a double-buffered frame buffer to communicate between the graph-
ics controller and the video driver. During each frame, the game
logic puts drawing commands into one of the command queues and
the graphics controller interprets those in the other queue and draws
them into one of the framebuffers. At the same time, the video
controller is displaying the contents of the other framebuffer. This
avoids screen flicker and guarantees the contents of each displayed
frame is deterministic.



6.1 The VGA Driver Thread
This thread sends groups of sixteen pixels to the VGA controller

to display a raster. As mentioned above, we double-buffer the im-
age to avoid glitches: the VGA driver thread takes pixels from one
buffer and the graphics controller writes to the other. The timing
requirements, listed in Table 1, must be met to produce a stable
image.

Our VGA driver displays four colors (black, white, red, and
green) at 640× 480 resolution with a 60 Hz refresh rate. We set
the PLL clock to the 25.175 MHz pixel rate and fill a 32-bit hard-
ware shift register every sixteen clocks. The VGA hardware takes
a new pair of bits from this register at the pixel clock rate and sends
them to a video DAC connected to a display.

CPU Clock

VGA Clock

Vertical
Front-porch

64 us 1.02 ms 15.25 ms 0.25 ms

Drawing
480 lines

Vertical
Back-porch

Vertical
sync

Figure 7: VGA Vertical Timing

The VGA driver algorithm is a simple loop: wait for the last
pixels to be sent, read color or control data, send these to the VGA
controller, and decide what to do next (typically repeat). In this
context, control refers to horizontal and vertical synchronization
signals. All of this happens at a rate dictated by the pixel-speed
PLL clock.

CPU Clock

VGA Clock

Horizontal
Sync

Horizontal
Back-Porch

Drawing 
640 pixels

Horizontal
Front-Porch

3.77 us 1.89 us 25.17 us 0.94 us

Figure 8: VGA Horizontal Timing

Synchronization requires careful timing. During vertical syn-
chronization (Figure 7), vsync is asserted for 64 µs. The driver
does this by using the PLL deadline instruction to wait 1641 pixel
clocks after asserting vsync, then de-asserting it. We also use a
deadline instruction to time the vertical backporch (1.02 ms) and
the vertical frontporch (350 µs). The driver checks whether it
should display the other buffer during vertical sync, and informs
the graphics thread if it was requested.

Horizontal synchronization deadlines are more demanding. (Fig-
ure 8. Horizontal sync is asserted for 3.77 µs (96 pixel times), fol-
lowed by a 1.89 µs frontporch (24 pixel times). Finally, we use the
deadline instruction to control the speed at which data is fed to the
video shift register. In a loop, we read data from the framebuffer,
wait for the deadline to expire, then write the data to the shift reg-
ister and update the fetch address.

Naturally, the inner pixel-drawing loop (Figure 9) is the most
timing-critical. It requires six instructions: these six instructions
must complete in under 16/25.175MHz = 635.6ns. Five of the in-
structions take six cycles each. However, because it accesses main
memory, the load instruction may take as many as 90 cycles, giv-
ing a total of 5×6+90 = 120 cycles overall. This requires a 5.3 ns
clock period, or 188 MHz.

CPU Clock

VGA Clock

Waiting for Previous 
Sixteen Pixels

Drawing

Reading Color
Data from Buffer

Image

Sending
Current Sixteen

Pixels

Preparing
for Next 

Step
16 VGA Clock Cycles

Figure 9: Timing of Sixteen Pixels

.LOOP:
   ld     [%o5], %g1    // load color data
   add    %o5, 4, %o5   // go to the next pixel
   deadi  %t9, 16       // wait for the deadline
   st     %g1, [%o3]    // write to the VGA shift register
   cmp    %o5, %o4      // done with the line?
   bne,a  .LOOP         // if not, repeat

Pixel Drawing Routine

Figure 10: Pixel Drawing Routine in Assembly

6.2 Graphics Thread
Following the example from the Hydra book, our graphics sys-

tem is sprite-based: to draw to the framebuffer, the graphics thread
assembles the overall image starting with a 640× 480 pixel back-
ground, then stacks five 64×64 sprites on top of it. Each sprite may
be placed at an arbitrary position on the screen. Figure 11 shows a
typical image.

The graphics thread accepts three types of commands from the
main thread through a double-buffered queue: drawing on the back-
ground or sprite layer, changing the position of the sprites, and fill-
ing the framebuffer according to the contents and position of the
sprites and background image.

Ultimately, each displayed pixel is one of only four colors, but
the pixels in our sprites can also be transparent. Such transparent
pixels take on the color of any sprite beneath it or the background.

Figure 11: A Screen Dump From Our Video Game

6.3 Main Control/Game Logic Thread
The game logic thread takes user input, processes it, and sends

commands to the graphic thread. At the moment, we take “user
input” from an array; it should come from something like a joystick
controller.
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Figure 12: Simulation Runs for LEON3 and PRET Architectures

The game logic ends the commands for each frame with a screen
update request. This prompts the graphics controller to redraw the
framebuffer and also blocks the game logic thread until the redraw
is complete. This synchronizes the game logic thread to the frame
refresh rate, making it operate at a fixed rate.

6.4 Experience and Challenges with Program-
ming for PRET

Since PRET’s programming model has timing constructs, we
were able to ensure the real-time constraints of the design with
ease. The round-robin scheduling of the threads, predictable ex-
ecution times of instructions and the deadline instructions make
reasoning about the execution time of code segments straightfor-
ward.

However, the method to verify real-time requirement was error-
prone; we calculated the timing constraints by hand. In this paper,
we had to repeatedly calculate the timing requirement whenever
our code is optimized or modified. In this way, it is hard to guar-
antee the calculated result is always right. Also, calculating by
hand is slower than using automated tools for the calculation. We
will provide automated methods for calculating and verifying tim-
ing constraints.

