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Abstract—Deploying real-time control systems software on
multiprocessors requires distributing tasks on multiple processing
nodes and coordinating their executions using a protocol. One
such protocol is the discrete-event (DE) model of computation.
In this paper, we investigate distributed discrete-event (DE) with
null-message protocol (NMP) on a multicore system for real-time
control software. We illustrate analytically and experimentally
that even with the null-message deadlock avoidance scheme in
the protocol, the system can deadlock due to inter-core message
dependencies. We identify two central reasons for such deadlocks:
1) the lack of an upper-bound on packet transmission rates
and processing capability, and 2) an unknown upper-bound on
the communication network delay. To address these, we propose
using architectural features such as timing control and real-time
network-on-chips to prevent such message-dependent deadlocks.
We employ these architectural techniques in conjunction with
a distributed DE strategy called PTIDES for an illustrative car
wash station example and later follow it with a more realistic
tunnelling ball device application.

Index Terms—Real-time software, Chip-multiprocessors,
Discrete-Event.

I. INTRODUCTION

The use of multiprocessors for real-time control systems
requires distributing the real-time software on the various
processing nodes, and coordinating their execution and com-
munication with a protocol. Two common protocols are time-
triggered and event-triggered. With either of these protocols,
it is critical to ensure that the system is deadlock free. In this
paper, we focus on the design of reliable real-time systems on
chip-multiprocessors (CMPs) using the event-triggered proto-
col; in particular, the discrete-event (DE). However, we do
not consider a monolithic event queue because of its inability
to exploit parallelism, and its susceptibility to being a single
point of failure. Alternatively, we concentrate on distributing
the discrete-event execution across multiple processing nodes.
In doing this, we study the effects of distributing DE with
a deadlock avoidance mechanism known as the null-message
protocol (NMP) [1], [2]. Specifically, we evaluate a potential
message-dependent deadlock [3], [4] problem that arises even
when NMP is used.

The architecture we use is a CMP with multiple processing
nodes connected via a network-on-chip (NoC). A processing
node connects to a network interface, which is directly con-
nected to the NoC interconnect. Designers of NoCs often as-

sume that packets transmitted to a processing node are always
consumed immediately. With this assumption, the designer
provides guarantee that sent packets are always delivered.
This means that once a packet is sent, it will reach the
destination within a finite amount of time. Therefore, there is
no deadlock or livelock in the network that may cause a packet
to never reach its destination. However, in implementations
of CMPs, processing nodes (i.e. CPUs) have limited memory
and processing resources; therefore, processing nodes cannot
always consume packets as soon as they arrive. If too many
packets arrive at a processing node during an interval, then
they are usually queued up in the network. This results in
a blocking effect in the network, which might cause the
system to deadlock entirely or partially. This is called message-
dependent deadlock [3], [4].

In the case of NMP, each processing node regularly sends
null messages to some other processing nodes to update those
nodes about the sender’s physical time. It is very possible
that when too many null messages (packets) are sent to the
same receiving node, if that node is busy doing some task
then it cannot process these messages. Therefore, these null
messages fill up the input buffer at the network interface of
the node. This congestion prevents other non-null messages
from being processed quickly as well. This temporary blocking
effect is problematic for real-time systems because it might
cause the system to miss its real-time deadline simply due to
a congestion caused by null messages. Moreover, if the buffer
capacity reaches its maximum, then the null messages can
result in blocking the entire network; essentially, a deadlock.

We show that distributing DE on a CMP using the NMP
protocol can result in message-dependent deadlocks. These
deadlocks arise from two factors: 1) bursty traffic due to
network jitter and 2) mismatch in transmit and receive rates.
We identify these factors via an analytical model based on the
ideas of network calculus [5] and real-time calculus [6]. Then,
we discuss architectural features that can address these factors.
In particular, we present an implementation that combines a
real-time network-on-chip communication network that elim-
inates jitter [7] with a real-time processor architecture called
the Precision Timed (PRET) machine [8] with instructions for
timing control. We show that by using timing instructions in
software we can enforce a bound on the message transmit-



ting/receiving rates between nodes. This in turn provides a
bound on the number of messages at the destination nodes
within an interval of time. Furthermore, instead of employing
NMP, we propose the use of a programming model called
Programming Temporally Integrated Distributed Embedded
Systems (PTIDES) [9] that eliminates the need to send null
messages over the network.

A. Organization

This paper is organized as follows: in Section III, we give
a brief overview of network on-chip interconnection. The
Section IV is dedicated to building an analytical model for
communication network. We then discuss the requirements for
the implementation from the analytical model in Section V.
An illustration of the MDP is demonstrated in Section VI.
Finally, Section VII is dedicated to showing a more realistic
distributed DE example on a multicore system.

