Synthesis of Provably-correct Software
using Discrete Control Theory

Yin Wang, Terence Kelly
(HP Labs)

Stephane Lafortune, Scott Mahlke
(University of Michigan)

Software @ Scale, Berkeley
(08/18/2010)

Tnm

1edaim

* University of Michigan

— Students: Hongwei Liao, Hyoun Kyu Cho, Jason
Stanley,

— Faculty: Stephane Lafortune, Scott Mahlke

 HP Labs
— Yin Wang, Terence Kelly

* Georgia Tech (recently)
— Student: Ahmed Nazeem
— Faculty: Spyros Reveliotis

Software Failures Are Costly

e Software bugs cost the U.S. economy an
estimated $59.5 billion annually

[National Institute of Standards and Technology, 2002]

Post-release bugs are the worst

— 100X increase in cost of removing defects
[Barry Boehm, 1981]

— on average, 11-25+ critical bugs are found within 12
months of the release, which cost $5.2—22 million

per company annually
[IDC white paper, 2008]

* Multicore era brings new challenges

The Multicore C

3'
3

The Free Lunch Is Over
A Fundamental Turn Toward Concurrency in Software
By Herb Sutter

The biggest sea change in software development since the OO revolution is Patterson: M UItlcore 1S a Hall Mary pass

Bl Like David Patterson writes in this month’s IEEE Spectr.
multicore; a move that he characterizes as a Hail M

C O M M U N I C T yet know will be caught

CACM: ACM ORG OF THE
P Y C April 19, 2008

Multicore Parallel Programming: Can We
Please do it Right This Time?

— IEEE Electronic Design Processes Workshop 2008

A View of
Parallel
Computmg

AConversatlon /I " il

Steve Leibson

Tim Mattson, a principal engineer at Intel's Applications Research Laboratory, describe

With An 80-Core Chip On The Way, Software Needs To Start Changing

The big question is how -- and how soon -- the software industry will step up and produce applic
that can take advantage of all those cores.

By Sharon Gaudin
InformationWeek 4

~f

0l N OT nesed

("~
wdlll

Ilf'\

din cXpio

New libraries, languages, features

— Intel TBB, Erlang, Cilk++, atomic sections,
Trans. Memory, OpenMP

 Tools

— Static analysis, testing tools
* Coverity™, Locksmith
» Kiee, CHESS, CheckFence

— Runtime analysis
* Eraser, Intel Thread Checker™

— Post-mortem analysis
* Triage, CrashRpt

IPf\L'\
1CI1

A Nl Arvas 2% ol s
Ll

A INTVV ALTFIT==CUIL !

O

Goal: Controlling software execution to avoid
failure

Approach: Offline control synthesis + code
Instrumentation

Foundation: Discrete Control Theory
Paradigm: Control Engineering

Application scenarios:
— Rapid prototype development
— Post-release bugs

Tvar Lo 1 A N\
1VWU LAdII IIJ

* Workflow control [curosys 07] -
— High-level scripting 1)
language arli e
— Safe execution of flawed e ® N B
workflows =
— Ongoing effortat 7
HP Labs 5

Gadara: Deadlock avoidance in multi-threade
software [0spi 08, POPL 09, IEEE Computer 09]

—

O

=
5

D

* Control Engineering
e Gadara Walkthrough

e Discussion

2
T

o

behavioral
spec / target

9

)

r-'l-
I'II'I

0‘2

controller

complex
system

(“plant”)

slojenjoe

r_-'-l-

ng 1

“closed-loop”
system provably
satisfies spec:
correct by
construction

CAantraAal Chcin
Controi engine

)
0Q

100+ years of remarkable success
Cornerstone for industrial civilization

Pervasive in everyday life
— power grid
— automobile, airplane, spaceship

Applications in computer systems for quantitative

measurements, e.g., performance
[Hellerstein, Tilbury, et al. 2004]

Can this paradigm work for the synthesis of
failure-free software?

rata CAantraAal ThAaAn
I TLC UUIILUI 1 11ICUV

v\ 7
l

scre 0 v

N
L

* Analogue of conventional control

— discrete vs. continuous state spaces
(not discrete time)

— event-driven vs. time-driven dynamics
* Modeling formalisms

— finite automata [workflow control]

