2009 29th IEEE International Conference on Distributed Computing Systems Workshops

The Case for Timing-Centric Distributed Software

— Invited Paper —

Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou
EECS Department
University of California, Berkeley
Berkeley, CA, USA
{eal, matic, sseshia, jiazou}@eecs.berkeley.edu

Abstract

This paper makes the case that the time is right
to introduce temporal semantics into programming
models for cyber-physical systems. Specifically, we
argue for a programming model called PTIDES that
provides a coordination language rooted in discrete-
event semantics, supported by a lightweight runtime
Jramework and tools for verifying concurrent software
components. PTIDES leverages recent innovations in
network time synchronization to deliver distributed
real-time systems with determinate concurrent seman-
tics, decentralized and robust control, and the potential
for rigorous schedulability analysis.

1. Introduction

The problem we address is that real-time embedded
software today is commonly built using program-
ming abstractions with little or no temporal semantics.
Stankovic et al. [33] cite a need to “raise the level of
programming abstraction,” stating that “existing tech-
nology for RTES [real-time embedded systems] design
does not effectively support the development of reliable
and robust embedded systems.” In this paper, we argue
for an approach that raises the level of abstraction, but
does much more. It also fundamentally changes the
abstractions that are used. Timing cannot be effectively

This work was supported in part by the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley, which re-
ceives support from the National Science Foundation (NSF awards
#0720882(CSR-EHS: PRET) and #0720841 (CSR-CPS)), the U. S.
Army Research Office (ARO #W91INF-07-2-0019), the U. S. Air
Force Office of Scientific Research (MURI #FA9550-06-0312),the
Air Force Research Lab (AFRL), the State of California Micro
Program, and the following companies: Agilent, Bosch, Lockheed-
Martin, National Instruments, and Toyota. The third author was
supported in part by NSF CAREER award #0644436.

1545-0678/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDCSW.2009.108

57

introduced at “higher levels of abstraction” if it is
entirely absent from the lower levels of abstraction on
which these are built.

We focus on computer-based systems where multi-
ple computers are connected on a network and interact
with and through physical processes via sensors and
actuators. Such integrations of computing, networking,
and physical dynamics are referred to as cyber-physical
systems (CPS). The passage of time becomes a central
feature — in fact, it is key to distinguishing the cyber
part of CPS from distributed computing in general. The
lack of temporal semantics in programs and networks
makes principled design difficult, leaving engineers
with a prototype-and-test style of design, which leads
to brittle systems that do not easily evolve to handle
small changes in operating conditions and hardware
platforms.

The foundations of computing, rooted in Turing,
Church, and von Neumann, are about the transforma-
tion of data, not about physical dynamics. Although
computers have become fast enough to adequately
measure and control many physical processes, modern
techniques such as instruction scheduling, memory hi-
erarchies, garbage collection, multitasking, best-effort
networking, and reusable component libraries (which
do not expose temporal properties on their interfaces),
introduce enormous variability. Those innovations are
built on a key premise: that time is irrelevant to
correctness; it is at most a measure of quality. Faster is
better, if you are willing to pay the price. By contrast,
what CPS needs is not faster computing, but physical
actions taken at the right time. Time needs to be a
semantic property, not a quality factor.

We have been lulled into a false sense of confidence
by the considerable successes of embedded software,
for example in automotive, aviation, and robotics
applications. But the potential is vastly greater; we

IEEE
computer
psoue

ty

have reached a tipping point, where computing and
networking may be integrated into the vast majority of
artifacts that humans make. However, as we move to
more networked and more intelligent applications, the
problems are going to get worse. Embedded systems
will no longer be black boxes, designed once and
immutable in the field. Instead, they will be evolving
pieces of a larger system, a dance of electronics,
networking, and physical processes.

