
Scalable Semantic Annotation using
Lattice-based Ontologies ?

Man-Kit Leung1, Thomas Mandl2, Edward A. Lee1,
Elizabeth Latronico2, Charles Shelton2, Stavros Tripakis1, and Ben Lickly1

1 UC Berkeley, Berkeley CA 94720, USA,
mankit, eal, stavros, blickly @eecs.berkeley.edu

2 Bosch Research LLC, Pittsburgh, PA 15212 USA
thomas.mandl@at, elizabeth.latronico@us, charles.shelton@us.bosch.com

Abstract. Including semantic information in models helps to expose
modeling errors early in the design process, engage a designer in a deeper
understanding of the model, and standardize concepts and terminology
across a development team. It is impractical, however, for model builders
to manually annotate every modeling element with semantic properties.
This paper demonstrates a correct, scalable and automated method to
infer semantic properties using lattice-based ontologies, given relatively
few manual annotations. Semantic concepts and their relationships are
formalized as a lattice, and relationships within and between components
are expressed as a set of constraints and acceptance criteria relative to
the lattice. Our inference engine automatically infers properties wher-
ever they are not explicitly specified. Our implementation leverages the
infrastructure in the Ptolemy II type system to get efficient and scalable
inference and consistency checking. We demonstrate the approach on a
non-trivial Ptolemy II model of an adaptive cruise control system.

1 Introduction

Model-integrated development for embedded systems [1, 2] commonly uses actor-
oriented software component models [3, 4]. In such models, software components
(called actors) execute concurrently and communicate by sending messages via
interconnected ports. Examples that support such designs include Simulink, from
MathWorks, LabVIEW, from National Instruments, SystemC, component and
activity diagrams in SysML and UML 2 [5–7], and a number of research tools
such as ModHel’X [8], TDL [9], HetSC [10], ForSyDe [11], Metropolis [12], and

? This work was supported in part by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF awards #0720882 (CSR-EHS: PRET) and #0720841 (CSR-CPS)),
the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force
Office of Scientific Research (MURI #FA9550-06-0312), the Air Force Research Lab
(AFRL), the State of California Micro Program, and the following companies: Agi-
lent, Bosch, Lockheed-Martin, National Instruments, Thales, and Toyota.

To appear in the proceedings of ACM/IEEE 12th International Conference on Model Driven Engineering
Languages and Systems (MODELS), Denver, CO, USA, 4-9 October, 2009.

DRAFT VERSION dated Aug. 12, 2009.



2

Fig. 1. Models using an Integrator, where (a) labels connections and (b) labels ports.

Ptolemy II [13]. The techniques of this paper can also be extended for equational
models such as Modelica [14].

The goal of this paper is to improve model engineering techniques by provid-
ing semantic annotations. Semantic annotations help in several ways. First, if we
can check consistency across such annotations, then they expose modeling errors
early in the design process. This is similar to the benefits provided by a good
type system. Second, they engage a designer in a deeper understanding of the
model. Third, they help standardize semantic information across a development
team. This can help prevent misunderstandings. Annotations can be provided
manually by the designer or inferred by a tool. A model may have multiple sets
of annotations, each specific to a particular use case domain.

To illustrate the key idea, consider a simple modeling component commonly
used in a language such as Simulink for control system design, an Integrator.
Such a component might be represented graphically as shown in Figure 1. The
inputs and outputs of this component are represented as ports, depicted as small
black triangles, with the input port pointing in to the component and the output
port pointing out. These ports mediate communication between components.
Components are composed by interconnecting their ports, and our goal is to
ensure that such composition is consistent with the designer’s intent.

The Integrator component has some particular properties that constrain its
use. First, its input and output ports receive and send continuous-time signals,
approximated in a software system by samples. Second, the samples will have
data type double. Third, if the input represents the speed of a vehicle, then
the output represents the position of the vehicle from some starting point; if
the input represents acceleration, then the output represents speed. Fourth, the
output value may vary over time even if the input does not.