— Petri nets [deadlock avoidance]
e Control synthesis

— 25 years of research

— well understood & automated for many models &
specs

O
C
r

e Gadara Walkthrough

e Discussion

=
M

 Model building (Petri net)
e Control logic synthesis

* Source instrumentation

void * philosopher(void *arg) {

if (RAND_MAX/2 > random()) {
/* greb A first */
pthread mutex Inck(@forkA).
pthread_mutex_lock(&forkB);
} elae §
/* greb B first ¥/
pihread mutex lock(&forkB);
| pthread_mutex_lock(&forkA),
cat();
pthread mutex unlock(forkA).
pthread_mutex_unlock(&forkB);

Gadara: Approach

=)

void * philosopher(void *arg) {

if (RAND_MAX/2 > sandom(}) {
7 grab A first */
gadara_lock{&forkA. &ciriplace);
pthread mutex_look{&forkBY;

} else {
/% grab B first */
gadara, lock(AforkB, &ciriplace},
pthread mutex_Jook({&forkA);

13

Architecture

offline online
{C program - nglle 5| Instrumented executable
source code, N observe
lcompile S —
< control k3]
{ContrOI } g’ observe S
flow graph 3 —
l}ranslation control = = control E
V symihes 0
{Petri net / Synthesis {f(;)gitcml } S | control

Dining Philosophers

void * philosopher(void *arg) {

if (RAND_MAX/2 > random()) {
/* grab A first */
pthread _mutex_lock(&forkA);
pthread_mutex_lock(&forkB);
}else {
/* grab B first */
pthread_mutex_lock(&forkB);
pthread _mutex_lock(&forkA);
}
eat();
pthread_mutex_unlock(&forkB);
pthread_mutex_unlock(&forkA);

int main(int argc, char *argv(]) {

pthread_create(&p1, NULL,
philosopher, NULL);

pthread_create(&p2, NULL,
philosopher, NULL);

Dining Philosophers

void * philosopher(void *arg) {

if (RAND_MAX/2 > random()) {
/* grab A first */
pthread _mutex_lock(&forkA);
pthread_mutex_lock(&forkB);
}else {
/* grab B first */
pthread_mutex_lock(&forkB);
pthread _mutex_lock(&forkA);
}
eat();
pthread_mutex_unlock(&forkB);
pthread_mutex_unlock(&forkA);

start

if

lock(A)
lock(B)

else

lock(B)
lock(A)

eat()

unlock(B)
unlock(A)

CFG

Architecture

Discrete Control Theor

control logic

offline online
{C program | compile | | Instrumented binary
source code N bserve
(-
lcompile = —
§ control
control é observe
flow graph > — ™
""""""""""""" o ------ control
ranslation control = | %
loaic ' — observe
logic ! s,
_ synthesis I o
{Petrl net } {f(;)gitcrm }: o) control
v

17

Petri Net Basics

* bipartite graph: two kinds of nodes
» tokens represent states and dynamics

lock (@) (e) ready to acquire

acquire lock

the PN that models lock
acquisition & release

hold lock

alease lock

done

Murata, Proc. IEEE 1989

Kavi et al., [JoPP 2002 .

Dining Philosophers

start

if

lock(A)
lock(B)

else

lock(B)
lock(A)

eat()

unlock(B)
unlock(A) | CFG

unlock(B)
No transition
enabled.
Deadlock!

19

unlock(A)

Architecture

Discrete Control Theor

control logic

offline online
{C program | compile | | Instrumented binary
source code N bserve
-
1compile = —
< control
control é observe
flow graph > — ™
Sl il Staiyivivirink alntiainl 7o it control
| ranslation control = . =
: loqic ! L observe
I J . : ‘@))
! _ synthesis ! e M
:{Petrl net } {f(;)gitcrm } ! o | control
i Y,

Siphon Based Control

* Siphon is a set of places
that can lose tokens ¥
permanently

— structural property
— related to deadlock

* Synthesize control place
to prevent empty siphon
— linear algebra
— maximally permissive

