Disciplined Heterogeneous Modeling*
Invited Paper

Edward A. Lee

EECS, UC Berkeley

eal@eecs.berkeley.edu

Abstract. Complex systems demand diversity in the modeling mech-
anisms. One way to deal with a diversity of requirements is to create
flexible modeling frameworks that can be adapted to cover the field of
interest. The downside of this approach is a weakening of the semantics
of the modeling frameworks that compromises interoperability, under-
standability, and analyzability of the models. An alternative approach is
to embrace heterogeneity and to provide mechanisms for a diversity of
models to interact. This paper reviews an approach that achieves such
interaction between diverse models using an abstract semantics, which
is a deliberately incomplete semantics that cannot by itself define a use-
ful modeling framework. It instead focuses on the interactions between
diverse models, reducing the nature of those interactions to a minimum
that achieves a well-defined composition. An example of such an abstract
semantics is the actor semantics, which can handle many heterogeneous
models that are built today, and some that are not common today. The
actor abstract semantics and many concrete semantics have been imple-
mented in Ptolemy II, an open-source software framework distributed
under a BSD-style license.

1 Introduction

Occam’s razor is a widely used principle in science and engineering that prefers
theories and hypotheses with the fewest assumptions, postulates, or entities that
are sufficient to accomplish the goal. The principle can be expressed as “entities
must not be multiplied beyond necessity” (entia non sunt multiplicanda praeter
necessitatem) or as “plurality should not be posited without necessity” (pluralitas
non est ponenda sine necessitate) [I]. The principle is attributed to 14th-century
English logician, theologian and Franciscan friar William of Ockham.

* This work was supported in part by the Center for Hybrid and Embedded Soft-
ware Systems (CHESS) at UC Berkeley, which receives support from the National
Science Foundation (NSF awards #0720882 (CSR-EHS: PRET) and #0931843 (Ac-
tionWebs), the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S.
Air Force Office of Scientific Research (MURI #FA9550-06-0312 and AF-TRUST
#FA9550-06-1-0244), the Air Force Research Lab (AFRL), the Multiscale Systems
Center (MuSyC) and the following companies: Bosch, National Instruments, Thales,
and Toyota.

D.C. Petriu, N. Rouquette, @. Haugen (Eds.): MODELS 2010, Part II, LNCS 6395, pp. 273-287] 2010.
© Springer-Verlag Berlin Heidelberg 2010

274 E.A. Lee

Despite its compelling value, the principle has its limitations. Immanuel Kant,
for example, felt a need to moderate the effects of Occam’s razor, stating “the
variety of beings should not rashly be diminished.” (entium varietates non temere
esse minuendas) [2]. Einstein allegedly remarked, “everything should be made
as simple as possible, but not simpler” [3].

When applied to design techniques, Occam’s razor biases us towards using fewer
and simpler design languages and notations. However, experience indicates that
redundancy and diversity can both be beneficial. For example, there is benefit
to using UML class diagrams even if the information they represent is already
encoded in a C++ program, making the diagrams redundant. There is also value
in use-case diagrams, which express concepts that are not encoded at all in a C++
program that realizes a design. The use-case diagrams represent aspects of the
design not (directly) represented in a class diagram, or even in the program itself.

The plurality of notations in UML and its derivatives runs distinctly counter
to the principle in Occam’s razor. To take an extreme position, arguably, every-
thing that can be expressed in UML can be expressed in natural language. In
fact, historically, natural language specifications of design are the precursors of
UML specifications. The syntax of natural languages (at least the Indo-European
languages) is simpler and less diverse than the syntax of UML, and it is already
familiar to anyone who would engage in design. So what is gained by this anti-
razor?

One might postulate that UML diagrams offer more precision than natural
language descriptions. This is partly true of some diagrams. Consider class di-
agrams, for example. These have a rather simple syntax, but are not as precise
as a set of C++ header files, for example. In particular, the varied interpreta-
tions of associations and the extension mechanisms make it possible to create
standard-compliant class diagrams that mean almost anything. In general, UML
standards emphasize syntax over semantics, and compliance with the standard
is about the structure and appearance of diagrams, and not so much about
their meaning. So improved precision can’t possibly be the justification for the
anti-razor.

Design of software systems is essentially a creative process. Engineers create
artifacts that did not previously exist. Occam’s razor should not be applied to
creative processes. A plurality of media for expression enrich process, even when
the plurality is not driven by necessity.