A conventional type system can check for correct usage with respect to the
second property, the data type of the ports. Such a type system can check for
incompatible connections, and also infer types that may be implied by the con-
straints of the components. A behavioral type system can check for correct usage
with respect to the first property, the structure of the signals communicated be-
tween components [15]. The purpose of this paper is to give a configurable and
extensible mechanism for performing checks and inference with respect to prop-
erties like the third and fourth.

We refer to the third and fourth properties as semantic types, or more
informally as properties. Properties in a model will typically be rather domain
specific. The fact that a model operates on signals representing “speed” and



3

“acceleration” is a consequence of the application domain for which the model is
built. Thus, unlike type systems, in our case it is essential for the model builders
to be able to construct their own domain-specific property system. Our goal
is to provide a framework for doing that without requiring that application
designers understand the nuances of type theories.

An even more essential goal is that our system be sound, correct, and scalable.
This will be our primary goal. Making it easy to construct and use such a
property system is a secondary goal, equally important to the success of the
technique, but useless without the primary goal. To accomplish the primary goal,
we build on the theory of Hindley-Milner type systems [16], the efficient inference
algorithm of Rehof and Mogensen [17], the implementation of this algorithm in
Ptolemy II [18], and the application of similar mathematical foundations to
formal concept analysis [19].

The paper is organized as follows: we introduce first the concept lattice
data structure and review some of its useful properties. Section 3 then gives
an overview of the mathematical foundation of our property system as a fixed
point of a monotonic function. Section 4 shows how the monotonic function can
be defined implicitly by a set of composable constraints associated with model
components. We then give an in-depth application in Section 5, an adaptive
cruise control model. Finally, we briefly describe the software architecture of our
implementation in Section 6 and discuss related work in Section 7.

2 Concept Lattice

In a Hindley-Milner type system, data types are elements of a complete lattice, an
example of which is illustrated in Figure 2. In that diagram, each node represents
a data type, and the arrows between them represent an ordering relation. In type
systems this relation can be interpreted as an “is a” relation or as a “lossless
convertability” relation. For example, an Int can be converted losslessly to a
Long or a Double, but a Long cannot be converted to a Double nor vice versa.

A complete lattice is a set P and a binary relation ≤ satisfying certain
properties. Specifically, the relation is a partial order relation, meaning it is
reflexive (∀ p ∈ P, p ≤ p), antisymmetric (∀ p1, p2 ∈ P, p1 ≤ p2 and p2 ≤
p1 ⇒ p1 = p2), and transitive (∀ p1, p2, p3 ∈ P, p1 ≤ p2 and p2 ≤ p3 ⇒ p1 ≤ p3).
A lattice also requires that any two elements p1, p2 ∈ P have a unique least upper
bound (called the join and written p1 ∨ p2) and a greatest lower bound (called
the meet and written p1 ∧ p2). To be a complete lattice we further require that
every subset of P has a join and a meet in P . Every complete lattice has a top
element and a bottom element. The top element is typically written as > and
the bottom element ⊥. A concept lattice is a complete lattice.

3 Property Systems

A property system consists of a concept lattice, a collection of constraints
associated with modeling components, and a collection of acceptance criteria.



4

Fig. 2. A type lattice modeling a simpli-
fied version of the Ptolemy II type system.

Fig. 3. A property lattice modeling signal
dynamics.

Fig. 4. A lattice ontology for dimensions
Time, Position, Speed, Acceleration, and
Unitless (dimensionless).

The type lattice of Figure 2 is an example of a concept lattice, as are figures 3
and 4. We will illustrate how to use the dimension concept lattice (Figure 4) to
check for correct usage of an Integrator component as discussed above.

