
The Earlier the Better: A Theory of Timed Actor Interfaces∗

Marc Geilen
Eindhoven University of

Technology
m.c.w.geilen@tue.nl

Stavros Tripakis
University of California,

Berkeley
stavros@eecs.berkeley.edu

Maarten Wiggers
University of Twente

m.h.wiggers@utwente.nl

ABSTRACT
Programming embedded and cyber-physical systems requires
attention not only to functional behavior and correctness,
but also to non-functional aspects and specifically timing
and performance. A structured, compositional, model-based
approach based on stepwise refinement and abstraction tech-
niques can support the development process, increase its
quality and reduce development time through automation
of synthesis, analysis or verification. Toward this, we intro-
duce a theory of timed actors whose notion of refinement
is based on the principle of worst-case design that perme-
ates the world of performance-critical systems. This is in
contrast with the classical behavioral and functional refine-
ments based on restricting sets of behaviors. Our refinement
allows time-deterministic abstractions to be made of time-
non-deterministic systems, improving efficiency and reduc-
ing complexity of formal analysis. We show how our theory
relates to, and can be used to reconcile existing time and
performance models and their established theories.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and Interfaces; D.2.13 [Software Engi-
neering]: Reusable Software

General Terms
Design, Languages, Theory, Verification
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1. INTRODUCTION
Advances in sensor, actuator and computer hardware cur-

rently enable new classes of applications, often described un-
der the terms embedded or cyber-physical systems (ECPS).
Examples of such systems can be found in the domains of
robotics, health care, transportation, and energy. ECPS
are different from traditional computing systems, because
in ECPS the computer is in tight interaction with a phys-
ical environment, which it monitors and possibly controls.
The requirements of the closed-loop system (computer +
environment) are not purely functional. Instead, they often
involve timing or performance properties, such as through-
put or latency.

Abstraction and compositionality have been two key prin-
ciples in developing large and complex systems. Although a
large number of methods employing these principles exist to
deal with functional properties (e.g., see [5, 9, 24, 25]), less
attention has been paid to timing and performance. This
paper contributes toward filling this gap.

Our approach can be termed model based. High-level mod-
els that are suitable for analysis are used as specifications
or for design-space exploration. Refinement and abstraction
steps are used to move between high-level models, lower-
level models and implementations. The process guarantees
that the results of the analysis (e.g., bounds on through-
put or latency) are preserved during refinement. Our paper
defines a general model and a suitable notion of abstrac-
tion and refinement that support this process. The model is
compositional in the sense that refinement between models
consisting of many components can be achieved by refining
individual components separately.

Our treatment follows interface theories [11], which can
be seen as type theories focusing on dynamic and concur-
rent behavior. Our interfaces, called actor interfaces, are
inspired by actor-oriented models of computation such as
process networks [20] and data flow [14].

Actors operate by consuming and producing tokens on
their input and output ports, respectively. Since our pri-
mary goal is timing and performance analysis, we completely
abstract away from token values, and keep only the times in
which these tokens are produced. Actors are then defined
as relations between input and output sequences of discrete
events occurring in a given time axis. Examples of such
event sequences are shown in Figure 2.

The main novelty of our theory lies in its notion of refine-
ment, which is based on the principle the earlier the better.
In particular, actor A refines actor B if, for the same input,
A produces no fewer events and no later, in the worst case,
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than those produced by B. For example, an actor A that
non-deterministically delays its input by some time t ∈ [1, 2]
refines an actor B that deterministically delays its input by
a constant time of 3. This is in sharp contrast with most
standard notions of refinement which rely on the principle
that the implementation should have fewer possible behav-
iors and thus be “more deterministic” than the specification.
With the standard notions, actor A does not refine B, al-
though it would refine an actor B′ that non-deterministically
delays its input by some time t ∈ [0, 3].

The earlier-is-better refinement principle is interest-
ing because it allows deterministic abstractions of non-
deterministic systems. System implementations can often be
seen as time-non-deterministic because of high variability in
execution and communication delays, dynamic scheduling,
and other effects that are expensive or impossible to model
precisely. Time-deterministic models, on the other hand,
suffer less from state explosion problems, and are also more
suitable for deriving analytic bounds.

The main contributions of this work are the following:

• We develop an interface theory of timed actors with a re-
finement relation that follows the earlier-is-better princi-
ple and preserves worst-case bounds on performance met-
rics (throughput, latency). (Sections 4–7).

• Our framework unifies existing models (SDF and vari-
ants, automata, service curves, etc.) by treating actors
semantically, as relations on event sequences, rather than
syntactically, as defined by specific models such as au-
tomata or dataflow. (Section 8).

Omitted proofs can be found in the extended version of
this paper [1]. The latter also contains additional material
omitted from this version due to space limitations.

2. MOTIVATING EXAMPLE
To illustrate the use of our framework, we present an ex-

ample of an MP3 play-back application. The application is
based on a fragment of the car radio case study presented
in [31]. Our goal is to show how such an application can
be handled within our framework, using stepwise refinement
from specification to implementation, such that performance
guarantees are preserved during the process.