In this paper, I will argue for an anti-razor in a class of design representations
called actor-oriented models. Actors are concurrent components that share data
by sending messages via ports. An amazing variety of techniques have evolved
that fit this general description. Were we to apply Occam’s razor, we would
seek the single unifying actor-oriented modeling language. I argue that instead
we need a plurality of distinct actor-oriented modeling languages, together with
mechanisms for composing models in these languages, each with a strong and
clear semantics. But to support the design of complex systems, we must also
provide for heterogenous composition of models.

Disciplined Heterogeneous Modeling 275

The technique I describe is that developed in the Ptolemy Project, and largely
previously presented in [4J56]. The key idea is to use a common abstract syntax
for a diverse set of actor-oriented models, and to hierarchically compose those
models using an abstract semantics.

This paper is organized as follows. The next section justifies the need for
heterogeneous modeling. Section 3 describes the common abstract syntax used in
Ptolemy II. Section 4 describes the actor abstract semantics. Section 5 describes
a few of the many possible models of computation that have proved useful.
Conclusions follow.

2 Heterogeneity

Complex systems demand diversity in the modeling mechanisms. We see this
diversity of models very clearly with cyber-physical systems (CPS), which com-
bine computing and networking with physical dynamics, and hence require model
combinations that integrate dynamics (often described using differential equa-
tions) with models of software. We also see it in applications where timed inter-
actions between components are combined with conventional algorithmic com-
putations, such as in networked computer games. We even see it in traditional
software systems when we have concurrent interactions between algorithmic com-
ponents. One way to deal with a diversity of models is to create very flexible
or underspecified modeling frameworks that can be adapted to cover models of
interest. The downside of this approach is a weakening of the semantics of the
modeling frameworks that compromises interoperability, understandability, and
analyzability of the models. An alternative approach is to embrace heterogeneity
and to provide mechanisms for a diversity of models to interact.

Model diversity arises in various ways [7]. In multi-view modeling, distinct
and separate models of the same system are constructed to model different as-
pects of a system. For example, one model may describe dynamic behavior,
while another describes physical design and packaging. In amorphous hetero-
geneity, distinct modeling styles are combined in arbitrary ways within the same
model without the benefit of structure. For example, some component interac-
tions in a model may use rendezvous while others use publish-and-subscribe. In
hierarchical multimodeling, hierarchical compositions of distinct modeling styles
are combined to take advantage of the unique capabilities and expressiveness
of the distinct modeling styles. A familiar example is Statecharts [§], which
hierarchically combines synchronous concurrent composition with finite state
machines.

This paper will focus on a disciplined form of hierarchical multimodeling stud-
ied in the Ptolemy project and implemented in the Ptolemy II software environ-
ment. Using hierarchy, one can effectively divide a complex model into a tree
of nested submodels, which are at each level composed to form a network of
interacting actors. Our approach constrains each of these networks to be locally

276 E.A. Lee

homogeneous, using a common execution and communication semantics called a
model of computation (MoC). The key is to use constrained MoCs with strong
semantic properties as much as possible, and to allow hierarchical composition of
distinct MoCs to overcome the constraints that are the price for strong semantic
properties.

3 A Common Abstract Syntax

The Ptolemy approach uses a common abstract syntax across diverse models.
An abstract syntax defines the structure of models and may be described by
a meta model. A meta model for the Ptolemy II abstract syntax is shown in
Figure[Il Everything in a Ptolemy II model is an instance of NamedObj, which
has a string name (not shown in the meta model). There are four specific kinds of
NamedObj: Attribute, Entity, Port, and Relation. Any NamedObj has a name
and a collection of instances of Attribute. An Entity contains a collection of
instances of Port. Ports are associated with instances of Relation, which medi-
ate connections between ports. A CompositeEntity is an Entity that contains
instances of Entity and Relation. An AtomicActor is an executable Entity. A
CompositeActor is executable CompositeEntity. A Director is an executable
Attribute.

An example is shown in Figure [2 using the concrete syntax of Vergil, a visual
editor for Ptolemy II models. In that figure, the top-level of the hierarchy is
labeled “Model: CompositeActor,” which means that its name is Model and
that it is an instance of CompositeActor. Model contains an instance of Director,
three actors, and one relation. Actors A and C' are composite, whereas actor B
is atomic. The ports of the three actors are linked to the relation.