Consider a very simple model with three components as shown in Figure
1(a). Component C provides samples of a continuous-time signal to the integra-
tor, which performs numerical integration and provides samples of a continuous
signal to component B. Suppose that we associate the input x of the Integrator
with a concept px in the concept lattice L. We say that the input of the Integra-
tor “has property” px. We wish to catch errors, where, for example, component
C sends position information to the Integrator, and component B expects speed
information. This is incorrect because position is the integral of speed, not the
other way around. We can construct a property system that systematically iden-
tifies such errors.

The concept lattice for this property system is shown in Figure 4. To com-
plete the property system, we need to encode the constraints imposed by the
integrator. To do this, we leverage mathematical properties of a complete lat-
tice.

Suppose we have a model that has n model elements with properties. In
Figure 1(a), we have two such elements, x and y, and their properties are
(px, py) ∈ L2, where L is the concept lattice of Figure 4. A property system
for this model defines a monotonic function F : L2 → L2 mapping pairs of
properties to pairs of properties. Monotonic means that

(px, py) ≤ (p′x, p′y)⇒ F (px, py) ≤ F (p′x, p′y).



5

A fixed point of such a function is a pair (p1, p2) where (p1, p2) = F (p1, p2).
The theory of lattices tells us that any such function has a unique least fixed
point that can be found iteratively as follows

(p1, p2) = lim
n→∞

Fn(⊥,⊥). (1)

We define the inferred properties of a model to be this least fixed point. The
least fixed point associates with each model element a property in the lattice,
which is the inferred property for that model element. If the lattice is finite, the
above induction terminates in a finite number of steps.

Even for the simple Integrator example above, defining the function F is
rather tedious (we explain below that it can be defined implicitly in an elegant
and modular way). To reflect the constraints of the integrator, the function is

F (px, py) =


(>,>) if px = > or py = >
(px ∨A, py ∨ S) else if px = A or py = S
(px ∨ S, py ∨ P ) else if px = S or py = P
(px ∨ U, py ∨ T ) else if px = U or py = T
(px ∨ py, px ∨ py) otherwise

(2)

where L = {⊥, T, P, S, A, U,>} are the elements of the lattice in Figure 4.
The least fixed point of this function is (px, py) = (⊥,⊥), found in one step

by (1), which we interpret to mean that we do not have enough information to
draw conclusions about the properties associated with x and y.

Suppose that component B is known to read data at its input that is inter-
preted as Speed. Then the function F simplifies to

F (px, py) =
{

(>,>) if px = > or py = >
(px ∨A, S) otherwise.

In this case, the least fixed point is (px, py) = (A, S). The fact that x has property
Acceleration is inferred.

Suppose further that component C is known to provide data at its output that
is interpreted as Position. We can encode that fact together with the previous
assumptions with the function:

F (px, py) = (>,>)

which has least fixed point (px, py) = (>,>), which we can interpret as a model-
ing error. Of course, we don’t want model builders to directly give the function
F . We will show below how it is inferred from constraints on the components.

We are closer to being able to formally define a property system. A property
system for n modeling elements is a concept lattice P , a monotonic function
F : Pn → Pn, and a collection of acceptance criteria that define whether the
least fixed point yields an acceptable set of properties. We next show how the
monotonic function F can be implicitly defined in a modular way by giving
constraints associated with the components.



6

4 Property Constraints and Acceptance Criteria

Rehof and Mogensen [17] give a modular and compositional way to implicitly
define a class of monotonic functions F on a lattice and an efficient algorithm
for finding the least fixed point of this function. The algorithm has been shown
to be scalable to very large number of constraints, and is widely used in type
systems, including that of Ptolemy II, which we leverage. Specifically, for a fixed
concept lattice L, this algorithm has a computational upper bound that scales
linearly with the number of inequality constraints, which is proportional to the
number of model components, or the model size.