The layers of the refinement process are shown in Figure 1.
The top layer captures the specification. It consists of a sin-
gle actor SPEC, with a single output port, and a single event
sequence τ at this port, defined by τ(n) = 50 + n/44.1 ms,
for n ∈ N. That is, the n-th event in the sequence occurs
at time τ(n). SPEC specifies the required behavior of an
MP3 player where audio samples are produced at a rate of
44.1 kHz, starting with an initial 50 ms delay to allow for
processing.

For simplicity, we do not model input tokens, assuming
they are always available for consumption. Also note that
the system typically includes a component such as a digital-
to-analog converter (DAC) which consumes the audio sam-
ples produced at port p, buffers them and reproduces them
periodically. We omit DAC since it does not take part in
the refinement process.

The next layer is an application model consisting of ac-
tors DEC (decoder), SRC (sample-rate converter), and actor
D1 explained below. DEC and SRC are timed synchronous
data flow (SDF) [22] actors. SDF actors communicate by
conceptually unbounded FIFO queues. They “fire” as soon
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Figure 1: Successive refinements of an MP3 play-
back application.

as a fixed number of tokens become available at their input
queues and, after a fixed duration, produce a fixed number of
tokens at their output queues. For instance, DEC consumes
and produces 1152 tokens per firing on the queues from and
to the SRC actor. Each firing of DEC takes 7.51 ms. For
a formal definition of SDF actors see Section 8.1. D1 is an
actor modeling 2016 initial tokens on the queue from SRC
to DEC. Formally, it is an instance of parameterized actor
Ik defined in Example 8. All dataflow actors in Figure 1
(DEC, SRC, DEC2, DEC3 and NC) implicitly have a self-
edge with a single initial token so that firings of the same
actor do not overlap (i.e., each firing completes before the
next one starts).

The global application model is a single composite actor
APP obtained by composing the three actors above, first in
series and then in feedback, and then hiding all ports except
the output port p of SRC. Section 5 precisely defines the
compositions and hiding. Because APP is an SDF model
and hence deterministic, APP produces a single event se-
quence τb at p. We have captured APP in the dataflow anal-
ysis tool SDF3 (http://www.es.ele.tue.nl/sdf3/) and have
used the tool to check that τb refines τ , i.e., that each event
in τb occurs no later than the corresponding event in τ . As
a result, APP refines SPEC.

The motivation for the third layer is buffer considerations.
In this layer, the SDF actor DEC is replaced by the cyclo-
static data flow (CSDF) [6] actor DEC2. This substitu-
tion results in smaller buffers on the queue from SRC to
DEC2 [31]. CSDF actors generalize SDF actors by allow-
ing the token consumption/production rates to vary period-
ically, as an SDF actor that cycles between a finite set of
firing phases. In our example, DEC2 has 39 phases, cap-
tured by the notation r = [0, 0, [32]18, 0, [32]18]. In the first
two phases DEC decodes frame headers without consum-
ing nor producing any tokens. The subsequent 18 phases
each consume and produce 32 tokens, and are followed by
a header decoding phase with no tokens consumed or pro-
duced. Finally there are 18 more phases that each consume
and produce 32 tokens. This sequence of phases is repeated
for each MP3 frame. The durations of these phases are given
by e2 = [670, 2700, [40]18, 2700, [40]18]µs. That is, phase 1
takes 670 µs, phase 2 takes 2700 µs, and so on.

Using arguments similar to those presented later in Exam-
ple 3, we can show that DEC2 refines DEC. The composite



actor APP2 is produced by first refining DEC to DEC2, and
then reducing the number of initial tokens from D1 to D2,
while maintaining that APP2 refines APP. The latter is en-
sured by using SDF3 to compute τc for a given D2, and
checking that τc refines τb.

The bottom layer is an architecture aware model (AA)
that is close to a distributed implementation on a multi-
processor architecture with network-on-chip (NoC) commu-
nication. In this layer DEC2 is replaced by the compo-
sition of DEC3, D3 and NC. DEC3 is identical to DEC2
except for its firing durations which are reduced to e3 =
[670, 2700, [30]18, 2700, [30]18]µs, because the communication
is modeled separately. NC is an SDF actor that models the
NoC behavior. It can be shown that the composition of
DEC3, NC and D3 refines DEC2. This and our composi-
tionality Propositions 2 and 3 imply that AA refines APP2.

The final implementation (not shown in the figure) can be
compositionally shown to refine the AA model. For instance,
the NC actor conservatively abstracts the NoC implementa-
tion [16]. It is important to mention that although imple-
mentations are time-non-deterministic for multiple reasons,
e.g., software execution times or run-time scheduling, the
models in Figure 1 are time-deterministic.

3. RELATED WORK
Abstraction and compositionality have been extensively

studied from an untimed perspective, focusing on functional
correctness (e.g., see [5, 9, 24, 25]). Timing has also been
considered, implicitly or explicitly, in a number of frame-
works. Our treatment has been inspired in particular by
interface theories such as interface automata [11] which use
game-theoretic interpretations of composition and refine-
ment, that are more appropriate for open systems. Although
interface automata have no explicit notion of time, discrete
time can be implicitly modeled by adding a special “tick”
output. [12] follows [11] but uses timed automata [2] in-
stead of discrete automata. However, a notion of refinement
is not defined in [12]. [10] extends [12] with a notion of re-
finement in the spirit of alternating simulation [3], adapted
for timed systems.