Applications of CPS demand solid foundations.
They include high confidence medical devices and
systems, assisted living, traffic control and safety,
advanced automotive systems, process control, en-
ergy conservation, environmental control, avionics,
instrumentation, critical infrastructure control (elec-
tric power, water resources, and communications sys-
tems for example), distributed robotics (telepresence,
telemedicine), defense systems, and manufacturing. It
is easy to envision new capabilities that are techni-
cally well within striking distance, but that would be
extremely difficult to deploy using today’s methods.
Consider, for example, a city without traffic lights,
where each car provides the driver with adaptive infor-
mation on speed limits and clearance to pass through
intersections. We have in hand all the technical pieces
for such a system, but achieving the requisite level of
confidence in the technology seems decades off.

In this paper, we focus on applications with structure
like that sketched in Figure 1, which shows a small
example with three networked compute platforms each
with its own sensors and actuators. The actuators affect
the data provided by the sensors through the physical
plant. In an automation application, for example, the
actuators could be motion controllers for high-speed
printing presses, the sensors could detect disruptions,
and the control algorithms could include rapid shut-
down modes to prevent damage to the equipment
in case of paper jams. Such shutdowns need to be
tightly orchestrated across the entire system to prevent
disasters. Similar situations are found in high-end
instrumentation systems and in energy production and
distribution.

Today’s “best effort” operating system and network-
ing technologies cannot produce the levels of precision
and reliability that most of these applications demand,
and indeed such systems are not widely used in such
applications. Our objective is a technology for robust
and predictable designs with repeatable temporal dy-
namics (for a detailed discussion of the meanings of
these terms, see [20]). We do this by building on
a rigorous formal model that reflects the realities of
distributed systems. The result will be cyber-physical
designs that can be much more extensively networked,

58

can include more adaptive control logic, and can evolve
over time, without suffering from the brittleness of
today’s designs, where small changes have big con-
sequences. We do this by making timing central to
distributed software design.

In this paper, we make a case for a model for timing-
centric distributed software called PTIDES (program-
ming temporally-integrated distributed embedded sys-
tems, pronounced “tides”), a model-based program-
ming technique for CPS [37]. PTIDES models define
the interaction of distributed software components, the
networks that bind them together, and the interaction
via sensors and actuators with physical dynamics.
PTIDES bases software models on discrete-event (DE)
systems [29], [4], [1], [36] which provide a model of
time and concurrency. DE models have traditionally
been used to construct simulations, but PTIDES uses
them as a programmer’s model for deployable cyber-
physical systems. It uses one of several variants of
DE that has a rigorous, determinate, formal seman-
tics [23], [19], and that has been shown to integrate
well with models of continuous dynamics [21]. A
practical consequence is to enable co-simulation of
software controllers, networks, and the physical plant.
It also facilitates hardware in the loop (HIL) simu-
lation, where deployable software can be tested (at
greatly reduced cost and risk) against simulations of
the physical plant. The DE semantics of the model
ensures that simulations will match implementations,
even if the simulation of the plant cannot execute in
real time. Conversely, prototypes of the software on
generic execution platforms can be tested against the
actual physical plant. The model can be tested even
if the software controllers are not fully implemented.
This (extremely valuable) property cannot be achieved
today because the temporal properties of the software
emerge from an implementation on a specific platform,
and therefore complete tests of the dynamics often
cannot be performed until the final stages of system
integration, with the actual physical plant, using the
final platform.

The idea of using DE as a programming model
instead of a simulation technology was introduced in
[37]. Derler et al. [6] describe a simulator for PTIDES
built on Ptolemy II [8], and give some preliminary
measurements of implementation properties on a small
network of prototype platforms using a pre-commercial
implementation of IEEE 1588 from Agilent. Feng et al.
[9] describe a strategy for incorporating fault-tolerance
principles into PTIDES using backtracking techniques.

Platform 1
Computationl model time
Sensorl Platform 3
A i C —Pp model time
/ omputation3 delay d2
Platform 2 /
2y Sensdr2 H Computation2 :l[Merge
model time
delay d3 Actuatorl
physical LCoca! hysical
interface penogy Event interfac
Source interface

fabric

Physical
plant

Z

L0

Computation4

Figure 1: Example structure of applications considered.