First, assume model element x (such as a port) has property px ∈ L, and
model element y has property py ∈ L. For any two such properties px, py ∈ L,
define an inequality constraint to be an inequality of the form

px ≤ py. (3)

Such an inequality constrains the property value of Y to be higher than or equal
to the property value of X, according to the ordering in the lattice. An arbi-
trary collection of inequality constraints implicitly defines a monotonic function
F : Ln → Ln that yields the least (p1, · · · , pn) that satisfies the inequality con-
straints for modeling elements 1 through n. Of course, two inequality constraints
can be combined to form an equality constraint,

px ≤ py and py ≤ px ⇒ px = py (4)

because the order relation is antisymmetric.
In Figure 1(a), we implicitly assumed an equality constraint for the output

of C and the input of the Integrator. We could equally well have assumed that
each port was a distinct model element, as shown in Figure 1(b), and imposed
inequality constraints pw ≤ px and py ≤ pz. These constraints are implied by
each connection between ports. Our tool permits either interpretation for the
port connections, equality or inequality constraints.

Rehof and Mogensen also permit constraints that we call monotonic func-
tion constraints, which have the form

f(p1, · · · , pn) ≤ px (5)

where p1, · · · , pn and px represent the properties of arbitrary model elements,
and f : Pn → P is a monotonic function whose definition as a function of the
property variables p1, · · · , pn is part of the definition of the constraint. Notice
that this function does not have the same structure as the function F above. Its
domain and range are not necessarily the same, so it need not have a fixed point.
An example of such a monotonic function is a constant function, for example

fs(p1, · · · , pn) = S

where S represents Speed. Hence, to express that component B in Figure 1(b)
assumes its input is Speed, we simply assert the constraint

fs(p1, · · · , pn) ≤ pz ,



7

which of course just means
S ≤ pz . (6)

However, this does not quite assert that pz = S. Indeed, that assertion would
require an inequality different from (5) that is not permitted by Rehof and
Mogensen’s algorithm. Hence, to complete the specification, we can specify ac-
ceptance criteria of the form

pi ≤ l (7)

where l ∈ L is a particular constant and pi is a variable representing the property
held by the ith model element. For example, we can give the acceptance criterion

pz ≤ S , (8)

which when combined with (6), means pz = S, or z is Speed. We can also declare
an acceptance criterion that for each model element i with property pi,

pi < > , (9)

which means that > is not an acceptable answer for any property.
Acceptance criteria do not become part of the definition of the monotonic

function F , and hence have no effect on the determination of the least fixed
point. Once the least fixed point is found, the acceptance criteria are checked.
If any one of them is violated, then we can conclude that there is no fixed point
that satisfies all the constraints and acceptance criteria. We declare this situation
to be a modeling error.

Constraints of the Integrator include one given in the form of (5) as

fI(pz) ≤ px where fI(pz) =


⊥ if pz = ⊥
S if pz = P
A if pz = S
U if pz = T
> otherwise

(10)

This constraint is a property of the Integrator and is used together with other
constraints to implicitly define the monotonic function F . The constraint (10) is
more intuitive than (2) because it directly describes constraints of the Integrator
component, and more modular because it only describes a constraint of the
Integrator. The complete constraints for the Integrator is shown in Table 1.

To see how this works in Figure 1(b), suppose we assume constraints (6)
and (10). Together, these imply that A ≤ px. Our inference engine finds the
least fixed point to be pw = px = A and py = pz = S. This solution meets
the acceptance criterion in (8). We leave it as an exercise for the reader to
determine that if instead of (6) we require A ≤ pz, then the least fixed point
is pw = px = py = pz = >, which fails to meet acceptance criterion (9). This
would be a modeling error because the output of the Integrator cannot represent
Acceleration in our ontology.

In summary, a property system is a concept lattice, a set of constraints in
the form of (3) or (5), and a set of acceptance criteria in the form of (7). The



8

Fig. 5. Top level of an actor-oriented model of an adaptive cruise control system.

constraints come from component definitions, an interpretation for connections
between components, and annotations made on the model by the model builder.