In Figure @ actor A contains one Port named p, one Director, one actor D,
and one Relation. The port of D is linked to the port p via the relation[] Actor C
is similar except that it does not contain an instance of Director, and it contains
an Attribute (indicated with a bullet). In Ptolemy II, some attributes have values
given in an expression language. For details, see [9].

A composite actor that contains a director is said to be opaque, and one that
does not is said to be transparent. As I will explain below, opaque composite
actors are key to hierarchical heterogeneity. From outside, an opaque composite
actor looks just like an atomic actor. Its inside structure cannot be seen. It is
a black box. In contrast, a transparent composite actor is simply a syntactic
grouping with no semantic meaning. The inside structure is fully visible from
outside. It is a white box.

The block diagram in Figure 2] uses one of many possible concrete syntaxes
for the same model. The model can also be defined in Java syntax or in an XML
schema known as MoML [I0]. All three syntaxes describe model structure. We
will next give the structure some meaning.

! Vergil will typically not show this relation, but it is there in the model structure
nonetheless.

Disciplined Heterogeneous Modeling

277

Relation

+linkedPortList() : List|

L — R
Attribute NamedObj
0.1
- — - = 0.)n +getAttribute(name : String) : Attribute:
+A(lrllliu(e(comamer, NamedObj, name : String) attributeList() - List
«Interface» L
Executable
container
i g L. 00 ok |
+initialize() link 0.n
+postfire() : boolean Port
+prefire() : boolean | |+getPort(name : String) : Port| — -
+preinitialize() +isAtomic() : boolean -_container : Entity
+wrapup() +isOpaque() : boolean +link(relation : Relation)
+portList() : List o.n +linkedRelationList() : List
T o #_checkLink(relation : Relation)
] § «Interface» 0..1 | container

' Actor 0..1 0.n |Ci

§ CompositeEntity | container

i +getDirector() : Director|

| I

| } AtomicActor

| | 0.n 0.1

' § N CompositeActor

Director 0..1 | container
0.1

Fig. 1. A meta model for Ptolemy II

Model: CompositeActor

Director

B: AtomicActor

C: CompositeActor

Director

D: AtomicActor

p: Port

Relation

@ Attribute: value

E: AtomicActor

q: Port

Relation

Opaque CompositeActor

Transparent CompositeActor

Fig. 2. A hierarchical model in Ptolemy II

278 E.A. Lee

4 The Actor Abstract Semantics

In an actor-oriented model, components called actors execute concurrently, re-
ceiving data from other actors (or from themselves in feedback systems) at their
input ports and sending data to other actors (or themselves) via their output
ports. What exactly it means to “execute concurrently” and to send or receive
data depends on the specific model of computation. The MoC has a concrete
semantics. To permit hierarchical composition of distinct MoCs, the concrete
semantics conforms to an abstract semantics. We describe this abstract seman-
tics informally. A formal framework can be found in [11].

The abstract semantics has three distinct aspects, execution control, commu-
nication, and models of time. We discuss these in order.

4.1 Execution Control

The semantics of execution and communication is governed by a director in a
composite actor, which implements a particular MoC. As shown in Figure [I], a
Director is an Attribute that implements the Executable interface. It is rendered
in Vergil as a green rectangle, as shown in Figure [2l Inserting a Director into
a composite actor makes the composite actor executable. Atomic actors also
implement the Executable interface.

An execution of an executable actor has the following phases: setup, iterate,
and wrapup, where each phase has more fine-grained phases. The setup phase
is divided into preinitialize and initialize phases, methods of the Executable in-
terface. In the preinitialize subphase, an actor performs any actions that may
influence static analysis (including scheduling, type inference and checking, code
generation, etc.). For example, a composite actor may fix its own internal struc-
ture, creating internal actors, etc. The initialization phase initializes parameters,
resets local state, and sends initial messages on output ports, if any. Typically,
the preinitialization of an actor is performed exactly once during the actor’s
lifetime in a model execution, and before any other execution of the actor. The
initialization of an actor is performed once after the preinitialization and type
resolution. It may be performed again if the semantics requires that the actor
to be re-initialized, for example, in the hybrid system formalism [12].

Actors perform atomic executions (called iterations) in the iterate phase. An
iteration is a (typically finite) computation that leads the actor to a quiescent
state. The MoC of a composite actor determines how the iteration of one actor
is related to the iterations of other actors in the same composite (whether it is
concurrent or interleaved, whether and when it is scheduled, etc.).