2. PTIDES Overview

We explain the basic PTIDES model by referring
to Figure 1. That figure shows three computational
platforms (typically embedded computers) connected
by a network and having local sensors and actuators.
On each platform, there are a number of software
components interconnected by communication paths.
The communication paths carry time-stamped data
packets (each of which is called an event). Events are
processed by components in time-stamp order.

In Figure 1, on Platform 3, a component labeled
“Local Event Source” produces a sequence of events
that drive an actuator through two other components.
The component labeled “Computation4” processes
each event and (typically) produces an output event
with the same time stamp as the input event that
triggers the computation. Those events are merged in
time-stamp order by a component labeled ‘“Merge”
and delivered to a component labeled “Actuatorl.”
The actuator component interprets its input events
as commands to perform some physical action at a
physical time (wall-clock time) corresponding to the
time stamp of the event. This interpretation imposes
a real-time constraint on all the software components
upstream of the actuator. Each event must be delivered
to the actuator at a wall-clock time earlier than the
event’s time stamp. This portion of the model repre-
sents, for example, some local control of an actuator
that is by default unaffected by sensor data. However,
the Merge component can inject commands to the
actuator depending on sensor data obtained from the
network. How those commands are merged with the
local commands is entirely determined by the time
stamps accompanying the commands.

In Figure 1, we see that the second input to the

59

Merge component comes from components that get
inputs from sensors on the remote platforms. The
sensor components, like the actuator components, are
(typically thin) software wrappers around hardware
drivers. They produce on their output ports time-
stamped events. Here, the PTIDES model imposes a
second relationship between model time stamps and
wall-clock time. Specifically, when a sensor compo-
nent produces a time-stamped output event, that time
stamp must be less than or equal to wall-clock time.
The sensor can only tell the system about the past, not
about the future.

Under benign conditions [23], [19], DE models are
determinate in that given the time-stamped inputs to
the model, all events are fully defined. Thus, any
correct execution of the model must deliver the same
time-stamped events to actuators, given the same time-
stamped events from the sensors (this assumes that
each software component is itself determinate). An
execution of a PTIDES model is required to follow
DE semantics, and hence deliver this determinacy. It is
this property that makes executions of PTIDES models
repeatable. A test of any “correct” execution of a
PTIDES model will match the behavior of any other
correct execution.

The key question becomes how to deliver a “correct”
execution. Consider in particular the Merge component
in Figure 1. This component must merge events in
time-stamp order for delivery to the actuator. Given an
event from the local Computation4 component, when
can it safely pass that event to the actuator? Here lies a
key feature of PTIDES. The decision to pass the event
to the actuator is made locally by comparing the time
stamp of the event against a local clock that is tracking
wall-clock time. This strategy results in decentralized
control, removing the risks introduced by a single point

of failure, and making systems much more modular
and composable.

How is it done? There are two key assumptions
made in PTIDES. First, distributed platforms have time
synchronized wall-time clocks with bounded error. The
PTIDES model of computation works with any bound,
but the smaller the bound, the tighter the real-time
constraints can be. Second, PTIDES requires that there
be a bound on the communication delay between any
two hardware components. Specifically, a sensor must
deliver a time-stamped event to the run-time system
within a bounded delay, and a network must transport
a time-stamped event with a bounded delay. These
assumptions are achievable in practice. In particular,
time synchronization techniques [14] such as IEEE
1588 [12] can deliver wall-clock synchronization with
bounded errors. In fact, an Ethernet PHY chip intro-
duced in 2007 by National Semiconductor advertises
a clock precision on the order 8 ns on a local-area
network. Such high precision concurrence of clocks
on a network is a game-changing phenomenon that
enables a radically different approach to distributed
software development.

An interesting example supporting this point is Gen-
eral Electric’s Mark™VIe Control Platform, which has
integrated high-precision network time synchronization
based on IEEE 1588 into its IO processors. To date,
GE has manufactured in excess of 50,000 such units.
This control platform is used for gas and steam turbine
controls, wind turbines, hydro control, and other dis-
tributed control systems. A current challenge for such
systems is to enable distributed micro power generation
coupled into the power grid. The complexity of the
control system becomes much higher, and its structure
dynamic. PTIDES could facilitate such a transforma-
tion of the power grid.