5 Adaptive Cruise Control Example

We now give a detailed example showing how this mechanism can be used in
practical models. Consider an adaptive cruise control system that detects slower
vehicles in front of a following vehicle and adjusts the speed of the following
vehicle accordingly. Adaptive cruise control requires some form of inter-vehicle
coordination, which can be implemented with a radar transmitter/receiver in
the following vehicle [20]. The system must tolerate faults in coordination, such
as sensor misalignment or erroneous power supply voltage for radar transceivers.

A model of such a system is shown in Figure 5 (inspired by Ptolemy II demo
created by Jie Liu). In that (oversimplified) example, a leading car transmits via
some channel a packet that consists of a time stamp and its current acceleration,
speed, and position. A following car will use that information to adjust its speed,
but only if it trusts the information it is receiving. To determine whether it trusts
that information, it checks the information against a simple model of the leading
car. Specifically, if a packet indicates a certain position and speed at a particular
time, then when it gets a new packet, it performs a simple sanity check to see
whether the new position makes sense, given the previous position and speed. If
it does, then it trusts the packet.

The model composes submodels, and our task will be to show that our on-
tology framework can detect errors in such composition, and thus help ensure
correctness of the model. Our framework can also help transform or optimize
models by enabling transformations that are based on semantic annotations.

The component on the far left of Figure 5 is a model of a driver, the internals
of which are not shown. The driver submodel feeds data to a car model (labeled
Leading Car Model), the internals of which are shown in Figure 6. This models



9

Fig. 6. A model of a car that accepts a desired speed and matches it using a feedback
control loop. This model has three parameters, the initial position, the initial speed,
and the time constant of the control loop.

Fig. 7. A model of a wireless network that passes inputs to outputs unchanged in
normal operation, but replaces an input with an arbitrary constant upon faults.

the dynamics of the leading car. Specifically, given an input desired speed, it
accelerates to achieve that speed using a control loop with a specified time
constant. It uses an Integrator component to convert acceleration to speed, and
another Integrator to convert speed to position. The output is the acceleration,
speed, and position as a function of time. These data are then sampled and
transmitted over a wireless network, as shown in the middle of Figure 5.

Given a suitable ontology, our framework can infer that if the input to the
Leading Car Model is a Speed, then its outputs are Acceleration, Speed, and
Position, respectively. Moreover, our ontology system can be used to check that
the Following Car model uses the position as a Position, not as a Speed, and
vice versa. Many possible design errors can be caught by such models.

The wireless network submodel is shown in Figure 7. This is a modal model
with two modes of operation, normal and faulty. In the normal mode, inputs are
passed directly to the outputs. In the faulty mode, one of the inputs is replaced
with an arbitrary constant (−10 in this simple example).



10

Fig. 8. A model of a following car with a simple fault detection algorithm and fault
adaptation policy.

The model of the following car is shown in Figure 8, where a Fault Detector
component performs the above mentioned sanity check, and uses the result to
control another modal model. The details of this modal model are not shown,
but like that of Figure 7, it has two modes, normal and faulty. In the normal
mode, its output is equal to the input speed, and in the faulty mode its output
is zero. Thus, the policy of this particular cruise control algorithm is for the
following car to stop if it does not trust the data coming from the leading car,
thus returning control to the driver. The output of the modal model is a desired
speed, which is converted to a continuous-time signal by the ZeroOrderHold
component, which then feeds it into another car model like that shown in Figure
6, which simulates the dynamics of the following car.

To perform property inference and checking for the adaptive cruise control
example, we need a collection of constraints for components in the model, an
illustrative subset of which are shown in Table 1. These constraints form part of a
property system that can be reused in a variety of models. In addition, we added
constraints and acceptance criteria that are specific to this model. Once these
are specified, we can run our property inference tool on the model. A portion of
the result of such a run is shown in Figure 9, where the inferred properties of
ports and parameters are highlighted by the tool in a color matching that of the
concept lattice elements in Figure 4. The inferred properties are also shown in
text next to each port.