In order to coordinate the iterations among actors, an iteration is further bro-
ken down into three subphases called prefire, fire, and postfire. Prefire tests the
preconditions for the actor to execute, such as the presence of sufficient inputs to
complete the iteration. The computation of the actor is typically performed dur-
ing the fire phase, where it will read inputs, process data, and produce outputs.
An actor may have persistent state that evolves during execution. The postfire
phase is used to update that state in response to any inputs.

Disciplined Heterogeneous Modeling 279

Note that despite the fact that computation occurs during the fire phase, the
state of the actor is not updated until postfire. This supports fixed-point iter-
ation in some MoCs, such as synchronous reactive models and continuous time
differential equations. Directors implementing an MoC with a fixed-point se-
mantics compute the fixed point of actor outputs while keeping the state of each
actor constant. The state of an actor can only be updated after the fixed point
has been reached. This requires the firing of each actor several times before the
actor is postfired. Such a strategy helps to ensure that the MoC is determinate.

This strategy is only followed by actors conforming to the strictest form of
the actor abstract semantics. In [13], Goderis et al. classify actor-oriented MoCs
into three categories of abstract semantics call strict, loose, and loosest. In the
strict actor semantics, prefire, fire, and postfire are all finite computations where
only postfire makes any changes to the state of the actor. In the loose actor
semantics, changes to the state may be made in the fire phase. In the loosest actor
semantics, the fire phase may not be finite. It could represent a non-terminating
computation.

An actor that conforms with the strict actor semantics can be used with any
actor-oriented director. Such an actor is said to be domain polymorphic. An
actor that conforms only with the loose actor semantics can be used with fewer
directors. An actor that conforms only with the loosest actor semantics can be
used with still fewer. Some actors are designed to work only with a single specific
type of director. These actors are not domain polymorphic.

A director also implements the same phases of execution. When put within
a composite actor, making it opaque, the director endows that composite actor
with an executable semantics. If the director conforms to the strict actor seman-
tics, then an opaque composite actor with that director is domain polymorphic.
Such directors support the most flexible form of hierarchical heterogeneity in
Ptolemy II.

4.2 Communication

A director determines how actors communicate. It does this by creating an object
called a receiver and placing that object in input ports. There is one receiver for
each communication channel. Receivers can implement FIFO queues, mailboxes,

execution control data transport

receiver.put(t) /
/

R1\

\
{ 1oPort \\

\EORelation

Receiver
(inside port)

Fig. 3. Communication mechanism in Ptolemy II

280 E.A. Lee

IOPort
0.1 0.n
. «Interface»
Receil
ecelver NoTokenException
throws
throws
+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)
«Inte;faoe»
Mailbox F it Qi i DEReceiver SDFReceiver
1.1
1.1
FIFOQueue ArrayFIFOQueue
CTReceiver CSPReceiver PNReceiver

Fig. 4. Meta model for communication in Ptolemy I

proxies for a global queue, rendezvous, etc. They do this by conforming to the
meta model shown in Figure @l When an actor sends data ¢ to an output port
p1, the mechanics of the send are delegated to the receiver in each input port
po that the output port is connected to, as shown in Figure [3l When an actor
gets data from an input port, that action is also delegated to the receiver. Thus,
what it means to send data to an output port of get data from an input port is
determined by the director.

4.3 Models of Time

Some models of computation have a notion of time, meaning that they assume
that when they are fired, their environment provides a value representing the
time of that firing. A part of the actor abstract semantics provides a mecha-
nism for accessing and controlling the advancement of time. Ptolemy II uses a
model time known as superdense time [12]14]. Superdense time is represented in
Ptolemy II as pair (¢, n), where n is of type int and ¢t = mr is an arbitrarily large
multiple m of a time resolution r. The multiple m is realized as a Java Biglnteger
(an arbitrarily large integer), and r is of type double. The pair (t,n) models a
physical time ¢ and an index n. The index is used to disambiguate simultaneous
events that are causally related [12]. Time is ordered lexicographically, which
means that (t1,n1) < (t2,ng) if either t; < tq, or t; = t3 and ny < na.

Disciplined Heterogeneous Modeling 281

When an actor fires, it can ask for the current time. If it does this in the
postfire phase of execution, then it is assured that time is nondecreasing. If
it does it in the fire phase, there is no such assurance because some directors
speculatively advance time while converging to a fixed point [15].

An actor can also request that it be fired at some future time. The director is
responsible for ensuring that that the requested future firing occurs. There may
be an arbitrary number of intervening firings before the one at that future time.