II. RELATED WORK

Current approaches that employ CMP architectures with
network-on-chips to avoid deadlock either increase the number
of virtual channels, buffer sizes [10], or they use a deadlock
resolution mechanisms [11]. However, simply increasing the
buffer size and number of virtual channels without considering
the transmit/receive rates is not safe. This is because it is
possible for a node to continuously send more packets than
the destination node can receive resulting in congestion and
potentially message-dependent deadlocks. Deadlock resolution
mechanisms are often complicated since they require an end-
to-end flow control mechanism as in TCP/IP so that a sending
node has to resend a packet when this packet is killed by
the deadlock resolution mechanism. However, for real-time
control systems, simply dropping packets may have adverse
effects on the application’s timing requirements, which can
cause the application to miss critical deadlines.

Although message-dependent deadlock (MDP) happens in-
frequently, for safety-critical and real-time control systems,
any possibility of a deadlock has to be excluded completely.
In [12], whenever an MDP occurs and it is detected, an
intermediate node has to consume some messages, store them
in its local memory and then resend those messages when the
network is freed. This mechanism is unsuitable for real-time
systems. In the active message communication model [13],
deadlock is avoided by making the receiving nodes always sink
a message when it arrives. However, to successfully implement
that, receiving nodes have to be fast enough to process all
received messages before a new message arrives. As we can
see flooding other nodes with null messages as in the NMP
might hinder this approach. A recent work [14] on solving
the problem using end-to-end flow control mechanism is only
suitable for multimedia applications.

III. INTERCONNECTION NETWORK ON CHIP

A. Network on Chip

Network on-chip (NoC) is a new design paradigm for
system-on-chip (SoC) [15], [16]. Network-on-chips often uses

wormhole packet switching [17]. A packet is divided in to
smaller data units called flits (flow units) as in Figure 1(a).
The head flit contains routing and other information for routers
to route the packet. In wormhole switching, buffers, i.e. in a
router, are allocated to flits rather than packets. So a packet is
sent from one router to another router gradually flit by flit.
Thus, a packet can span over multiple routers and buffers
causing blocking to other packets.

B. Deadlock-free Interconnection Network

An interconnection network used to connect processing ele-
ments such as the network on-chip in Figure 4(a) is composed
solely of routers. The interconnection network is deadlock
free if the routing function in the routers of the network does
not cause any routing-dependent deadlock as in Figure 1(b),
in which packets create a cyclic loops [18]. In Figure 1(b),
deadlock happens when four packets P1, P2, P3, P4 wait for
buffer space occupied by each other in a loop and all buffers
are full, therefore no packet can advance.

C. Message-Dependent Deadlock

In a multicore system that uses network on-chip intercon-
nection, although the communication network is deadlock free,
message-dependent loops created by processing nodes might
cause deadlocks in the multicore system [3], [4], [11]. This
deadlock is sometimes called request ≺ reply dependency
deadlock. Intuitively, the processing nodes process requests
then sometimes send out a reply message. This request ≺ reply
dependency might form cyclic dependency loops in the whole
systems as in Figure 1(c). Different form routing-dependent
deadlocks, in the message-dependent deadlock, the message-
dependent loops are created at processing nodes. For example,
when node A has a new pending request reqB from node B
but it first has to send out a reply repA of some previous
request from node B to free its internal memory in order
to consume reqB . However, repA cannot be sent out due to
buffers in the network are full that need node B to consume
some messages to free the network buffer. However, node B
also cannot consume any messages since its internal memory
is full and it cannot send out a message to node A because
the buffers in the network are full. Both node A and B wait
for each other to consume packets but none of them can then
the deadlock happens.

The progress of deadlock formation is as follows. Let
IQA, OQA, IQB , OQB be input, output queues of nodes A,B
respectively. When node A sends packets to node B, if it sends
packets faster than node B can process then the packets will
queue up at output links and buffers at routers around node B.
When the buffers at routers around node B are full, this effect
will block other normal packets. Other normal packets then
fill up buffers at other routers. Gradually, this congestion will
propagate to output of node A, then input of node A. Then
node A cannot send/receive and any packet. At this point, none
of the processes in the system can make progress as there
are not enough memory space therefore the system becomes
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Fig. 1. Interconnection network

deadlocked. This is deadlock phenomenon is not just a system
with a congested network.

IV. ANALYTICAL MODEL

We construct our analytical model similar to real-time [6]
and network calculus [5]. We use this model to identify
message-dependent deadlocks and to specify the conditions
that must be preserved in order to avoid them. Later, we
will show implementation techniques that aid designers in
satisfying these conditions.

A network constitutes of a set of processing nodes con-
nected via an interconnection network. Let V be the set of
processing nodes and C ⊂ N be the set of virtual channel
indexes representing the connections between the nodes. The
set of flows in the network F ⊆ V × V × C describes paths
on the interconnection network that is used for communication
between nodes. One flow f ∈ F is a 3-tuple, f = (s, d, c),
which denotes a path from a source node s to a destination
node d with virtual channel index c ∈ C. It is typical for a
node to have additional buffer space reserved for a particular
flow, which we denote by Bf .