11

Component Elements Constraints Where

CurrentTime output y T ≤ py

py ≤ T

Add/Subtract plus x,
minus y,
output z

py ∨ pz ≤ px

px ∨ pz ≤ py

px ∨ py ≤ pz

Integrator input x,
initialState y,
output z

fI(pz) ≤ px

fO(px) ≤ pz

py ≤ pz

pz ≤ py

fI(pz) =


⊥ if pz = ⊥
S if pz = P
A if pz = S
U if pz = T
> otherwise

fO(px) =


⊥ if px = ⊥
P if px = S
S if px = A
T if px = U
> otherwise

Divide multiply x,
divide y,
output z

fD(px, py) ≤ pz fD(px, py) =



⊥ if px = ⊥ or py = ⊥
A if px = S and py = T
S if px = P and py = T
T if px = P and py = S
T if px = S and py = A
U if px = py

px if py = U
> otherwise

Scale input x,
factor y,
output z

fS(px, py) ≤ pz fS(px, py) =



⊥ if px = ⊥ or py = ⊥
S if px = A and py = T , or

px = S and py = U
P if px = S and py = T , or

px = P and py = U
py if px = U
px if py = U
> otherwise

Table 1. Some of the constraints for components used in the Cruise Control example.

In Figure 9, there is exactly one constraint specified by the model builder,
which is that the timeConstraint parameter has a property greater than or equal
to Time. The input to this model resolves to Speed because we have specified
similar constraints upstream in the driver model (not shown). Everything else
resolves to Time, Acceleration, Speed, or Position as a consequence of the compo-
nent constraints in Table 1 and the constraints implied by connections between
components. Such a visual display of the inferred properties makes it easy to
identify inconsistencies in the model, if there are any. Our model has none.

A property system is domain specific. We can construct multiple property sys-
tems, and even use them within the same model. Another example of a concept
lattice is given in Figure 3. We interpret the property Const, when associated
with a port, to mean that the value of data on that port is constant throughout
the execution of the model. The property Nonconst means that the value may
change during execution. We have applied this property system to analyzing the
same cruise control example, and find that it successfully identifies portions of



12

Fig. 9. Car model of figure 6 with properties resolved.

the model where messages between components have a constant value. This can
be used to optimize the model automatically, or, more interestingly, to manage
multiple models that represent product families. Specifically, variants of a model
may result in different parts of the model being constant due to different pa-
rameterizations, which enables optimization of particular variants of the model
without losing the generality of the master product family model.

6 Software Architecture

Our tool is an extension of the Ptolemy II type system that enables the definition
of a concept lattice and the specification of constraints and acceptance criteria.
The lowest level of the tool is a set of Java base classes for defining the lattice,
constraints, and acceptance criteria. We have provided as well a set of model
elements that can be incorporated with a Ptolemy II model that associate all of
these objects with the model. Thus, a model designer can browse from a library
of preconfigured property systems, and choose to use those that are useful.

Defining a property system requires a fair amount of work. A property sys-
tem can be specific to a particular model, or it can be provided in a library of
property systems for use with multiple models. Constraints that are specific to
a particular model element, like the Integrator above, need to be part of the
property system. We have developed an adapter pattern that facilitates asso-
ciating constraints with preexisting components in a library. A key concern is
that specifying constraints for model elements requires considerable expertise.
We are exploring visual specifications of the concept lattice and constraints in
order to improve usability. Another key concern is to be able to define reason-
able default constraints that apply to modeling elements that are added after
the property system is defined.