The model hierarchy is central to the management of time. The top-level
director advances time. If the top-level director does not implement a timed
model of computation, then by default only the index n is incremented. The
current physical time remains at the default start time, with value zero. Timed
models of computation may be interleaved in the hierarchy with untimed models
of computation (see below). There are certain combinations that do not make
sense, however. For example, if the top-level director never advances time, and
an actor requests a firing at a future time, then the request cannot be honored.
Such combinations result in an exception at run time.

Time can also advance non-uniformly in a model. In particular, modal models
support a notion of local time where advancement of time can be temporarily
suspended [16]. Within the submodel there is a monotonically non-decreasing
gap between local time and environment time. This mechanism is used to model
temporary suspension of a submodel.

5 Models of Computation

In Ptolemy II an implementation of a model of computation is called a domain
A domain defines the communication semantics and the execution of actors
within the domain. We present here some domains that we have realized in
Ptolemy II. This is far from a complete list. The intent is to show the diversity
of the models of computation under study.

Process network. In the process network (PN) domain, actors represent pro-
cesses that communicate by (conceptually infinite capacity) FIFO queues [17].
Receivers in this model implement these FIFO queues. Writing to the queues
always succeeds, while reading from an empty queue blocks the reader process.
The simple blocking-read, nonblocking-write rule ensures the determinacy of the
model [I8]. This domain is untimed. We have extended the model with specific
support for certain forms of nondeterminism. Each actor executes in its own
Java thread, so on multi-core machines they can execute in parallel.

Dataflow. Ptolemy II includes several dataflow domains, all restricted special
cases of PN [19]. The synchronous dataflow (SDF) domain [20] is a particularly
restricted special case with strong, decidable, formal properties. When an actor
is executed in this model, it consumes a fixed number of tokens from each input

2 The term “domain” comes from a fanciful notion in astrophysics, that there are
regions of the universe with different sets of laws of physics. A model of computation
represents the “laws of physics” of the submodel governed by it.

282 E.A. Lee

port, and produces a fixed number of tokens to each output port. A valuable
property of SDF models is that deadlock and boundedness can be statically an-
alyzed, and schedules (including parallel schedules) can be statically computed.
Receivers in this domain represent FIFO queues with fixed finite capacity, and
the execution order of components is statically scheduled. SDF can be timed or
untimed. The dynamic dataflow (DDF) domain is more flexible, but computes
schedules on the fly.

Discrete event. In the discrete event (DE) domain, actors communicate through
events placed on a time line. Each event has a value and a time stamp. Actors
process events in chronological order. The output events produced by an actor
are required to be no earlier in time than the input events that were consumed.
In other words, actors in DE are causal.

The execution of this model uses a global event queue. When an actor gener-
ates an output event, the event is placed in the queue, and sorted according to
its time stamp. Receivers in this domain are proxies for the global event queue.
During each iteration of a DE model, the events with the smallest time stamp
are removed from the global event queue, and their destination actor is fired.
The DE domain supports simultaneous events. At each time where at least one
actor fires, the director computes a fixed point [I5]. The semantics of DE is given
in [21].

Finite-state machines. The finite-state machine (FSM) domain is the only
one of the domains discussed here that is not actor oriented [16]. The entities
in this domain represent states, and the relations represent transitions between
states. Attributes are used to represent guards, which determine when a tran-
sition is taken from one state to another. Each state has one port for incoming
transitions and one for outgoing transitions. Thus, although FSM models can
be represented with the same abstract syntax as actor models, the ports are not
used for communication but rather for sequential control.

The FSM domain interoperates with all other domains hierarchically, provid-
ing a powerful construct called a modal model [16]. In a modal model, each state
of an FSM represents a mode of execution. The state can have one or more
refinements, which are submodels with a director that are active when the FSM
is in that state. When a submodel is not active, its local time does not advance.

Continuous time. The Continuous domain [22/12] models ordinary differential
equations (ODEs), extended to allow the handling of discrete events. Special
actors that represent integrators are connected in feedback loops in order to
represent the ODEs. Each connection in this domain represents a continuous-
time function, and the components denote the relations between these functions.