Bounding network delay is potentially more prob-
lematic when using generic networking technologies
such as Ethernet and TCP/IP. However, we observe
that bounded network delay is required already to-
day in the applications we consider. This has in
fact historically forced deployments of these applica-
tions to use specialized networking techniques (such
time-triggered architectures [18], FlexRay, Foundation
Fieldbus systems, and CAN busses). More recent de-
velopments, however, promise similar bounds on top of
generic technologies. Synchronous Ethernet and Time-
Triggered Ethernet are two such promising examples.
The GE system mentioned above uses generic Eth-
ernet, leveraging IEEE 1588 time synchronization to
facilitate frame synchronization and avoid the network
collisions and buffer overflows that make bounded
communication latencies difficult.

60

Once we accept these two assumptions (bounded
time synchronization error and bounded communica-
tion latencies), we can see how local decisions can be
made to deliver events in Figure 1 without compro-
mising the determinate DE semantics. Specifically, in
Figure 1, notice that the top input to the Merge comes
from Sensorl and Sensor2 through a chain of software
components and a network link. Static analysis of
these chains reveals the operations performed on time
stamps. In particular, in this figure, we assume that
the only components that manipulate time stamps are
the shaded components labeled “model time delay
d;”. These components accept an input event and
produce an output event with the same data payload
but with a time stamp incremented by d;. Examining
the figure, we see that the direct path from Sensorl
to Actuatorl contains only one delay component, and
that component increments the time stamp by d». If the
sensor delay of Sensorl is bounded by s, the network
latency is bounded by n, and the clock synchronization
error is bounded by e, then an event with time stamp
7 on the bottom input of the Merge component can
be safely passed to the actuator when local wall-clock
time exceeds 7+ 51 +n +e — do.

It is easy to see that if the model is static (com-
ponents are not added during runtime and connections
are not changed), then given enough information about
each component, a similar analysis can be made for
any point in the model where two streams of events
come together. This analysis is done at design time. At
run time, the only test performed is to compare time
stamps to wall-clock time, suggesting that efficient
execution is possible. PTIDES components include
causality interfaces with superb algebraic composition-
ality properties [39], enabling automatic analysis.

Note that the distributed execution control of
PTIDES introduces another valuable form of robust-
ness in the system. In particular, in figure 1, if, say,
Platform 1 ceases functioning altogether, and stops
sending events on the network, that fact alone cannot
prevent Platform 3 from continuing to drive its actuator
with locally generated control signals.

It is also easy to see that PTIDES models can
include components that monitor system integrity. For
example, Platform 3 could raise an alarm and change
operating modes if it fails to get messages from
Platform 1. Time synchronization with bounded error
helps to give such mechanisms a rigorous semantics.
Moreover, since execution of a PTIDES model carries
time stamps at run time, violations of deadlines at
actuators can be detected at run time. These can
only occur when some assumption is violated, for
example due to a fault condition. Most interestingly, in

http://gepower.com/prod_serv/products/oc/en/control_solution/markvie_controlplat.htm

certain circumstances, it is possible to detect deadline
violations before they occur! This could enable a style
of fault-tolerant design where mode changes can be
triggered by timing violations that will inevitably occur
in the future. More conservative systems could trigger
mode changes merely because it is no longer possible
to guarantee that deadlines will be met in the future.
A careful design could do this far enough in advance
to ensure physical safety. In general, PTIDES models
provide adequate runtime information for detecting and
reacting to a rich variety of timing faults.