The refinement notions used in all works above differ from
ours in a fundamental way: in our case, earlier is better,
whereas in the above works, if the implementation can pro-
duce an output a at some time t, then the (refined) speci-
fication must also be able to produce a at the same time t.
Thus, an implementation that can produce a only at times
t ≤ 1 does not refine a specification that can produce a only
at times t ≥ 2. Another major difference is that performance
metrics such as throughput and latency are not considered
in any of the above works.

Our work is about non-deterministic models and worst-
case performance bounds and as such differs from proba-
bilistic frameworks such as Markov decision processes, or
stochastic process algebras or games (e.g., see [26, 19, 18,
13]). Worst-case performance bounds can be derived using
techniques from the network calculus (NC) [7] or real-time
calculus (RTC) [27]. Refinement relations have been con-
sidered recently in these frameworks [17, 28]. Semantically,
these relations correspond to trace containment at the out-
puts and as such do not follow the earlier-is-better principle.
An important feature of NC and RTC is that they can model
resources, e.g., available computation power, and therefore
be used in applications such as schedulability analysis. We

do not explicitly distinguish resources in our framework. In
NC and RTC, behaviors are typically captured by arrival
or service curves. Service curves can be seen as a special
class of actors [1]. Service curves have limited expressive-
ness: they cannot generally capture, for instance, languages
produced by automata actors. The same can be said of
real-time scheduling theory (e.g., see [8]). Automata-based
models have been used for scheduling and resource model-
ing, e.g., as in [30], where tasks are described as ω-regular
languages representing sets of admissible schedules. Refine-
ment is not considered in this work, and although it could
be defined as language containment, this would not follow
the earlier-is-better principle.

(max,+) algebra and its relatives (e.g., see [4]) are used
as an underlying system theory for different discrete event
system frameworks, including NC, RTC and SDF. (max,+)
algebra is mostly limited to deterministic, (max,+)-linear
systems. Our framework is more general: it can capture
non-determinism in time, an essential property in order to
be able to relate time-deterministic specification models such
as SDF to implementations that have variable timing.

Our work has also been inspired by the work in [32], where
task graph implementations are conservatively abstracted to
timed dataflow specifications.

4. ACTORS
We consider actor interfaces (in short actors) as relations

between finite or infinite sequences of input tokens and se-
quences of output tokens. We abstract from token content,
and instead focus on arrival or production times represented
as timestamps from some totally ordered, continuous time
domain (T ,≤). T contains a minimal element denoted 0.
We also add to T a maximal element denoted ∞, so that
t < ∞ for all t ∈ T . T ∞ denotes T ∪ {∞}. N denotes the
set of natural numbers and we assume 0 ∈ N. R denotes the
set of real numbers and R≥0 the set of non-negative reals.

Definition 1 (Event sequence). An event sequence
is a total mapping τ : N → T ∞, such that τ is weakly
monotone, that is, for every k,m ∈ N and k ≤ m we have
τ(k) ≤ τ(m).

Thus τ(n) captures the arrival time of the n-th token, with
τ(n) = ∞ interpreted as event n being absent. Then, all
events n′ > n must also be absent. Because of this property,
an event sequence τ can also be viewed as a finite or infinite
sequence of timestamps in T . The length of τ , denoted |τ |, is
the smallest n ∈ N such that τ(n) =∞, and with somewhat
abusive notation |τ | = ∞ if τ(n) < ∞ for all n ∈ N. We
use ε to denote the empty event sequence, ε(n) = ∞ for all
n. Given event sequence τ and timestamp t ∈ T such that
t ≤ τ(0), t · τ denotes the event sequence consisting of t
followed by τ . The set of all event sequences is denoted Tr .

Event sequences are communicated over ports. For a set
P of ports, Tr(P ) denotes P → Tr , the set of total functions
that map each port of P to an event sequence. Elements of
Tr(P ) are called event traces over P . We sometimes use the
notation (p, n, t) ∈ x instead of x(p)(n) = t.

Definition 2 (Earlier-than and prefix orders).
For τ, τ ′ ∈ Tr, τ is said to be earlier than τ ′, denoted τ ≤ τ ′,
iff |τ | = |τ ′| and for all n < |τ |, τ(n) ≤ τ ′(n). ≤ is called
the earlier-than relation. In addition we consider the pre-
fix relation: τ � τ ′ iff |τ | ≤ |τ ′| and for every n < |τ |,



Figure 2: Three event sequences.

τ(n) = τ ′(n). We lift ≤ and � to event traces x, x′ ∈ Tr(P )
in the usual way: x ≤ x′ iff for all p ∈ P , x(p) ≤ x′(p);
x � x′ iff for all p ∈ P , x(p) � x′(p).

Example 1. Figure 2 shows three event sequences τ1, τ2
and τ3 visualized as black dots on a horizontal time line:
τ1 = 3 ·5 ·7 · ε, τ2 = 3 ·5 ·7 ·8 ·9 · ε and τ3 = 0 ·3 ·5 ·7 ·9 · ε. τ1
is a prefix of τ2: τ1 � τ2; and τ3 is earlier than τ2: τ3 ≤ τ2.
But τ1 6≤ τ2.