We provide a few generic mechanisms that make it easier to define property
systems for complex models. For example, many models have modal behavior,



13

as illustrated in Figure 7. A modal model is a finite state machine (FSM) where
each state may contain refinement models. The public interface (e.g. ports and
parameters) of the modal model is shared across its refinement models. Each
refinement defines the behavior of the modal model component when it is in
that mode. A reasonable default strategy is that the constraints of the modal
model should be the conjunction of the constraints of the refinements. While our
framework permits overriding this default, most model builders will likely find
it to be exactly what they want. An interesting extension would be to combine
property analysis with model checking to get less conservative analysis.

Another generic mechanism we provide concerns arithmetic expressions. Fig-
ure 8, for example, contains a component labeled “ Estimate Current Position,”
which is an instance of the Ptolemy II Expression actor, whose behavior is given
by the expression shown in its icon. The constraints of Table 1 apply equally
well to nodes of the abstract syntax tree (AST) of such expressions as to actors
that add, subtract, multiply, or divide signal values. Hence, property inference
and checking works automatically across such expressions. Again, we provide
reasonable defaults for setting up the constraints, but the framework supports
fine-grained customization to allow easy experimentation.

7 Assessment and Related Work

Much work in formal concept analysis attempts to extract an ontology from a
set of object instances. It is more concerned with concept mining or clustering.
Our property analysis, on the other hand, infers concept values for model objects
based on a given ontology specification. Our focus, therefore, is on facilitating
correct modeling by providing better model engineering tools that, like type
systems, expose errors early in the design process and facilitate transformation.

Our work can also be viewed as providing a mechanism for incremental or
partial construction of a metamodel. A traditional metamodel is more complete
than our property systems need to be. A simple property system can be associ-
ated with a complex model and incrementally elaborated as the model evolves.

Our property systems are comparable to ontology modeling supported by
OWL-protègè and EMF. These tools provide a flexible set of primitives to model
complex ontologies. Like them, our lattice ontology description is based on the
principle of modeling concepts and relationships. OWL leverages description
logic for specifying relationship between classes of concepts. EMF specializes in
a subset of relationships borrowed from UML to provide useful features such as
model querying and model-to-text support. Our lattice ontology can be viewed
as a specialization that restricts ontologies to a lattice structure and constraints
to those compatible with efficient inference and checking. Our objectives are
also similar to [21], but our lattice foundation ensures unique inference results,
supports cyclic dependencies, and scales to large models.

There are a number of obvious extensions to this work. For example, our
property system with the lattice in Figure 4 stops short of checking units, al-
though limited forms of such checks are known to be possible [22]. Our ontology



14

includes concepts like “speed,” but not “meters per second” or “miles per hour.”
An open question is the extent to which our lattice ontology approach can be
extended to include units. Most unit analysis systems we are aware of check
for consistent use of units at run time, not at compile time. We are aware of
three exceptions: a static unit system in Ptolemy II created by Roland Johnson
[unpublished], the SIunits library [23], which uses C++ templates, and SCADE
[24]. Brown’s approach in [23] relies on the type checking of C++. However, the
C++ type system in general does not conform with our lattice structure (witness
multiple inheritance), so such an approach may not yield unique solutions.

Schlick, et al. in [24] point out that unit checkers face a fundamental problem
with “ambiguous units” like work and torque, both of which are Newton-meters.
They suggest introducing “radial meters” to disambiguate the two, suggesting
that associating more general ontology information with units is useful. Their
mention of multiple disjoint uses of dimensionless numbers also reinforces this
need for more general ontology information.

Another interesting obvious extension is to support infinite concept lattices.
The Ptolemy II type system already does this, in order to support composite
types such as arrays and records. Inference in such systems is known to become
undecidable in general (witness dependent types), but practical heuristics lead
to very usable inference algorithms, at least for type systems. One key question
is whether such heuristics would work for domain-specific property systems. It is
also challenging to find or invent mechanisms for model builders to define infinite
lattices easily and specify constraints over them.