In addition, the lack of predictable synchronization primitives
such as locks make inter-thread synchronization more challenging.
This is because ISAs generally lack timing-predictable synchro-
nization methods. In our game example, we synchronized the dif-
ferent threads by carefully investigating the timing and using dead-
line instructions as also shown by the simple producer/consumer
example. The main advantage from this approach is that we can
provide guarantees that the application meets its real-time require-
ments. We intend to introduce additional instructions that pro-
vide timing-predictable synchronization methods for easier pro-
gramming of the PRET architecture.

7. SIMULATION RESULTS
Although we focus on programming for predictable timing, it is

interesting to observe the average-case performance. We compare
the performance of the PRET architecture against the LEON3 [12]
SPARC processor. The LEON3 is an implementation of the SPARC
v8 ISA for a system-on-chip design. It has a seven-staged con-
ventional pipeline with instruction and data caches, and periph-

erals connected through an AMBA bus. We use a subset of the
Malardalen WCET benchmarks [1] and simulate them on the LEON3
and PRET simulators. We compile the benchmarks using GCC’s
level 3 (-O3) optimization and software floating point
(-msoft-float). For PRET, we load the benchmark on one
hardware thread and leave the rest empty. Note that our hardware-
multithreaded architecture pays a penalty for these completely se-
quential benchmarks, since five of its six hardware threads are left
idle. One might expect that all of these benchmarks would require
exactly six times as many cycles on our architecture as the single
threaded SPARC processor, but due to the differences in instruction
timings and caching behavior the difference is not that extreme.
The cycle counts for the simulation runs are shown in Figure 12(a).
We use a logarithmic scale for the cycle counts since benchmarks
may execute for large varying number of instructions.

PRET shows a drop in average case performance with every
benchmark. This degradation is expected because of PRET’s thread-
interleaved pipeline. Figure 12(b) shows the degradation factor for
each of the benchmarks and the average degradation factor to be
approximately 3.54 for the set of presented benchmarks.

Note that these benchmarks do not exercise the deadline instruc-
tion available in PRET. This is because most architecture such as
the LEON3 do not support instructions with the deadline seman-
tics. In addition, we map the benchmark to only one hardware
thread. Thus, the simulation runs in Figure 12 do not make full
use of PRET’s multiple hardware threads.

8. FUTURE WORK
We have an enormous amount of future work planned for PRET.

One obvious extension is to improve the scratchpad-to-main-memory
link. Our current memory wheel, while a step in the right direction,
is fairly naive. First of all, modern DRAM is usually banked and
designed for burst transfers, yet we treat it as having uniform la-
tency. It should be possible to give each thread a bank that it can
access more quickly.

Modern large off-chip memories are set up for fast burst transfers
designed to fill cache lines, yet our current architecture does not
take advantage of this. To make the most of shared memory, it
would be nice if the thread could move a block of memory to its
scratchpad during each turn. The SPARC ISA does not support this
at the moment; we plan to add it.



How software is written can greatly affect how efficiently the
memory is used. We plan to integrate many of the algorithms that
have been developed for managing scratchpad memory, both for
code (traditionally thought of as overlays) and for data. Integrat-
ing these with the particular memory movement mechanisms we
develop is one of our next projects.

The memory wheel is one example of what we will expect to be
many time-triggered components in a PRET system. An obvious
challenge is how to make best use of it by choosing to try to access
it at the optimal time. We envision a compiler able to reason about
when each instruction will execute (PRET, of course, makes this
possible) and thus about when best to attempt access to, say, main
memory. This will work something like Dean’s software thread in-
tegration [31], in which a compiler mindful of instruction timing
restructures the code to meet real-time deadlines. For periodic-
access components in a PRET setting, we would probably color
each instruction with its phase relative to when the thread could ac-
cess main memory and attempt to reorder instructions to minimize
waiting time.

A compiler for a PRET system would go one step beyond exist-
ing C compilers and perform WCET analysis as a normal part of its
operation. Perhaps with some user annotation support, it should be
able to determine things like loop bounds and see whether the code
can meet every deadline. Our goal is to make a timing error as easy
to detect, understand, and correct as a syntax error.

We presented a single-cored PRET machine in this paper, but
we plan to extend PRET to multi-core configurations. Much of
the basic architecture—the scratchpads and timers—will remain
unchanged in this setting, but access to main memory and mech-
anisms for inter-core communication will have to be added. We
envision continuing to take a time-triggered approach in which ac-
cess to a shared resource like a communications network will be
arbitrated periodically.

Methods for evaluating timing predictability are needed. Our
performance results compared the LEON3 with the PRET machine
in terms of cycles taken to execute the same set of instructions.
This approach does not compare the timing predictability of the
processors. For these reasons, we plan on defining a method for
testing timing predictability in the future.

9. CONCLUSION
In this paper, we described an architecture that delivers predictable

timing and implemented it as a cycle-accurate SystemC model that
executes C programs. Our PRET architecture implements and ex-
tends the SPARC ISA with a precise timing control instruction
called deadline. It presents a two-level memory hierarchy com-
posed of thread-local scratchpad memories and a shared main mem-
ory accessed through a memory wheel. We illustrated the program-
ming of a PRET architecture with a simple producer/consumer ex-
ample and a larger video game example.

We compared the performance of the PRET core against the
LEON3 embedded processor. Our results showed the PRET core
to be slower. However, this is an expected degradation in per-
formance caused by the thread-interleaved pipeline architecture of
PRET. Note that our comparison favors the LEON3 processor over
the PRET architecture. This is because we do not compare the tim-
ing predictability of the two processors, which is PRET’s forte.
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