(Tr ,�) and (Tr(P ),�) are complete partial orders (CPOs).
(Tr ,≤) and (Tr(P ),≤) are pre-CPOs (they have no unique
minimal element). We use

⊔
�
C to denote the least upper

bound of a chain C in a CPO with partial order �.
If x1 is an event trace over ports P1 and x2 is an event

trace over ports P2, and P1 and P2 are disjoint, then x1∪x2
denotes the event trace over P1∪P2 such that (x1∪x2)(p) =
x1(p) if p ∈ P1 and (x1 ∪ x2)(p) = x2(p) if p ∈ P2. x ↑ Q
is identical to x, but with all ports in Q removed from the
domain.

Definition 3 (Actor). An actor is a tuple A = (P,Q,
RA) with a set P of input ports, a set Q of output ports
and an event trace relation RA ⊆ Tr(P ) × Tr(Q). We use
xAy to denote (x, y) ∈ RA when we leave the three-tuple
of A implicit. A is called deterministic if RA is a partial
function. The set of all legal input traces of A is:

inA = {x ∈ Tr(P ) | ∃y ∈ Tr(Q) : xAy}.

Note that an input trace x models the times that input
tokens are produced by the environment of the actor, and
not the times that these tokens are consumed by the actor.
Token consumption times can be modeled by adding special
output ports to the actor as explained in [1].

In order to study composition and refinement later on, we
need to investigate actors with respect to different kinds of
monotone changes to their input and output. We therefore
introduce the following family of definitions.

Definition 4. (Input-closures, monotonicities and
continuities) Let A be an actor with input ports P and
output ports Q. A is called input-complete iff inA = Tr(P ).
Given a partial order � on Tr(P ) and Tr(Q), A is called (in-
verse) �-input-closed iff for every x ∈ inA and x′ ∈ Tr(P ),
x′ � x (x � x′) implies x′ ∈ inA. A is called (inverse) �-
monotone iff for every x, y and x′ such that xAy, x′ ∈ inA
and x� x′ (x′ � x), there exists y′ such that y � y′ (y′ � y)
and x′Ay′. Assuming � yields pre-CPOs, A is called �-
continuous iff for every pair {xk} and {yk} of chains of
event traces w.r.t. (Tr(P ),�) and (Tr(Q),�) respectively,
if xkAyk for all k, then (

⊔
�
{xk})A(

⊔
�
{yk}).

Example 2 (Delay actors). A variable delay actor
∆[d1,d2] with minimum and maximum delay d1, d2 ∈ R≥0,

Figure 3: Actor compositions.

where d1 ≤ d2, is an actor with one input port p, one output
port q, time domain T = R≥0, and such that

x∆[d1,d2]y iff |x(p)| = |y(q)| ∧ ∀n < |x(p)| :
x(p)(n) + d1 ≤ y(q)(n) ≤ x(p)(n) + d2

∧
(
n > 0 =⇒ y(q)(n) ≥ y(q)(n− 1)

)
.

∆[d1,d2] is input-complete, �- and ≤-monotone in both di-
rections, and �- and ≤-continuous, but not deterministic in
general. The constant delay actor ∆d is the deterministic
variable delay actor ∆[d,d].

5. COMPOSITIONS
Actor interfaces can be composed to yield new actor in-

terfaces. The composition operators defined in this paper
are illustrated in Figure 3. Parallel composition composes
two interfaces side-by-side without interaction:

Definition 5 (Parallel composition). Let A and B
be two actors with disjoint input ports PA and PB and dis-
joint output ports QA and QB respectively. Then the parallel
composition A||B is an actor with input ports PA∪PB, out-
put ports QA ∪QB, and relation A||B = {(x1 ∪ x2, y1 ∪ y2) |
x1Ay1 ∧ x2By2}.

Parallel composition is clearly associative and commutative.
It is also easy to see that it preserves all monotonicity, con-
tinuity and closure properties if both actors have them.

Definition 6 (Serial composition). Let A and B be
two actors with disjoint input ports PA and PB and dis-
joint output ports QA and QB respectively. Let θ be a bi-
jective function from QA to PB. Then the serial compo-
sition AθB is an actor with input ports Pθ = PA, output
ports Qθ = QA ∪ QB, and whose relation is defined as fol-
lows. First, we lift the mapping of ports to event traces:
θ(y) = {(θ(p), n, t) | (p, n, t) ∈ y}. The input-output relation
of the composite actor AθB is then defined as:

AθB = {(x1, y1 ∪ y2) ∈ inθ × Tr(Qθ) | x1Ay1 ∧ θ(y1)By2}

where: inθ = {x ∈ inA | ∀y1 : xAy1 =⇒ θ(y1) ∈ inB}.

inθ captures the set of legal inputs of the composite actor
AθB. In the spirit of [5, 11], we adopt a “demonic” interpre-
tation of non-determinism, where an input x is legal in AθB
only if any intermediate output that the first actor A may
produce for x is a legal input (after relabeling) of the second
actor B. In that case, we say that actor B is receptive to
actor A w.r.t. θ. An input-complete actor is receptive to
any other actor. If B is receptive to A or A is determini-
stic, then AθB reduces to standard composition of relations.



Moreover, if both A and B are deterministic (respectively,
input-complete) then so is AθB. Serial composition is asso-
ciative [1].