8 Conclusions

We have described a strategy for annotating models with semantic information
and automatically performing inference and consistency checking. Our mecha-
nism is scalable and customizable, and thus provides a foundation for research in
domain-specific model ontologies and model engineering. Its mathematical foun-
dation ensures that inference results are unique. A model builder can specify just
a few semantic annotations, and the implications of these annotations through-
out the model are automatically inferred. This will expose modeling errors early,
will help designers to better understand their models, and help design teams to
agree on interfaces between subsystems, on design concepts, and on terminology.

References

1. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (2003) 145–164

2. Jantsch, A.: Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Morgan Kaufmann (2003)

3. Lee, E.A.: Model-driven development - from object-oriented design to actor-
oriented design. In: Workshop on Software Engineering for Embedded Systems:
From Requirements to Implementation (The Monterey Workshop), Chicago (2003)



15

4. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
12(3) (2003) 231–260

5. Bock, C.: SysML and UML 2 support for activity modeling. Syst. Eng. 9(2) (2006)
160–186

6. Rumbaugh, J.: The unified modeling language reference manual, second edition.
Journal of Object Technology 3(10) (2004) 193–195

7. OMG: System modeling language specification v1.1. Technical report, Object
Management Group (2008)

8. Hardebolle, C., Boulanger, F.: Modhel’x: A component-oriented approach to multi-
formalism modeling. In: MODELS 2007 Workshop on Multi- Paradigm Modeling,
Nashville, Tennessee, USA, Elsevier Science B.V. (2007)

9. Pree, W., Templ, J.: Modeling with the timing definition language (tdl). In: Au-
tomotive Software Workshop San Diego (ASWSD) on Model-Driven Development
of Reliable Automotive Services. LNCS, San Diego, CA, Springer (2006)

10. Herrera, F., Villar, E.: A framework for embedded system specification under
different models of computation in SystemC. In: Design Automation Conference
(DAC), San Francisco, ACM (2006)

11. Sander, I., Jantsch, A.: System modeling and transformational design refinement in
ForSyDe. IEEE Transactions on Computer-Aided Design of Circuits and Systems
23(1) (2004) 17–32

12. Goessler, G., Sangiovanni-Vincentelli, A.: Compositional modeling in Metropolis.
In: EMSOFT, Grenoble, France, Springer-Verlag (2002)

13. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(2) (2003) 127–144

14. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley (2003)

15. Lee, E.A., Xiong, Y.: A behavioral type system and its application in Ptolemy II.
Formal Aspects of Computing Journal 16(3) (2004) 210 – 237

16. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978) 348–375

17. Rehof, J., Mogensen, T.A.: Tractable constraints in finite semilattices. In: SAS
’96: Proceedings of the Third International Symposium on Static Analysis, London,
UK, Springer-Verlag (1996) 285–300

18. Xiong, Y.: An extensible type system for component-based design. Ph.D. Thesis
Technical Memorandum UCB/ERL M02/13, University of California, Berkeley,
CA 94720 (May 1 2002)

19. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin (1998) Translated by C. Franzke.

20. Bauer, H.: ACC Adaptive Cruise Control. Robert Bosch GmbH (2003)
21. Bowers, S., Ludäscher, B.: A calculus for propagating semantic annotations

through scientific workflow queries. In: Workshop on Query Languages and Query
Processing (QLQP), Munich, Germany, Springer (2006) 712–723 LNCS 4254.

22. Hayes, I.J., Mahony, B.P.: Using units of measurement in formal specifications.
Formal Aspects of Computing Journal 7 (1995) 329–347

23. Brown, W.E.: Applied template meta-programming in SIunits: the library of unit-
based computation. In: Workshop on C++ Template Programming, Tampa Bay,
FL, USA (2001)

24. Schlick, R., Herzner, W., Sergent, T.L.: Checking SCADE models for correct usage
of physical units. In: SAFECOMP. Volume LNCS 4166., Springer (2006) 358 371