In all PTIDES models, time stamps represent a
model time at which the event occurs. Model time
need not have any relationship to physical time (wall-
clock time), except at sensors and actuators.! Thus
an execution of a PTIDES model has considerable
freedom to process an event earlier or later than the
wall-clock time corresponding to the time stamp of
the event. As long as events are delivered on time to
actuators, the execution will look exactly the same to
the environment. This makes PTIDES models much
more robust than typical real-time software, because
small changes in the (wall-clock) timing of internal
events are not visible to the environment (as long
as real-time constraints are met). Moreover, the run-
time system, since it explicitly handles time stamps,
has a rigorous basis for determining whether real-
time constraints are being met. PTIDES models can
be made adaptive, changing modes of operation for
example when real-time violations occur.

For discrete-event simulations, the most common
use of DE modeling, the time stamps typically have
no connection with real time, and can advance slower
or faster than real time [36]. The time stamps can be
real numbers (or their approximations as floating point
numbers). This is the choice of many commonly used
discrete-event simulators. They may instead be given
by integers, as used by most hardware description
languages. In our case, we approximate a superdense
model of time [24] because it facilitates models that
mix continuous dynamics with discrete-event models
[21]. Superdense time stamps are a tuple (¢, n), where ¢
is a real number, a floating point number, or an integer,
and n is an integer. Superdense time supports a notion
of a sequence of causally-related simultaneous events.
In a deployable run-time framework, one could use the
time stamp format of IEEE 1588 augmented as needed
with an index n to make the model superdense. But
the PTIDES programming model and semantics work

1. In our preliminary work with this model, we have discovered
that if we also associate model time and real time at network
interfaces, then we can get better decoupling in a decentralized
scheduling strategy [10].

61

¥

Schedulability
Analysis
Causality Analysis Program Analysis

Ptides Model
J—

Analysis

—|

Code
Generator

Software
Component
Library

<—|_ Plant Model

Network Model

e

HW Platform

HW in the
Loop
Simulator

Mixed
Simulator

Figure 2: The structure of a PTIDES development environ-
ment.

for any totally ordered set of time stamps.

3. How Ptides will Work

We envision a suite of tools supporting modeling and
design of PTIDES applications. The overall structure is
given in Figure 2. First, a system designer will specify
a model by constructing a diagram like that in Figure 1,
or by giving an equivalent textual description. This
creates a PTIDES model, shown on the left of Figure 2.
These models can be fairly coarse grained, where the
individual software components may be specified in
C, as is commonly done in many embedded applica-
tions, or in domain-specific languages. The PTIDES
model itself is a coordination layer above conventional
software, which is represented in the figure as the
“Software Component Library.” That is, a PTIDES
model defines the causal relationships between pieces
of conventional software, written in C or generated
from other domain-specific models. A code generator
(like that in Ptolemy II [38]) will consolidate and
glue together these software components to produce
executable programs for each of the platforms in the
network. This approach enables designers to integrate
legacy code and to leverage their in-house experience
base, thus enhancing the prospects that our techniques
will be accepted.

We envision a lightweight runtime framework, tenta-
tively called PtidyOS, that realizes the distributed real-
time scheduling strategy. Like the high impact TinyOS
system [11], this runtime framework could be a library
that is linked against the application code, rather than
an operating system that is booted and then asked
to execute an application. The major requirement of

PtidyOS is that it must guarantee the DE semantics
through a scheduling service that dispatches software
components. A second requirement is that it must
be able to detect violations of the assumptions under
which it guarantees DE semantics (such as the bound
on clock synchronization error, which may be detected
when out-of-order time stamps are encountered). A
third requirement is that it must be able to execute
PTIDES models that are provably capable of meeting
all deadlines in such a way that all deadlines are indeed
met. That is, the scheduler must be optimal in terms
of feasibility [3].