The requirement that θ is total and onto is not restrictive.
For example, suppose A has two output ports q1, q2 and B
has two input ports p1, p2, but we only want to connect q1 to
p1. To do this, we can extend A with additional input and
output ports pp2 and qp2 , respectively, corresponding to p2.
A acts as the identity function on pp2 and qp2 , that is, for all
x, y such that xAy, y(qp2) = x(pp2). Then we can connect
qp2 to p2. Similarly, we can extend B with additional input
and output ports pq2 and qq2 , and connect q2 to pq2 .

A hiding operator can be used to make internal event se-
quences unobservable.

Definition 7 (Hiding). Let A = (P,Q,RA) be an ac-
tor and let Q′ ⊆ Q. The hiding of Q′ in A is the actor

A\Q′ = (P,Q\Q′, {(x, y ↑ Q′) | xAy}).

Note that inA\Q′ = inA. Hiding preserves all forms of mono-
tonicity and continuity, as well as determinism.

Definition 8 (Feedback). Let A(P,Q,RA) be an ac-
tor and let p ∈ P and q ∈ Q. The feedback composition of
A on (p, q) is the actor

A(p = q) = (P\{p}, Q, {(x ↑ {p}, y) | xAy ∧ x(p) = y(q)}).

Feedback is commutative [1].
It is well-known from the study of systems with feedback

that the behavior of such a system may not be unique, even
if the system is deterministic, or that the behavior may not
be constructively computable from the behavior of the actor,
depending on the nature of the actor. To effectively apply
feedback we will typically require additional constraints on
the actor. In the following proposition we describe a case
in which a solution can be constructively characterized by a
method reminiscent of those used in Kahn Process Networks
(KPN) [20]. Our result can also handle non-deterministic
actors, however. See also the related Proposition 3.

Proposition 1. If actor A is input-complete, �-monotone
and �-continuous, then A(p = q) is input-complete, �-
monotone and �-continuous.

Proof. Let A = (P,Q,RA), with p ∈ P and q ∈ Q.
If x is an event trace and p a port of x, then x[p → τ ]
denotes the event trace obtained from x by setting the se-
quence at p to τ and leaving the sequences at all other ports
unchanged. We show here only input completeness because
it illustrates the existence of a fixed-point of the feedback.
For a detailed proof, see [1]. Let x ∈ Tr(P\{p}), then by
input-completeness, x0 = x[p → ε] ∈ inA. Hence there
is some y0 such that x0Ay0. Now let x1 = x[p → y0(q)].
Clearly x0 � x1. Further by �-continuity, there exists y1
such that x1Ay1 and y0 � y1. Repeating the procedure
with xk+1 = x[p → yk(q)] we create two chains {xk} and
{yk} in the prefix CPO, such that for all k, xkAyk. Let
x′ =

⊔
�{xk} and y′ =

⊔
�{yk}, then by construction of the

chains and by �-continuity, respectively x′(p) = y′(q) and
x′Ay′. Therefore, x′ ↑ {p} = x ∈ inA(p=q). Thus, A(p = q)
is input-complete.

The assumptions used in the above result may appear strong
at first sight. Note, however, that similar assumptions are

Figure 4: SDF actor A refined by CSDF actor A′.

often used in fixpoint theorems, even for deterministic sys-
tems. Although we could have restricted our attention to
actors that have such properties by definition, we chose not
to do so, since one of our goals is to be as general as pos-
sible and to examine the required assumptions on a case-
by-case basis. Note that some actor formalisms (e.g., SDF)
ensure these properties by definition, however, other for-
malisms (e.g., automata) don’t.

6. REFINEMENT
Refinement is a relation between two actors A and B, al-

lowing one to replace actor A by actor B in a given context
and obtain “same or better” results, in the worst case. If
τA and τB are event sequences produced by A and B, re-
spectively, then “τB is same or better than τA” means the
following: τB should have at least as many events as τA and
for every event they have in common, the event should be
produced in τB no later than in τA. We first capture this
relation on event sequences and event traces.

Definition 9. Event sequence τ refines event sequence
τ ′, denoted τ v τ ′, iff for all n ∈ N, τ(n) ≤ τ ′(n). v
is lifted to event traces x, x′ ∈ Tr(P ) in the standard way:
x v x′ iff for all p ∈ P , x(p) v x′(p).

For example, for the event sequences shown in Figure 2,
we have τ3 v τ2, τ2 v τ1, but τ1 6v τ2. The refinement rela-
tions on event sequences and event traces are partial orders,
i.e., reflexive, transitive and antisymmetric. Moreover, the
set of traces (Tr(P ),v) equipped with the refinement order
is a lattice. The supremum and infimum of traces is the
point-wise supremum and infimum respectively. The event
sequence ~0, defined by ~0(n) = 0 for all n ∈ N, is the least
element. The empty sequence ε, is the greatest element.

Note that for all x, x′ ∈ Tr(P ), both x′ � x and x ≤ x′

imply x v x′ and x v x′ iff there exists x′′ ∈ Tr(P ) such
that x′′ � x and x′′ ≤ x′; also, x v x′ implies that for all
p ∈ P , |x′(p)| ≤ |x(p)| and if both x and x′ are infinite, then
x v x′ iff x ≤ x′.

Knowing what refinement of event traces means, we can
now define a refinement relation on actors.

Definition 10 (Refinement). Let A = (P,Q,RA) and
B = (P,Q,RB) be actors. B refines A, denoted B v A, iff
(1) inA ⊆ inB; and
(2) ∀x ∈ inA, ∀y : xBy =⇒ ∃y′ : y v y′ ∧ xAy′.