Each receiver in the Continuous domain is a buffer with size one. It contains
the value of the continuous function of the corresponding connection at a specific
time instant. The execution of a Continuous model involves the computation of
a numerical solution to the ODEs. In an iteration of a Continuous model, time
is advanced by a certain amount determined by the solver. At each instant,
the director computes a fixed point for all signal values using the principles

Disciplined Heterogeneous Modeling 283

of synchronous/reactive models (see below) [15]. To advance time, the director
chooses a time step with the help of a solver and speculatively executes actors
through this time step. If the time step is sufficiently small (key events such as
level crossings, mode changes, or requested firing times are not skipped over),
then the director commits the time increment and proceeds to the postfire phase.

The Continuous director conforms to the strict actor semantics, and hence
interoperates with all other timed Ptolemy II domains. Combining it with FSMs
yields a particular form of modal model known as a hubrid system [12/16]. Com-
binations with discrete-event and synchronous/reactive are also particularly use-
ful [15].

Redezvous. In the Rendezvous domain, actors represent processes that com-
municate by atomic instantaneous rendezvous. Receivers in this domain imple-
ment the rendezvous points. An attempt to put a token into a receiver will not
complete until a corresponding attempt is made to get a token from the same
receiver, and vice versa. As a consequence, the process that first reaches a ren-
dezvous point will stall until the other process also reaches the same rendezvous
point [23]. Like PN, this domain supports explicit nondeterminism.

6 Related Work

The actor-oriented models I consider here are syntactically related to composite
structure diagrams of UML 2 [24I25], or more directly its derivative SysML [26].
The internal block diagram notation of SysML, which is based on the UML 2
composite structure diagrams, particularly with the use of flow ports, is closely
related to actor models. In SysML, the actors are called “blocks,” presumably
because the term “actor” was already in use in UML for another purpose. SysML,
however, defines the syntax of these diagrams, not their semantics. Although the
intention is that “flow ports are intended to be used for asynchronous, broad-
cast, or send-and-forget interactions” [26], there is nothing like an MoC given
in SysML. Therefore, the same SysML diagrams may in fact represent many
different designs. Standardizing the notation is not sufficient to achieve effective
communication among designers. MARTE (modeling and analysis of real-time
and embedded systems) goes a bit further [27], but specifically avoids “con-
straining” (or even defining) the execution semantics of models. This flexibility
may account for some of the success of these notations, but it is arguable that
constraints that lead to well-defined and interoperable models have value as well.

Our notion of actor-oriented modeling is related to the term actor as intro-
duced in the 1970’s by Hewitt to describe the concept of autonomous reasoning
agents [28]. The term evolved through the work of Agha and others to describe
a formalized model of concurrency [29]. Agha’s actors each have an indepen-
dent thread of control and communicate via asynchronous message passing. The
Ptolemy version embraces a larger family of models of concurrency that are
often more constrained than general message passing. Our actors are still con-
ceptually concurrent, but unlike Agha’s actors, they need not have their own

284 E.A. Lee

thread of control. Moreover, although communication is still through some form
of message passing, it need not be strictly asynchronous.

Some authors use the term multi-paradigm modeling for the mixing of models
of computation [30]. In this paper, we focus on techniques that combine actors
with multi-paradigm modeling. An early systematic approach to such mixed
models was realized in Ptolemy Classic [4]. Ptolemy II is a successor to Ptolemy
Classic [5]. Influenced by the Ptolemy approach, SystemC is capable of realizing
multiple MoCs [3T32]. So are ModHel’X [33] and ForSyDe [34I35].

Another approach supports mixing concurrency and communication mecha-
nisms without the structural constraints of hierarchy [36l37]. A number of other
researchers have tackled the problem of heterogeneity in creative ways [38/39].

For each MoC, a Ptolemy model contains a director, which annotates the
model to assert the MoC being used, and provides either a code generator or
an interpreter for the MoC (or both). An interesting alternative is given by
“42” [40], which integrates with the model a specification of a customized MoC.

Mathematical foundations of heterogeneous actor models are given by the
tagged-signal model [11]. The model offers a declarative semantics that facilitates
comparing variants and defining heterogeneous composition.

Several of the above mentioned tools and techniques are extensible in that
there is no fixed finite set of MoCs. Several widely used tools, in contrast, pro-
vide fixed combinations of a few MoCs. Commercial tools include Simulink/S-
tateFlow (from The MathWorks), which combines continuous and discrete-time
actor models with finite-state machines, and LabVIEW (from National Instru-
ments), which combines dataflow actor models with finite-state machines and
with a time-driven MoC. Statemate [4I] and SCADE [42] combine finite-state
machines with a synchronous/reactive formalism [43]. Giotto [44] and TDL [45]
combine FSMs with a time-driven MoC. Several hybrid systems modeling and
simulation tools combine continuous-time dynamical systems with FSMs [46].