The source node s can transmit xf (t) amount of data at
a time instant t ∈ R on flow f . Similarly, af (t) defines the
amount of data arriving at the destination node at time instant
t on flow f . Note that both xf (t) and af (t) describe the
maximum amount of traffic being transmitted and received.
The destination node d consumes a certain amount of data
from flow f , which we describe as rf (t). This is the minimum
amount of data that can be processed by the destination at time
t. Since we are interested in network traffic over a period of
time, we augment transmission, arrival and processing rates to
support time intervals. Hence, for a time interval [t0, t1] where
t0, t1 ∈ R, Xf (t0, t1) =

∫ t1
t0
xf (t)dt is the maximum amount

of data transmitted, Af (t0, t1) =
∫ t1

t0
af (t)dt is the maximum

amount of data arrived, and Rf (t0, t1) =
∫ t1

t0
rf (t)dt is the

minimum amount of data the node processes.
We characterize the amount of data in a flow as Nf (t0, t1) =

Af (t0, t1)−Rf (t0, t1). It is possible for a flow to become con-
gested. This occurs when more data arrives at the destination
node than the amount of data processed. This is, of course, if
the flow does not allocate sufficient buffer space on it.

Definition 1: A message-dependent deadlock (MDP) oc-
curs when there exists a cyclic dependency between multiple
congested flows such that none of the nodes in the dependency
can consume and produce data on its flows.

To avoid MDPs, we must satisfy condition (1) for every
flow within the cyclic dependency. This condition ensures that
adequate buffer space is allocated to a flow using the arrival
and processing rates.

Af (t0, t1)−Rf (t0, t1) ≤ Bf ,∀t0, t1. t1 ≥ t0 ≥ 0 (1)

Notice that condition (1) is both sufficient and necessary to ex-
clude data congestion resulting in MDPs. However, enforcing
this condition is nontrivial. This is because it requires con-
trolling Af and Rf . Moreover, Af depends on the properties
of the underlying communication infrastructure such as the
routing, switching and flow control policies. To address this
issue, we abstract the communication infrastructure details to
two main constituents: the minimum network delay Df and
the maximum possible jitter ∆f for a flow f .

Observation 1: By using the minimum network delay Df

and the maximum possible jitter ∆f on flow f , we can derive
Af using the transmission rate Xf .

ffDt ∆−−0 fDt −1

1t0t

)(txf

)(taf

t

t
Sender

Receiver

A

B

0

0

Fig. 2. Effect of traffic distortion on send/arrival rates.

We describe the intuition behind observation 1 using Fig-
ure 2, which shows the relationship between the transmission
and arrival of data for an interval [t0, t1]. The bottom graph
shows the amount of data arriving between the interval [t0, t1]
at the destination node. To encode this in terms of the trans-
mission, we observe that the data arriving at the destination



node at t0 is sent at the latest from the source node at time
t0−Df−∆f . This takes into account the network delay and the
jitter. For t1 however, the earliest that the source can transmit
the data is t1 −Df . Notice that we take conservative bounds.
Hence, the maximum amount of traffic arriving at a destination
node d in between [t0, t1] must be transmitted by source node
s within the interval [t0 − Df − ∆f , t1 − Df ]. Intuitively,
the area of the region B is equal to the area of the region A
in the graphs in Figure 2. We use these bounds to describe
the following:

∫ t1−Df

t0−Df−∆f
xf (t)dt =

∫ t1
t0
af (t)dt. And since

Af (t0, t1) =
∫ t1

t0
af (t)dt and Xf (t0 −Df −∆f , t1 −Df ) =∫ t1−Df

t0−Df−∆f
xf (t)dt, this allows us to describe the following

condition:

Af (t0, t1) = Xf (t0 −Df −∆f , t1 −Df ) (2)

Combining conditions (1) and (2), ∀t0, t1 ∈ R such that
t1 ≥ t0 ≥ 0, we obtain

Xf (t0 −Df −∆f , t1 −Df )−Rf (t0, t1) ≤ Bf (3)

Condition (3) captures the criterion for avoiding MDPs with
respect to transmission rate, processing capabilities, minimum
network delay and the jitter in the network.

A. Factors that Contribute to Message-Dependent Deadlocks

We identify two factors that contribute to MDPs: 1) tem-
porary or permanent mismatch between transmit/receive rates,
and 2) bursty traffic caused by message jitter in the network.

1) Mismatch of Transmit/Receive Rates: It is clear from
condition (3) that if sufficient buffer capacity is not allocated,
then whenever data is transmitted faster than it is processed,
the unconsumed packets can overflow the buffers resulting in
MDPs.

2) Bursty Traffic due to Increased Jitter: If the jitter ∆f

increases then the amount of traffic Xf (t0−Df−∆f , t1−Df )
may also increase as the length t1 − t1 + ∆f of the interval
[t0 − Df − ∆f , t1 − Df ] increases, accordingly, the amount
of traffic sent during the interval is increased. The message
jitter occurs because of the best-effort routing schemes often
employed in network-on-chip architectures.