Condition (1) states that for actor B to refine actor A,
B must accept at least all the inputs that actor A accepts.
Condition (2) states that any behavior of actor B is no worse
than a worst-case behavior of A on the same input. Note
that this is where we deviate from the standard notions of
refinement that implement the “more output deterministic”
principle, which amounts to using the stronger constraint
y = y′ instead of y v y′ in Condition (2).

The requirement that both A and B have the same sets of
input and output ports is not restrictive. Every output port



of A (resp. input port of B) must also be an output port
of B (resp. input port of A): otherwise replacing A by B
in certain contexts may result in open inputs. Any output
port of B (resp. input port of A) not originally in A (resp.
B) can be added to it as a “dummy” port.

Example 3 (CSDF refining SDF). Figure 4 shows an
SDF actor A refined by a CSDF actor A′. At each firing,
which takes 5 time units to complete, A consumes 2 and
produces 3 tokens. A′ cycles between two firing phases: in
the first, which takes 1 time unit, 1 token is consumed and
1 is produced; in the second, which takes 3 time units, 1 to-
ken is consumed and 2 are produced. We observe that for
the same number of input tokens, A′ produces no fewer (and
sometimes strictly more) output tokens than A, because A′

can fire on a single input token, whereas A requires two.
Moreover, because of the earlier activation, as well as the
shorter processing time, A′ produces outputs no later than
A. Therefore, A′ refines A.

It is worth noting that the refinement in the above example
would not hold had we used in Definition 10, y = y′ as in
traditional refinement relations, or even y ≤ y′ instead of
y v y′. This is because, for the input sequence containing
a single token, A′ produces strictly more tokens than A. As
the example of Section 2 shows, it is important to be able to
replace SDF actors by CSDF actors in applications, which
partly motivated our novel definition of refinement.

Actor refinement is a pre-order: it is reflexive and transi-
tive [1]. However, it is not antisymmetric. Indeed, for the
constant and variable delay actors ∆d and ∆[d1,d2] (see Ex-
ample 2), and for d = d2, we have both ∆d v ∆[d1,d] and
∆[d1,d] v ∆d. Yet ∆d 6= ∆[d1,d] when d1 < d.

It is easy to show that refinement is always preserved by
parallel composition and hiding [1]. Refinement is preserved
by serial composition under natural conditions, namely, con-
suming actor B should not refuse better input and should
not produce worse output on better input:

Proposition 2. (1) If A′ v A and B is v-input-closed
and v-monotone, then A′θB v AθB. (2) If B′ v B then
AθB′ v AθB.

Feedback preserves refinement under the following condi-
tions:

Proposition 3. Let A be an inverse v-input-closed, v-
monotone and v-continuous actor, and let A′ be an input-
complete, �-monotone and �-continuous actor such that
A′ v A. Then A′(p = q) v A(p = q).

Example 4. Consider actors A = ({p}, {q}, RA) and A′ =
({p}, {q}, RA′) with input-output relations

RA ={(x, y) | (∀n : y(q)(n) = x(p)(n) + 2)∨
(y(q)(0) = 0 ∧ ∀n : y(q)(n+ 1) = x(p)(n))}, and

RA′ ={(x, y) | y(q)(0) = 0 ∧ ∀n : y(q)(n+ 1) = x(p)(n) + 1}.

Both A and A′ are input-complete, �-monotone in both di-
rections, �-continuous and ≤-monotone in both directions.
A is non-deterministic but A′ is deterministic. A′ refines
A because the unique output sequence of A′ can be matched
with the (later) output sequence of A produced by the first
disjunct. If we connect A in feedback, we get A(p = q) with
a single (output) port q, and producing either the empty se-
quence y(q) = ε or the zero sequence y(q)(n) = 0 for all n.

A′ in feedback produces a single sequence y′(q)(n) = n. Any
sequence refines ε, therefore, A′(p = q) v A(p = q).

7. PERFORMANCE METRICS
We often care about the performance of our systems in

terms of specific metrics such as throughput or latency [7,
27, 23, 15]. In this section we show that our notion of refine-
ment is strong enough to provide guarantees on performance
under a refinement process. For simplicity we assume in this
section, that T = R≥0.

We begin by defining throughput for an infinite event se-
quence τ . A first attempt is to define throughput as the
limit behavior of the average number of tokens appearing in
the sequence per unit of time: T (τ) = limn→∞

n
τ(n)

. By the

usual definition of the limit, it exists and is equal to T if

∀ε > 0 : ∃K > 0 : ∀n > K : T − ε < n

τ(n)
< T + ε.

However, this limit may not always exist for a given τ . Be-
cause among all possible behaviors of an actor, there may
be some for which it does not exist, we focus instead on
throughput bounds, which are more robust against this. We
consider lower bounds, which are preserved by refinement.

Definition 11. Given infinite event sequence τ , its lower
bound on throughput is

T lb(τ) = sup{T ∈ R≥0 | ∃K > 0 : ∀n > K : n > τ(n) · T}

where by convention we take supR≥0 =∞.