The Y-chart approach approach supports heterogeneous modeling and is pop-
ular for hardware-software codesign [47]. This approach separates modeling of
the hardware architecture that will realize a system from modeling of applica-
tion behavior (a form of multi-view modeling), and provides mechanisms for
bringing these disparate models together. These mechanisms support explo-
rations of the design space that can trade off hardware cost and complexity
with software design. Metropolis is a particularly elegant tool realizing this ap-
proach [36]. It introduces a notion called a “quantity manager” that mediates
interactions between functionality and the resources required to implement the
functionality.

Modelica [48] also has actor-like semantics in that components are concurrent
and communicate via ports, but the ports are neither inputs nor outputs. Instead,
the connections between ports declare equation constraints on variables. This
approach has significant advantages, particularly for specifying physical models
based on differential-algebraic equations (DAEs). However, the approach also
appears to be harder to combine heterogeneously with other MoCs.

Disciplined Heterogeneous Modeling 285

7 Conclusion

This paper reviews actor-oriented modeling of complex systems, arguing that it
provides a disciplined approach to heterogeneity. The central notion in hierar-
chical model decomposition is that of a domain, which implements a particular
model of computation. Technically, a domain serves to separate the flow of con-
trol and data between components from the actual functionality of individual
components. Besides facilitating hierarchical models, this factoring potentially
also dramatically increases the reusability of components and models.

Acknowledgements

Hundreds of people have contributed to Ptolemy II and its predecessor, Ptolemy
Classic. For the particular topics in this paper, I give credit to Christopher
Brooks, Joe Buck, Thomas Huining Feng, Soonhoi Ha, Jie Liu, Xiaojun Liu,
Dave Messerschmitt, Stephen Neuendorffer, Tom Parks, John Reekie, Yuhong
Xiong, and Haiyang Zheng.

References

1. Encyclopedia Britannica: Ockham’s razor. Encyclopedia Britannica (retrieved June
24, 2010)

2. Smith, N.K.: Immanuel Kant’s Critique of Pure Reason. Macmillan and Co., Bas-
ingstoke (1929)

3. Shapiro, F.R.: The Yale Book of Quotations. Yale University Press, New Haven
(2006)

4. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for
simulating and prototyping heterogeneous systems. Int. Journal of Computer Sim-
ulation, special issue on “Simulation Software Development” 4, 155-182 (1994)

5. Eker, J., Janneck, JJW., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(2), 127-144 (2003)

6. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers 12(3),
231-260 (2003)

7. Brooks, C., Cheng, C., Feng, T.H., Lee, E.A., von Hanxleden, R.: Model engineer-
ing using multimodeling. In: International Workshop on Model Co-Evolution and
Consistency Management (MCCM), Toulouse, France (2008)

8. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8, 231-274 (1987)

9. Brooks, C., Lee, E.A., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous con-
current modeling and design in Java. Technical Report Technical Memorandum
UCB/EECS-2008-28, University of California (April 1, 2008)

10. Lee, E.A., Neuendorffer, S.: MoML - a modeling markup language in XML. Tech-
nical Report UCB/ERL M00/12, UC Berkeley (March 14, 2000)

11. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Circuits and Sys-
tems 17(12), 1217-1229 (1998)

286

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

E.A. Lee

Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 25-53. Springer, Heidelberg
(2005)

Goderis, A., Brooks, C., Altintas, 1., Lee, E.A., Goble, C.: Heterogeneous com-
position of models of computation. Future Generation Computer Systems 25(5),
552-560 (2009)

Liu, X., Matsikoudis, E., Lee, E.A.: Modeling timed concurrent systems. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 1-15. Springer,
Heidelberg (2006)

Lee, E.A., Zheng, H.: Leveraging synchronous language principles for heterogeneous
modeling and design of embedded systems. In: EMSOFT, Salzburg, Austria. ACM,
New York (2007)

Lee, E.A.: Finite state machines and modal models in Ptolemy II. Technical Re-
port UCB/EECS-2009-151, EECS Department, University of California, Berkeley
(November 1, 2009)

Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5),
773-801 (1995)

Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In:
Gilchrist, B. (ed.) Information Processing, pp. 993-998. North-Holland Publishing
Co., Amsterdam (1977)