A suite of analysis and verification tools will be used
to develop PTIDES applications on top of PtidyOS.
The code generator will make use of causality analysis
performed using algebraic techniques adapted from
[39] in order to synthesize the runtime control. Schedu-
lability Analysis will certify for a particular platform
that real-time constraints can be met, building on
top of the causality analysis and program analysis
that computes worst-case execution time (WCET) es-
timates for software components. A major challenge
in program analysis will be to deal with concurrency.
Concurrent software components will be a central
part of PTIDES implementations. For example, in
Figure 1, the Sensorl component (which could be an
interrupt service routine) runs concurrently with the
Computation] component, which additionally invokes
network send and receive calls. Timing analysis of
Computationl thus needs to consider all of its possible
interleavings with the Sensorl component, as well as
the impact of network delays. Current techniques for
worst-case execution time analysis do not work well
for concurrent, networked programs; in a recent survey,
Wilhelm et al. [35] report that almost all tools can only
consider uninterrupted execution of tasks. Techniques
will have to be developed for execution time analysis of
concurrent software in a networked environment. Note,
however, that the PTIDES model and the PtidyOS
design offer opportunities to simplify the analysis by
imposing constraints on the environment of compo-
nents, such as bounding the number of pre-emptions
of tasks in order to reduce the number of interleavings
to be considered.

A Mixed Simulator can be provided that can com-
bine the PTIDES model with a plant model, using the
techniques of [21]. A HIL simulator can be provided
to stitch together the plant model and the deployable
hardware platforms. The semantics in [21] ensures that
such a combination will match any correct execution of
the model, regardless of whether the plant simulation
executes in real time. This addresses a recognized
challenge in HIL simulation, the synchronization of

62

a potentially large number of I/O functions.

Obviously, a great deal remains to be done before
this vision can be realized. The purpose of this paper
is to argue that this agenda is worth pursuing.

4. Why the Time is Right

Real-time software is not a new problem. However,
recent trends have drastically changed the landscape.
Model-based design [15], for example, has caught
on in industrial practice, through the use of tools
such as Simulink, Real-Time Workshop, DSpace, Lab-
VIEW, and SCADE. PTIDES is a model-based de-
sign approach. Domain-specific modeling languages
are increasingly being used because they tend to
support higher-level abstractions than general-purpose
modeling languages such as UML. An example of
such a language is Timing-Augmented Description
Language [13], a domain-specific language recently
developed within the automotive initiative AUTOSAR.
The multiplication of modeling languages raises the
question of mutual consistency and interoperability.
This is one of the main reasons why the OMG con-
sortium extended UML with a profile called MARTE
(Modeling and Analysis of Real-Time and Embedded
Systems) [26].

In addition, while computer architecture has tradi-
tionally focussed on improving average-case perfor-
mance, there has been a recent work on precision
timed (PRET) machines that offers new opportuni-
ties to improve temporal precision [7]. This could
make the analysis of PTIDES models stronger, leading
to systems that can be certified at moderate cost.
Moreover, the move to multicore architectures offers
an opportunity in that it requires new programming
abstractions, so the community is receptive to advances
in programming models.

Bounded network latencies are required by PTIDES
in order to guarantee that deadlines are met. In-
novations in real-time networking are making it to
mainstream industrial practice. Network time synchro-
nization is available on a variety of platforms, with
IEEE 1588 being particularly attractive for our target
application space. Real time networks such as TTA and
FlexRay [17] have also caught on, and their techniques
are starting to appear on more generic networking
infrastructure such as Ethernet.

Another trend is the acceptance of
synchronous/reactive languages, particularly
SCADE [2], in safety critical applications. PTIDES
borrows sound fixed-point semantics from the
synchronous languages by basing on a rigorous form
of DE, but is more flexible and concurrent, and it
embraces legacy code as components.

We believe that PTIDES will be amenable to au-
tomated schedulability analysis, at least for an in-
teresting and useful subset of PTIDES models. This
will ultimately rely on being able to determine worst-
case execution times (WCET) for code segments. For-
tunately, there have been recent advances in WCET
estimation [35], making these techniques more useful
in practice. However, several obstacles remain [16],
most particularly the brittleness of current tools to
changes in the program or platform arising in part from
the need for detailed manual modeling of the particular
target processor. PRET machines and new robust tim-
ing analysis methods [32] promise to ameliorate this
problem.