T lb(τ) is the greatest lower bound on the asymptotic aver-
age throughput of τ (also known as the limit inferior of the
sequence n/τ(n)). Multiplying both sides of the inequali-
ties by τ(n) avoids division by zero problems. For a zeno
sequence τ , where timestamps do not diverge to ∞, i.e.,
∃t ∈ R≥0 : ∀n ∈ N : τ(n) < t, we have T lb(τ) = supR≥0 =

∞. This holds in particular for the zero sequence ~0 with
~0(n) = 0 for all n.

Proposition 4. For any two infinite event sequences τ1
and τ2, if τ1 v τ2, then T lb(τ1) ≥ T lb(τ2).

We next define the throughput bound for an actor A. An
actor may have multiple output ports with generally dif-
ferent throughputs. For a given port, the throughput at
that port may depend on the input trace as well as on non-
deterministic choices of the actor. We therefore consider the
worst-case scenario.

Definition 12. Given actor A = (P,Q,RA), output port
q ∈ Q and input trace x ∈ Tr(P ), the lower bound on
throughput of A w.r.t. q, x is:

T lb(A, x, q) = inf{T lb(τ) | ∃y : xAy ∧ τ = y(q)}.

For example, for the actor SPEC of Section 2, which has
no inputs and a unique output port, we have T lb(SPEC) =
T lb(50 + n/44.1) = sup{T ∈ R≥0 | ∃K > 0 : ∀n > K : n >
(50 + n/44.1)T} = sup{T ∈ R≥0 | T < 44.1} = 44.1.

For two actors A and B with the same sets of input and
output ports P andQ, respectively, we shall write T lb(A, x) ≤
T lb(B, x) to mean T lb(A, x, q) ≤ T lb(B, x, q) for all q ∈ Q.
This notation is used in Proposition 6 below.

We next turn to latency, another prominent performance
metric. We define latency as the smallest upper bound on



observed time differences between related input and output
events. The pairs of events that we want to relate are ex-
plicitly specified as follows:

Definition 13. An input-output event specification
(IOES) for a set P of input ports and a set Q of output
ports is a relation E ⊆ 2P×N × 2Q×N. E is called valid
for (x, y) ∈ Tr(P ) × Tr(Q) iff for every (EP , EQ) ∈ E, if
x(p)(m) 6= ∞ for every (p,m) ∈ EP , then y(q)(n) 6= ∞
for every (q, n) ∈ EQ. E is called valid for an actor
A = (P,Q,RA) iff it is valid for every (x, y) ∈ RA.

A pair (EP , EQ) ∈ E says that we want to measure the
maximum latency between an input event in EP and an
output event in EQ, provided all events in EP have arrived.
See Example 5, given below, for an illustration.

Definition 14. Let E be a valid IOES for (x, y) ∈ Tr(P )×
Tr(Q). The upper bound on latency is defined as:

DE(x, y) = sup{y(q)(n)− x(p)(m) | (EP , EQ) ∈ E ,
EP ⊆ dom(x), (p,m) ∈ EP , (q, n) ∈ EQ}

where by convention sup ∅ = 0 and dom(x) denotes the set
of all pairs (p, n) such that x(p)(n) 6=∞.

DE(x, y) is the largest among all delays between an input
and an output event that occur in x and y and are related
by E , provided all other events in the same input group are
also in x. Notice that, by the assumption of validity of E
for (x, y), EP ⊆ dom(x) implies EQ ⊆ dom(y), for every
(EP , EQ) ∈ E .

Example 5. Consider a deterministic actor A with two
input ports p1, p2 and a single output port q. Suppose A
consumes one token from each input port, and for every such
pair, produces a token at q, after some constant delay, say
d ∈ R≥0. Let x1 and x2 be two input event traces, with
x1 = {(p1, 2 · ε), (p2, 4 · ε)} and x2 = {(p1, 2 · 5 · ε), (p2, 4 · ε)}.
For both x1 and x2, A produces the same output event trace
y = {(q, (4 + d) · ε)}. This is because, in x2, A waits for a
second input to arrive at p2 before it can produce a second
output. To measure the latency of A, we can define E to be:

E = {({(p1, n), (p2, n)}, {(q, n)}) | n ∈ N}.

This makes E a valid IOES for x1, y, as well as for x2, y, and
gives us DE(x1, y) = DE(x2, y) = d, as is to be expected.

Keeping the reference input trace fixed, refinement of out-
put traces is guaranteed to not worsen latency:

Proposition 5. Let x, y1 and y2 be event traces such
that y1 v y2. Suppose E is valid for x and y2. Then E is
valid for x and y1 and DE(x, y1) ≤ DE(x, y2).

Definition 15. An IOES E is valid for an actor A iff E
is valid for every (x, y) such that xAy. For a valid E, the
worst-case latency of A on input event trace x is

DE(A, x) = sup
y s.t. xAy

{DE(x, y)}.

Example 6. A suitable IOES for the variable delay actor
∆[d1,d2] from Example 2 is E = {({(p, n)}, {(q, n)}) | n ∈ N}.
E is valid for ∆[d1,d2] and DE(∆[d1,d2], x) = d2, for any non-
empty input event trace x.

The following states the main preservation results for through-
put and latency performance bounds under refinement:

Proposition 6. Let B v A and E be a valid IOES for A.
Then for any x ∈ inA, T lb(B, x) ≥ T lb(A, x) and DE(B, x) ≤
DE(A, x).