Figure 3 illustrates how bursty traffic can arise from mes-
sage jitter [19]. This occurs even when the sender guarantees
that packets are transmitted at regular intervals, after traversing
through three routers, the intervals between them may be
reduced. This appears as bursty traffic to the destination node.
This phenomenon happens because packets have to compete
for resources such as buffers and physical links in a network.
This causes a packet’s arrival to get closer to the previous one
when the previous packet has to wait for resources. For a large
network-on-chip composed of hundreds of nodes, packets
might have to traverse several hops, which may increase the
message jitter and result in severe bursty traffic. This effect can
then cause a node to temporarily be flooded with messages;
thus, the external network may be blocked resulting in system
deadlock.

Entrance 

to network

After switch 1

After switch 2

After switch 3

Fig. 3. Jitter of messages.

V. REQUIREMENTS FROM AN IMPLEMENTATION

Our analytical model in Section IV makes four assumptions.
We list these assumptions and describe how an implementation
can provide the necessary techniques to satisfy the assumption.
In the following Section we explain these techniques in further
details.

Assumption 1: The maximum network jitter ∆f for a flow
f is known.

Assumption 2: The minimum network delay Df for a flow
f is known.

Assumption 3: It is possible to control Rf (t0, t1), which is
the processing capability of a node for flow f between some
time interval [t0, t1].

Assumption 4: It is possible to control Xf (t0, t1), which is
the amount of data being transmitted by a processing node on
flow f between some time interval [t0, t1].

A. A Known Maximum Jitter via Guaranteed-service On-chip
Communication

We need to satisfy assumption 1 to guarantee that condition
(3) holds. Fortunately, there are guaranteed-service on-chip
communication networks that provide specific values for the
jitter. The networks ensure that messages reach their desti-
nation within a known amount of time regardless of other
traffic on a network. For example, [7], [20] guarantee that their
network guarantees no jitter (∆f = 0). There are other real-
time on-chip communication networks guarantee an upper-
bound on ∆f such as the Æthereal architecture [20] where a
time-division multiplex access method is applied to guarantee
the real-time delay of real-time packets.

We use the real-time network on chip communication in-
terconnect presented by Bui et al. [7]. This interconnection
network requires a clear specification of the set of possible
flows, and based on that, a suitable path is found in a system
to meet the real-time constraint of each flow if and only if
such a that path exists. This mechanism divides the end-to-
end delay of a flow into local delays at each hop of the path
of the flow. The scheduling mechanism at each router will hold
packets forwarded from its previous routers for the rest of the
packet’s local delay if the packet is forwarded early. Thereby,
all the jitters are absorbed at routers.

For example, Figure 4(a) describes three real-time flows
on a network for a simple traffic controller example. The
traffic pattern of each flow is characterized by the maximum
packet length in flits of each flow and the minimum interval
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between two successive transmissions of packets. For the
traffic controller example, the specifications for the three
flows are as follows: F1 = (PE7 → PE23, 5 flits, 21cycles),
F2 = (PE6 → PE3, 3 flits, 19 cycles) and F3 = (PE5 →
PE19, 4 flits, 17 cycles). The packets sent from source nodes
of the three flows reach their destination nodes within a
bounded amount of time regardless of other traffic as in
Figure 4(b). The figure shows that it will take the packets
of one real-time flow the same amount of time to reach their
destination.

Figure 4(c) shows the timing diagram of a packet at a node.
Consider a flow f along a path πf and let en(vn, vn+1) be
the nth edge on the path and the upper bound on the queueing
delay is denoted by q̂f,e, which is guaranteed by a scheduling
algorithm. Let the maturation time of a packet be the latest
time a packet p is expected to arrive at the node denoted by
m

(p)
f,n. The deadline of a packet p of flow f at node vn is

defined as follows:

T
(p)
f,n = m

(p)
f,n + q̂f,en

(4)

The actual sending time of the packet is denoted by S(p)
f,n and

the jitter for each packet is computed as follows:

j
(p)
f,n = T

(p)
f,n − S

(p)
f,n (5)

The jitter measures the length of time from the departure of a
packet to its deadline. Denoting by r(p)

f,n+1 the arrival time of
packet p at next node vn+1, the following holds: m(p)

f,n+1 =
r

(p)
f,n+1 +j(p)

f,n. Combining this last equation with Equations (4)
and (5), we obtain:

j
(p)
f,n+1 = r

(p)
f,n+1 + j

(p)
f,n + q̂f,en+1 − S

(p)
f,n+1 (6)

This equation suggests that the maturation time of a packet
can be computed using only two local parameters: the jitter
from the previous node, and the upper bound on the queueing
delay. Moreover, these parameters are used to compute the
jitter value to be sent to the next node on the path. Using
the jitter information allows to have a completely distributed
scheduling algorithm.

As we can see that, if a packet p is forwarded before mature
time m(p)

f,n of the packet at a node vn, the next node vn+1 will

hold the packet until that mature time so that the local delay
of the packet on the edge en(vn, vn+1) is always at equal to
q̂f,e therefore the end-to-end delays of all packets of a flow f
are the same.

B. Analyzing Minimum Network Delay

In order to address assumption 2, we compute Df experi-
mentally for the underlying communication network.