Lee, E.A., Matsikoudis, E.: The semantics of dataflow with firing. In: Huet, G.,
Plotkin, G., Lévy, J.J., Bertot, Y. (eds.) From Semantics to Computer Science:
Essays in memory of Gilles Kahn. Cambridge University Press, Cambridge (2009)
Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the
IEEE 75(9), 1235-1245 (1987)

Lee, E.A.: Modeling concurrent real-time processes using discrete events. Annals
of Software Engineering 7, 25-45 (1999)

Liu, J.: Continuous time and mixed-signal simulation in Ptolemy II. Memo M98/74,
UCB/ERL, EECS UC Berkeley, CA 94720 (July 1998)

Hoare, C.A.R.: A theory of CSP. Communications of the ACM 21(8) (August 1978)
Bock, C.: SysML and UML 2 support for activity modeling. Systems Engineer-
ing 9(2), 160-185 (2006)

Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1998)

Object Management Group (OMG): System modeling language specification v1.1.
Technical report, OMG (2008)

(OMG), O.M.G.: A UML profile for MARTE, beta 1. OMG Adopted Specification
ptc/07-08-04, OMG (August 2007)

Hewitt, C.: Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence 8(3), 323-363 (1977)

Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7(1), 1-72 (1997)

Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm modeling:
An introduction. Simulation: Transactions of the Society for Modeling and Simu-
lation International Journal of High Performance Computing Applications 80(9),
433-450 (2004)

Patel, H.D., Shukla, S.K.: SystemC Kernel Extensions for Heterogeneous System
Modelling. Kluwer, Dordrecht (2004)

Herrera, F., Villar, E.: A framework for embedded system specification under differ-
ent models of computation in SystemC. In: Design Automation Conference (DAC),
San Francisco. ACM, New York (2006)

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Disciplined Heterogeneous Modeling 287

Hardebolle, C., Boulanger, F.: ModHel’X: A component-oriented approach to
multi- formalism modeling (October 2, 2007)

Jantsch, A.: Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Morgan Kaufmann, San Francisco (2003)

Sander, 1., Jantsch, A.: System modeling and transformational design refinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Circuits and Sys-
tems 23(1), 17-32 (2004)

Goessler, G., Sangiovanni-Vincentelli, A.: Compositional modeling in Metropolis.
In: Second International Workshop on Embedded Software (EMSOFT), Grenoble,
France. Springer, Heidelberg (2002)

Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: International Conference on Software Engineering and Formal Methods
(SEFM), Pune, pp. 3—-12 (2006)

Burch, J.R., Passerone, R., Sangiovanni-Vincentelli, A.L.: Overcoming heteropho-
bia: Modeling concurrency in heterogeneous systems. In: International Conference
on Application of Concurrency to System Design, p. 13 (2001)

Feredj, M., Boulanger, F., Mbobi, A.M.: A model of domain-polymorph component
for heterogeneous system design. The Journal of Systems and Software 82, 112-120
(2009)

Maraninchi, F., Bhouhadiba, T.: 42: Programmable models of computation for
a component-based approach to heterogeneous embedded systems. In: 6th ACM
International Conference on Generative Programming and Component Engineering
(GPCE), Salzburg, Austria, pp. 1-3 (2007)

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4) (1990)

Berry, G.: The effectiveness of synchronous languages for the development of safety-
critical systems. White paper, Esterel Technologies (2003)

Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE 79(9), 12701282 (1991)

Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, p. 166. Springer, Heidelberg (2001)

Pree, W., Templ, J.: Modeling with the timing definition language (TDL). In: Broy,
M., Kriiger, I.H., Meisinger, M. (eds.) ASWSD 2006. LNCS, vol. 4922, pp. 133-144.
Springer, Heidelberg (2008)

Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
tools for hybrid systems design. Foundations and Trends in Electronic Design Au-
tomation 1(1/2) (2006)

Kienhuis, B., Deprettere, E., van der Wolf, P., Vissers, K.: A methodology to
design programmable embedded systems. In: Deprettere, F., Teich, J., Vassiliadis,
S. (eds.) SAMOS 2001. LNCS, vol. 2268, p. 18. Springer, Heidelberg (2002)
Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley, Chichester (2003)

	Disciplined Heterogeneous Modeling
	Introduction
	Heterogeneity
	A Common Abstract Syntax
	The Actor Abstract Semantics
	Execution Control
	Communication
	Models of Time

	Models of Computation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