Schedulability analysis for PTIDES will also require
event models characterizing the behavior of sensors.
The real-time interfaces of [34] could help a great
deal here. Older contributions, such as the taxonomy
of timing properties that must be expressible given in
[22] and the annotations on untimed languages given in
[25], could also provide a framework for event models.
Prior work on timing constructs in languages, such as
Ada and SystemC, can contribute some mechanisms,
but these languages do not emphasize the timing of I/O
interactions, which is what PTIDES does, and hence
do not match as well the CPS agenda.

Since our approach is to provide a coordination
language, prior work on software component tech-
nologies is very relevant. General-purpose distributed
software is dominated by distributed object-oriented
programming [31] using frameworks such as CORBA,
SOAP, DCOM, EJB, and XML Web Services. Some
extensions of these frameworks, such as ACE/TAO
[30], support real-time scheduling concepts, and have
caught on in certain communities (such as avion-
ics) [28]. Whereas object-centric real-time CORBA
is best suited for synchronous transactions, a data-
centric Publish/Subscribe paradigm is used for quick
dissemination to many nodes and flexible delivery
requirements. The Data Distribution Service [27], a
recent OMG standard in this direction, supports over
20 configurable Quality of Service options. Although
messaging technologies are advertised with low latency
and high throughput, the reality is more complex since
the proper level of control, stability and expressiveness
is required for complete solutions.

In embedded applications such as industrial control,
component technologies such as International Elec-
trotechnical Commission’s IEC 61131 have emerged
for programming PLCs and have been extended to
distributed control systems (e.g. IEC 61499). The latter
extensions have not proved satisfactory because of non-
determinism in implementations. The same standard-

63

compliant application running in two different imple-
mentations of the runtime environment may result in
different behaviors [5]. PTIDES can fix this problem.

5. Acknowledgements

We would like to thank the following people
for thoughtful suggestions and discussions that have
helped us understand our approach: Hugo Andrade,
Christopher Brooks, Christian Buckl, Patricia Derler,
John Eidson, Thomas Feng, Shanna-Shaye Forbes,
Alois Knoll, Ben Lickly, Isaac Liu, Hiren Patel, Stavros
Tripakis, and Yang Zhao.

References

[1] E. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat.
Synchronization and Linearity, An Algebra for Discrete
Event Systems. Wiley, New York, 1992.

[2] G. Berry. The effectiveness of synchronous languages
for the development of safety-critical systems. White
paper, Esterel Technologies, 2003.

[3] G. C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Springer, second edition, 2005.

[4] C. G. Cassandras. Discrete Event Systems, Modeling
and Performance Analysis. Irwin, 1993.

[5] G. Cengic, O. Ljungkrantz, and K. Akesson. Formal
modeling of function block applications running in IEC
61499 execution runtime. In //th IEEE International
Conference on Emerging Technologies and Factory
Automation, Prague, Czech Republic, 2006.

[6] P. Derler, E. A. Lee, and S. Matic. Simulation and
implementation of the ptides programming model. In
IEEE International Symposium on Distributed Simula-
tion and Real Time Applications (DS-RT), Vancouver,
Canada, 2008.

[7]1 S. A. Edwards and E. A. Lee. The case for the pre-
cision timed (PRET) machine. In Design Automation
Conference (DAC), San Diego, CA, 2007.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity—the Ptolemy approach. Proceedings of
the IEEE, 91(2):127-144, 2003.

[9] T. H. Feng and E. A. Lee. Real-time distributed
discrete-event execution with fault tolerance. In Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS), St. Louis, MO, USA, 2008. IEEE.

[10] T. H. Feng, E. A. Lee, H. D. Patel, and J. Zou. Toward
an effective execution policy for distributed real-time
embedded systems. In [4th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), St. Louis, MO, USA, 2008.

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

J. Hill, R. Szewcyk, A. Woo, D. Culler, S. Hollar,
and K. Pister. System architecture directions for net-
worked sensors. In 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 93-104, 2000.

IEEE Instrumentation and Measurement Society. 1588:
IEEE standard for a precision clock synchronization
protocol for networked measurement and control sys-
tems. Standard specification, IEEE, 2002.