The minimum network delay Df for a flow f is straight-
forward to compute as the minimum delay of a packet of a
flow f is simply the delay when there are no other packets on
the network. This delay can be computed statically based on
each specific network architecture. For example, the delay Df

of a best effort flow can be analysed as follows: the head flit
travels from the input queue to the output queue of a router
in s cycles where s is the number of pipeline stages of the
router. Then it takes the packet’s head flit 1 cycle to travel the
a link from the output queue of the router to the next router’s
input queue. Therefore the end-to-end delay of the head flit
of a packet on a path is (s + 1) ∗ h where h is the number
of hops on the path. The remaining flits of the packet follow
suit.

C. Controlling Processing Capability and Transmission Rates
via Timing Instructions

To control the processing capability (assumption 3) and the
maximum amount of data transmitted (assumption 4) from
a processing node, we propose using predictable real-time
architectures that provide repeatable timing behaviors. One
such architecture is the Precision Timed (PRET) architec-
ture [8]. The objective of PRET is to exhibit predictable
and repeatable timing behaviors. Predictable timing behaviors
simplify the process of analytically determining the worst-case
execution time of a program. This is beneficial for addressing
assumption 3 because the worst-case execution time gives
a conservative upper-bound on the execution time of the
program.

The processing capability of a node for flow f between
some time interval [t0, t1], Rf (t0, t1) can also be measured
by using the PRET architecture [8]. The PRET architecture



using interleaving pipeline architecture to avoid memory ac-
cess latency effects. Therefore, the worst-case execution time
of a segment code can be measure, hence the Rf (t0, t1)
processing capability during in interval [t0, t1] can be derived.
For example, for the following source code:

1 while ( not terminated ) {
2 rece ive ( source node , message ) ;
3 do computation ( ) ;
4 }

The worst-case execution time of the
do_computation() function will determine the worst-
case interval between two message receiving commands,
hence Rf (t0, t1) is derived.

Repeatable timing behaviors, on the other hand, means that
we observe the same timing behaviors for a program even
with varying input stimuli. PRET support predictability and
repeatability through judicious redesign of the architecture and
extensions that support timing instructions [8], respectively. It
is specifically designed for hard real-time systems.

One of the central features of PRET is the instruction-set
architecture extension to include timing instructions. These
timing instructions allow programmers to directly specify their
timing requirements with their functionality. An example of
our use of a timing instruction is the deadline instruction.
This instruction guarantees the minimum interval between
transmitting packets. For example, Listing 1 represents a
typical program segment used to transmit packets.

Listing 1. Code template without timing instruction
1 while ( not terminated ) {
2 . . .
3 send ( dest node , message1 ) ;
4 i = 0 ;
5 while ( i < 100) {
6 . . .
7 i f ( some condit ion )
8 break ; / / Changes execut ion t ime
9 . . .

10 i ++;
11 }
12 send ( dest node , message2 ) ;
13 . . .
14 }

Note, however, the interval between message transmissions is
determined by the execution time of the code segment between
the two send commands (lines 3 and 12). This execution time
may also vary due to data-dependent control flow paths. An
example of this is shown in lines 7 and 8 where break may
reduce the execution time between the first and second send
commands. This means that messages are sent to the receiving
node faster. Then, the receiving node might be flooded with
messages if its processing capability and buffer capacity are
not adjusted accordingly. If the receiving node is flooded with
messages, a potential MDP might occur. This is because the
receiving node may perceive quicker send commands from the
source node as bursty traffic at its end.

We address this issue by making minor modifications to the
program code for the PRET architecture as shown in Listing 2.

Listing 2. Code template with timing instruction
1 while ( not terminated ) {

2 . . .
3 / / i n t e r v a l to next send command approx . 2000 cyc les
4 DEADLINE( per iod ) ;
5 send ( dest node , message1 ) ;
6 i = 0 ;
7 while ( i < 100) {
8 . . .
9 i f ( some condit ion )

10 break ;
11 . . .
12 i ++;
13 }
14 / / i n t e r v a l to next send command approx . 2000 cyc les
15 DEADLINE( per iod ) ;
16 send ( dest node , message2 ) ;
17 . . .
18 }

In the modified code, we insert two DEADLINE instructions
with the period as an argument. For this example, we specify
the period to be 2000 cycles to ensure that the interval
between the two message send commands to the destination
node is never less than 2000 cycles regardless of processor
speed and/or the lengths of execution paths of the program.
Of course, this requires that the worst-case execution time
of the program segment between the two send commands is
less or equal to the period. As the interval between two
send commands is guaranteed to be always larger than some
certain value, a node will never send messages faster than it
is allowed; thereby, the destination node is never flooded with
messages. For example, if a transmitting node sends messages
of packet size p and we know the following:
• The interval between messages p((t1−Df )−(t0−Df ))

Xf (t0−Df ,t1−Df ) ≥
2000 is guaranteed by the deadline instructions.

• ∆f = 0 is guaranteed by the real-time communication
network with jitter control.