* Control logic is unlock(B)
— fine-grained

— highly concurrent unlock(A)
— easy to implement

Architecture

Discrete Control Theor

control logic

offline online
{C program | compile | | Instrumented binary
source code N bserve
-
lcompile = —
< control
control é observe
flow graph > — ™
Sl il Staiyivivirink alntiainl 7o it control
| ranslation control = . =
: loqic ! L observe
I J . : ‘@))
! _ synthesis ! e M
:{Petrl net } {f(;)gitcrm } ! o | control
i Y,

22

Dining Philosophers: instrumentation

______ TF
”ﬁ&se/x 4‘ void * philosopher(void *arg) {
e ':

if (RAND_MAX/2 > random()) {

/* grab A first */

phlyrelant keifor ke k & tarkalce);
lock(A) pthread_mutex_lock(&forkB);
else {

/* grab B first */

polyrekint: keodetor ki k& eorkmipce);
pthread_mutex_lock(&forkA);

}
eat();

replenish(&ctrlplace);
pthread _mutex_unlock(&forkB);

unlock(B)
pthread_mutex_unlock(&forkA);

unlock(A) most lock/unlock }

function calls unaffected,

incur no overhead .

ChAalla
|\ 11T

'F 'Y a f\'f\ I
11d 1V1 dl

NEES arge
* Modeling

— language features

* Handles: function pointer, recursion

* Ignores: setjmp, longjmp, exception/signal
— data flow ambiguity: local annotations
— dynamically selected locks: type analysis

* Control logic synthesis
— uncontrollability: report at compile time
— scalability: decomposition & pruning
— completeness: other synchronization primitives

24 18 August 2010

Performance Evaluation

 Pub-Sub benchmark [OSDI 08]

— injected deadlocks in common-case logic

— outperforms Intel STM compiler

— negligible response time overhead under moderate load
— 18% throughput reduction with overload workload

* OpenlLDAP v2.2.20 [OSDI 08]

— known & unknown deadlocks in corner-case logic
— negligible overhead with default configuration
— at most 11% overhead with bizarre pessimistic configuration

 BIND v9.3.0a0 [Wang, Ph.D Thesis 2009]

— real workload (trace replay of HP named log)
— 15% overhead with overload query workload

r$ 2% ol s
ICL Ll

A A~ l. R i B
C WUl | CIlIL

LIOULIC Ul. DCI I

Provably correct controlled behavior
Maximal permissiveness

— Maximal concurrency
Minimal instrumentation [WODES 2010]
Offline synthesis + online control

— Optimal control logic synthesized offline
— Light-weight control at runtime

S

rt 2% ol s
ICL Ll

I\PI\ Io
C CUVUI1I 1.

n:(‘f‘ 7\ '\
IoLIC U

Control specification
— Linear specification: ITM > b
— Forbidden state

Uncontrollable transitions
— Branches, loops

Unobservable transitions
— Library interposition, System calls

Distributed systems

[

Pf\ f\lll @Y
CUIIUI

SIONS

e Discrete Control Theory provides a principled
foundation for the synthesis of provably-
correct software

e Gadara eliminates deadlocks from real
programs with acceptable overhead
e Useful in several situations

— rapid prototype development
— post-release bug fixing

W
=

b
-
o

e Discussion

@Y

I 'aYol oF e ' @ I 77\ "M
LCOOVIlIo LCd

"ol ‘o
|

AnA
€U
* Modeling
— The difficulty can never be overestimated

— |dentify the right level of abstraction

* Control synthesis

— Leverage existing literature and inspire the
community

— Fully exploit the features of the class of models
* Implementation

— Experimental science
— Practicality is the top priority

Other Applications Under Investigation

Lock synthesis for atomic sections
— Yu Liu (SUNY), Scott Smith (JHU)

Distributed diagnosis in sensor networks
— Matt Welsh (Harvard)

Enforcing correct interleaving in concurrent
software

— Satish Narayanasamy (U. of Michigan)

Controlled simulation of embedded systems
— Stefan Resmerita (Toyota)

n:l‘f\l Nealal Wa¥Y ' a
LISCUSSION
Will new parallel languages or language
features make Gadara and other tools

unnecessary?

To what extent can tools, e.g., testing, static
analysis, runtime analysis, and control
synthesis, help eliminate software bugs?

|s software synthesis practical, how much can
we synthesize automatically?

Can we automate model building according to
the class of control specifications?

Thank You