M. Jersak. Timing model and methodology for autosar.
In Elektronik Automotive. Special issue AUTOSAR,
2007.

S. Johannessen. Time synchronization in a local area
network. [EEE Control Systems Magazine, pages 61—
69, 2004.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
Proceedings of the IEEE, 91(1):145-164, 2003.

R. Kirner and P. Puschner. Obstacles in worst-case
execution time analysis. In Symposium on Object
Oriented Real-Time Distributed Computing (ISORC),
pages 333-339, Orlando, FL, USA, 2008. IEEE.

H. Kopetz. Real-Time Systems : Design Principles for
Distributed Embedded Applications. Springer, 1997.

H. Kopetz and G. Bauer. The time-triggered architec-
ture. Proceedings of the IEEE, 91(1):112-126, 2003.

E. A. Lee. Modeling concurrent real-time processes
using discrete events. Annals of Software Engineering,
7:25-45, 1999.

E. A. Lee. Computing Needs Time. Technical Report
UCB/EECS-2009-30, EECS Department, UC Berkeley,
February 18 2009. To appear in Communications of the
ACM, May, 2009.

E. A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling and
design of embedded systems. In EMSOFT, Salzburg,
Austria, 2007. ACM.

I. Lee, S. Davidson, and V. Wolfe. Motivating time
as a first class entity. Technical Report MS-CIS-87-54,
Dept. of Comp. and Infor. Science, Univ. of Penn, Aug.
(Revised Oct.) 1987.

X. Liu and E. A. Lee. CPO semantics of timed inter-
active actor networks. Theoretical Computer Science,
409(1):110-125, 2008.

Z. Manna and A. Pnueli. Verifying hybrid systems.
Hybrid Systems, pages 4-35, 1992.

A. K. Mok. Annotating ada for real-time program
synthesis. In IEEE Conference on Computer Assurance
(COMPASS). IEEE, 1987.

64

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

OMG. UML Profile for Modeling and Analysis of Real-
Time and Embedded Systems (MARTE), 2008.

G. Pardo-Castellote. Omg data-distribution service:
Architectural overview. In ICDCS, pages 200-206,
2003.

J. L. Paunicka, D. E. Corman, and B. R. Mendel.
A CORBA-based middleware solution for UAVs. In
Fourth International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 261 — 267,
Magdeburg, Germany, 2001. IEEE.

P. Ramadge and W. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81-98,
1989.

D. C. Schmidt, D. L. Levine, and S. Mungee. The
design of the TAO real-time object request broker.
Computer Communications, 21(4), 1998.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture - Patterns for
Concurrent and Networked Objects. Wiley, 2000.

S. A. Seshia and A. Rakhlin. Game-theoretic timing
analysis. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design (IC-
CAD), pages 575-582. IEEE Press, 2008.

J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar.
Opportunities and obligations for physical computing
systems. Computer, pages 23-31, 2005.

L. Thiele, E. Wandeler, and N. Stoimenov. Real-
time interfaces for composing real-time systems. In
EMSOFT, Seoul, Korea, 2006. ACM Press.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstr. The worst-
case execution-time problem - overview of methods
and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):1-53, 2008.

B. P. Zeigler, H. Prachofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, 2nd edition,
2000.

Y. Zhao, E. A. Lee, and J. Liu. A programming model
for time-synchronized distributed real-time systems. In
Real-Time and Embedded Technology and Applications
Symposium (RTAS), Bellevue, WA, USA, 2007. IEEE.

G. Zhou, M.-K. Leung, and E. A. Lee. A code
generation framework for actor-oriented models with
partial evaluation. In Y.-H. L. et al., editor, Interna-
tion Conference on Embedded Software and Systems
(ICESS), volume LNCS 4523, page 786799, Daegu,
Korea, 2007. Springer-Verlag.

Y. Zhou and E. A. Lee. Causality interfaces for actor
networks. ACM Transactions on Embedded Computing
Systems (TECS), 7(3):1-35, 2008.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html
http://www.omgmarte.org/
http://www.omgmarte.org/