Then, Xf (t0 −Df , t1 −Df ) ≤ p t1−t0
2000 , which means that the

receiving node’s processing capability is

Rf (t0, t1) ≥ pt1 − t0
2000

−Bf ⇔ Bf ≥ p
t1 − t0
2000

−Rf (t0, t1)

This indicates that the sufficient and necessary condition (3)
in section IV is satisfied.

We can restrict the sending rates with the PRET archi-
tecture; however, other alternatives can be used as well. For
example, timer counters with predictable architectures may be
used.

VI. AN ILLUSTRATIVE EXAMPLE OF MDP: CAR WASH
STATIONS

We borrow the car wash [2] example as shown in Figure 6
to describe a DE system. In this example, there are five
processing components: a source, an attendant, two car wash
stations denoted by CW1 and CW2, and a sink. The source
forwards cars to the attendant that dispatches cars to the car
wash stations. The attendant dispatches a waiting car to the car
wash station that is idle earliest. A request message for another
car from the car wash station informs the attendant that the
car wash is idle. This message contains a timestamp denoting
the physical time at which the car wash station became idle.
The attendant uses this timestamp to compare and identify
the car wash station to allocate the waiting car. Once a car
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Fig. 5. Configurations and evaluation results

wash completes its process, it sends the car to the sink. In
doing so, it sends a message with the timestamp at which the
car completed its wash. The sink then orders the washed cars
according to their completion timestamp order.

source

attendant

request

request

allocation

allocation
CW2

CW1

sink

Fig. 6. Message flow of the car wash example.

Implementing this DE car wash system on a single processor
is straightforward. It requires ordering an event-queue on
timestamps, and the front of the event-queue contains the next
event to process. Therefore, it is easy to select the next event to
process. On a multiprocessor system, however, the processing
components are distributed, and each of the processors has
its own ordered event-queues. Since none of the individual
processors have global knowledge of all the events at any point
in time, it is difficult to determine the earliest event to process.

In the case of the car wash example, let us assume that the
processing components are distributed on a separate processor,
and they communicate with each other over a network that
exhibits variable latencies. Now, suppose that the attendant
is biased and sends the waiting cars only to CW1. Upon
completing the washes, CW1 sends the cars to the sink, but
since the sink is unaware of this biased routing, it will wait
for a message from CW2. In fact, this will cause the system
to deadlock because the sink will not be able to complete the
wash until it has successfully ordered the cars based on their
timestamps, and to do this, it requires a message from CW2.
To address this issue, the null message protocol (NMP) [1],
[2] was proposed.

NMP solves the deadlock issue by periodically sending null
messages from one processing node to another if there is no
real message to send. The null messages update the receiving
nodes with the latest physical time of the sending node. The
car wash example with NMP would then require CW2 to send
null messages to the sink periodically. This allows the sink to

compare the timestamps of the messages from CW1 and the
null messages from CW2, and if it determines that the message
from CW1 has an earlier timestamp, then that car is completed
first. For example, CW1 sends a car c1 to the sink with a
timestamp t1 and CW2 periodically sends null messages with
timestamps to the sink. If the sink receives a null message n2

with timestamp t2 > t1, then the sink node knows that there
is no pending car from CW2 until t2, therefore the car c1 can
be sent out. So the system cannot be deadlocked.

CW0 CW1 CW2

CW3 CW4

CW5 CW6 CW7

Attendant

Fig. 7. Simulation scenario for car wash example

To demonstrate the potential deadlock of NMP on a mul-
ticore system, we set up a simple simulation scenario of the
car wash example. This scenario is shown in Figure VI, where
there is a 3 × 3 network. The source and attendant share the
same center node. The outer nodes are 8 car wash nodes.
For the sake of simplicity, we discard the sink node. We
map one task onto one processor and we minimize the total
communication latency between the cores.

The simulation steps are as follows: 1) A car wash node
sends a request message to the attendant node whenever it
is idle (not busy washing any car). The request message also
contains a timestamp of the time of the node when the request
message is sent. 2) The attendant node will allocate a car to a
washing node by an allocation message whenever it receives
a request message. However, the attendant node requires that
cars be allocated to washing node in an increasing order of
the timestamp in request messages. This means that, if there
are 2 request messages m1 and m2 from node n1, n2 with
timestamp t1 < t2 respectively, although m2 arrives at the
attendant node before m1 due to different network delays, node



n1 is still allocated a car before n2. 3) A car wash node,
whenever allocated a car, will wash a car within a specified
amount of time. When it finishes washing the car, it sends
another request message to the attendant node to ask for new
cars to wash.

A. NMP Deadlock Scenario

The car wash example in Figure 6 is vulnerable to MDPs
if there are several washing nodes and those nodes frequently
send out null messages to update the attendant and sink nodes
about their current progress time. If the attendant and sink
nodes at some time receive too many null messages from the
washing nodes, partially due to the traffic pattern distortion of
a packet switching network that cause time intervals between
messages to become smaller as in Figure 3 in [19], then those
receiving nodes cannot process all null message packets on-
time. This, coupled with some other bursty traffic like memory
access traffic, might cause congestion at the links around those
receiving nodes similar to the phenomenon in Section III-C.
This congestion then might causes those receiving nodes to be
unable to send out messages, car assignment messages in case
of the attendant node and car delivery messages in case of the
sink node. Since those nodes cannot send out messages, they
cannot free their internal buffers to receive more packets. Till
this time, the system becomes deadlocked.

Consider another situation when each washing node is
supposed to send null messages every 85 cycles, but due to
improper timing or decreased workload, it sends messages
faster at a rate of 80 cycles then deadlock can happen quickly
within 50,000 cycles after that. To avoid this situation, we can
use an architecture like PRET [8] that does not allow some
work (sending message) to be done faster than needed as in
Section V-C.

Figure 5(a) shows the interaction between the null message
interval and deadlock frequency. There is a sharp threshold
where deadlock turns from never happening to happening
frequently. This occurs because car wash nodes send null
messages faster than the attendant node can handle. For
example, if car wash nodes send null messages at the rate 1
null message per 80 cycles, since there are 8 car wash nodes,
null messages will arrive at the attendant node every 10 cycles.
Sometimes some request messages arrive at the attendant node
also, so null messages and request messages will arrive at
the attendant node every interval less then 10 cycles. Because
the attendant can process one message in 10 cycles, it cannot
process all arrival messages, the condition (3) is violated. The
mismatch between the arrival rate and consumption rate at
the attendant node might cause the system to be deadlocked,
we can avoid this deadlock beforehand by setting the interval
between null messages to a larger enough value, say 85 cycles
to satisfy (3).

B. PTIDES Execution Strategy

As null messages can cause deadlocks to a system without
a proper implementation, a good DE execution strategy can
eliminate such type of messages. In this section, we evaluate

a new execution strategy called Programming Temporally
Integrated Distributed Embedded Systems - PTIDES [9] as
a replacement for NMP. For PTIDES, instead of waiting for
null messages from washing nodes to the attendant node, the
attendant node uses the passage of real-time. Please note that
PTIDES does not eliminate the deadlock problem by itself,
rather, it eliminates the null messages that potentially cause
deadlocks.

We briefly explain the basic PTIDES execution strategy [21]
in the context of the car wash example. PTIDES requires a
strict packet delay bound to guarantee the discrete-event se-
mantics. A guaranteed service on network on-chip architecture
in Section V-A can be used as the underlying communication
for PTIDES on a network on-chip multicore system. Different
from the NMP, PTIDES does not use null messages to avoid
protocol deadlock. Instead, PTIDES uses the delay bound of a
message in a network to guarantee the DE semantics. Suppose
that a request message mi sent from a car wash node CWi

will reach the attendant node within the delay bound d(CWi).
The attendant node receives a request message m1 from car

wash CW1 with timestamp t1. The attendant node knows that
it is safe to dispatch a car to CW1 when: 1) Either the attendant
node has received all request messages from other nodes and
all the other request messages have timestamp greater than
m1. 2) Or current physical time τ ≥ t1 + d(CWi)∀i and all
received messages have timestamp greater than t1.

By using guaranteed service mechanism in [7], the attendant
node knows for sure that a request message sent from a
washing node will never be delayed by the network more
than some max delay. The same configuration is applied and
we never find any deadlock. The average allocation waiting
delay is about 52 cycles in comparison with that of null
message protocol at about always more than 100 cycles for any
variation of interval between null messages as in Figure 5(c).
The buffer at the attendant node is enough to store all the
request packets from car wash nodes.

VII. DISTRIBUTED DE ON MULTICORE EXAMPLE:
TUNNELLING BALL DEVICE

For a more realistic example, we describe a distributed
control example that we call Tunnelling Ball Device (TBD).
The TBD is a device that controls a spinning disc with two
holes on it. Balls are dropped from a tower and the control
system needs to vary the speed of the disc such that balls
reach the disc right on one of the holes on the disc in order
to tunnel through the hole. To accomplish this, the TBD has
two sensors: one to detect the time the ball starts to fall and
another to measure its speed. Using these parameters and the
height of the tower, we compute the time that the ball will
reach the disc and rotate it to the hole.

The control system consists of three main processes as
shown in Figure 8. The encoding process receives encoding
events from the motor spinning the disc. If the disc rotates
a full round, it will produce 200 ticks corresponding to 200
encoding events. The position of the disc is measured by
the number of ticks the encoding process counts. From the
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Fig. 8. Computation model of the TBD.

encoding events, it measures the current speed of the disc as
well as the position of the hole on the disc. The controlling
process uses those parameters to control the spinning speed of
the disc so that the hole on the disc will be on the path of the
ball when the ball reaches the disc to allow the ball to tunnel
through the disc.

The encoding process mainly detects ticks from the encod-
ing sensor of the motor. Each time it detects a tick, it knows
that the motor has rotated by some angle, then it modifies its
current information about the position of the motor’s rotor.
Finally, it sends an event with the timestamp at which the tick
occurs and the position of the rotor to the controlling process.

The controlling process controls the spinning speed of the
motor by simulating the theoretical positions of the motor at
each specific time. The theoretical positions of the motor are
compared against the real positions at the same time of the
motor based on the timestamps and positions of events sent
from the encoding processes.

The ball-detecting process checks for signals from sensors
that detect a dropping ball. The dropping ball events are then
timestamped and forwarded to the controlling process. The
controlling process then computes the time the ball will reach
the disc to adjust its theoretical spinning speed so that the hole
on the disc is aligned with the ball’s path. The controlling
process then automatically aligns the real position of the disc
with the theoretical position.

A. Multicore Mapping

We map the TBD example onto a multicore simulation
environment that we developed. We instantiate multiple PRET
processor [8] and connect them with our interconnection
network-on-chip [7]. Each processes from Figure 8 is mapped
onto a separate PRET processor. The most interesting process
in the TBD example is the control process. The sketch of the
control program of the control process is as follows:

In the Listing 3, the speed of the motor spinning the disc is
controlled and varied using deadline instructions. First, we set
the theoretical speed of the disc by setting the period between
the each iteration increasing the theoretical position of the
disc. Then control the speed of motor spinning the disc to
make the theoretical position of the disc and the real position
of the disc as close as possible. In each iteration, we compare
the theoretical position of the disc and the real position of the
disc to determine the control value for controlling the motor
by a PID control. For example, if we want to increase the
speed of the motor, we just need to decrease the period.

Listing 3. Code for the Controlling process
1 i n i t i a l i z e ( ) ;
2 while ( not terminated ) {
3 DEADLINE( per iod ) ;
4 / / the event t h a t increases the t h e o r e t i c a l p o s i t i o n
5 t h e o r i t a l d i s c p o s ++;
6 / / get the timestamp of the event
7 t heore t i ca l d i sc pos inc rease t ime = get t ime ( ) ;
8 check msg from sensors ( ) ;
9 i f ( ba l l dropped ) {

10 / / ad jus t the t h e o r e t i c a l per iod ( speed )
11 per iod = compute period ( ) ;
12 }
13 / / Find r e a l d isc p o s i t i o n
14 while ( 1 ) {
15 receive encoding events ( ) ;
16 for a l l encoding events e {
17 i f ( timestamp ( e ) <=
18 t heore t i ca l d i sc pos inc rease t ime ) {
19 rea l d isc pos = value ( e ) ;
20 } else
21 / / sk ip compare wi th the r e a l d isc p o s i t i o n
22 break ;
23 }
24 / / no encoding events before theo . t ime
25 i f ( ge t cur ren t t ime ( ) >
26 t heore t i ca l d i sc pos inc rease t ime +
27 max delay from encoding core )
28 break ;
29 }
30 / / c o n t r o l r e a l speed motor using theo . t ime
31 con t ro l va lue = PID ( theo r i t a l d i sc pos , disc pos ) ;
32 send motor cont ro l s igna l ( con t ro l va lue ) ;
33 }

To find the real position of the disc, we use the PTIDES
mechanism to find all the encoding events before we increase
the theoretical position of the disc.

The analysis of the TBD example is similar to that of the
one done in Section V-C. In our case, if the disc does not spin
faster than 2 rounds per second, then there are at most 400
tick events per second sent by the encoding process. Suppose
that the system is running at the speed of 100MHz. Then,
the interval between two consecutive encoding events is at
least 250000 cycles. Now, suppose that each encoding event
is of size e, then e((t1−Df )−(t0−Df ))

Xf (t0−Df ,t1−Df ) ≥ 250000. As ∆f = 0
is guaranteed by the real-time communication network with
jitter control, Xf (t0 − Df , t1 − Df ) ≤ e t1−t0

250000 . This means
that the receiving node’s processing capability is Rf (t0, t1) ≥
p t1−t0

250000 −Bf ⇔ Bf ≥ p t1−t0
250000 −Rf (t0, t1)

B. Results

The Figure 9(a) shows the error between the theoretical
position of the disc and the real position of the disc based on
our simulation disc model. Based on that control capability,
Figure 9(b) shows the capability of positioning one of the two
hole on the disc so that the ball is able to tunnel through the
disc. The error of the theoretical position of the disc from
the exact position is at most 1 tick. Since the disc rotates a
full round, there are 200 ticks, which makes 1 tick equivalent
to about 2 degrees. If the control algorithm for the disc is
good enough, the real error of the disc is at most 4 ticks or 7
degrees.

VIII. CONCLUSION

We understand that multicore systems are the future of
processor technology. However, deploying real-time control
software on CMPs is non-trivial because it demands certain
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properties from the underling communication network and
processing nodes. We identify these properties and present
our implementation that consists of multiple PRET processors
interconnected with a real-time network-on-chip. Our solution
eliminates network jitter and variability in send and receive
rates between processing nodes. Unlike the NMP protocol,
we employ PTIDES to distribute the DE application onto the
CMP. This has the advantage that null messages are no longer
required. We are currently investigating an implementation of
the presented architecture on an FPGA.
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