Proposition 6 can be used together with Propositions 2
and 3 to guarantee that worst-case performance bounds are
preserved during compositional refinement of models, as in
the example of Section 2.

8. REPRESENTATIONS & ALGORITHMS
So far, our treatment has been semantical, regarding ac-

tors as sets of input-output event traces. In this section, we
consider syntactic, finite representations. We show that the
semantics commonly associated with these representations
can be embedded naturally in our theory. We also provide
algorithms to check refinement and compute compositions
and performance metrics on such representations. Our in-
tention in this section is not to be complete, but rather to
give examples of how our theory can be instantiated and
automated.

8.1 Synchronous Data Flow
We have informally used timed SDF actors in previous ex-

amples. In this section we formally define them. Typically,
in timed SDF models the time domain is the non-negative
reals or integers. In the rest of this subsection, we therefore
assume that T = R≥0 or T = N.

Definition 16 (SDF actors). An actor A = (P,Q,RA)
is a homogeneous SDF actor with firing duration d ∈ T , iff

RA ={(x, y) | ∀q ∈ Q : |y(q)| = min
p∈P
|x(p)|∧

∀n < |y(q)| : y(q)(n) = max
p∈P

x(p)(n) + d}.

That is, the n-th firing of A starts as soon as the n-th token
has arrived on every input. The firing takes d time units,
after which a single output token is produced on each output.
A is an SDF actor with token transfer quanta r : P ∪Q→ N
and firing duration d ∈ T iff

RA = {(x, y) | ∀q ∈ Q : |y(q)| = r(q) ·min
p∈P

(
|x(p)| ÷ r(p)

)
∧ ∀n < |y(q)| : y(q)(n) = d+

max
p∈P

x(p)
(
(n÷ r(q) + 1) · r(p)− 1

)
}.

where ÷ denotes the quotient of the integer division.

A (non-homogeneous) SDF actor can consume respectively
produce more than a single token on its inputs and outputs
with every firing, using rates according to r. SDF actors are
deterministic and have constant delays d. In SDF literature
they are often implicitly understood to abstract behaviours
with varying (non-deterministic) execution times in a con-
servative way.

Example 7. Consider the SDF actor A shown in Fig-
ure 4. A has an input port p (quantum 2) and an output
port q (quantum 3). Its firing duration is 5. An example
input-output event trace of A is shown below. The firings of
A start at times 2, 4 and 5 and overlap in time. Note that
the 7-th input token does not lead to any output.
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CSDF actors like the one on the left of Figure 4 can be
formalized similarly, taking into account that they period-
ically cycle through firings with different quanta and firing
durations.

An SDF graph represents the composition of multiple SDF
actors, as in the examples shown in Figure 1. Edges in SDF
graphs are often annotated with initial tokens representing
the fact that the initial state of some queues is non-empty.
To model this, we introduce an explicit actor:

Example 8. The initial token actor with k ∈ N tokens
is Ik = ({p}, {q}, RIk ), where (x, y) ∈ RIk iff for all n ∈ N:

y(q)(n) = 0 if n < k, and y(q)(n) = x(p)(n− k) otherwise.

That is, Ik outputs k initial tokens at time 0, and then
behaves as the identity function. Ik satisfies all monotonicity
and continuity properties.

An SDF graph cannot always be reduced to an equivalent
SDF actor. Indeed, in general, the serial or parallel compo-
sition of two SDF actors is not an SDF actor [29] (but of
course it is an actor in the sense of this paper).

Let A1 and A2 be two SDF actors. We want to check
whether A1 v A2. Clearly, A1 and A2 must have the same
sets of input and output ports, say P and Q. Suppose A1

and A2 have quanta functions r1 and r2, and firing durations
d1 and d2, respectively.

Proposition 7. A1 v A2 iff d1 ≤ d2 and ∀p ∈ P, q ∈
Q,n ≤ r1(p) · r2(p) : r1(q) · (n÷ r1(p)) ≥ r2(q) · (n÷ r2(p)).

The above result is generalized in [1] which discusses how
refinement can be checked not only on SDF actors but also
on SDF graphs, using (max,+) algebra. [1] also discusses
how throughput can be computed on SDF graphs. The
proposition that follows summarizes the latter result. For
an SDF graph A with external input and output ports P
and Q, rA : P ∪ Q → N denotes the repetition vector of
the graph, which assigns to every port the relative rates at
which tokens are consumed and produced [22].

Proposition 8. Let A be a strongly connected SDF graph
with input ports P and output ports Q. Let x be an input
trace of A. Then A has a computable internal throughput
bound TA, and

T lb(A, x, q) = rA(q) ·min(TA,min
p∈P

T lb(x(p))

rA(p)
).

Similarly, latency of SDF actors as defined in this work, can
be computed using existing analysis techniques from SDF
literature [15, 23]. It is natural to specify the related input-
output events in patterns which repeat with the periodic
behavior of SDF iterations.

8.2 Discrete-Time Automata
An other natural representation of actors is automata.

Automata, in contrast with SDF actors, do not have v-
monotonicity and input-closure built-in, and such proper-
ties have to be explicitly verified when necessary. There are
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Figure 5: Implicit-tick automaton example.

many automata variants, over finite or infinite words, with
various acceptance conditions, finite or infinite-state, and so
on. We are not going to propose a single automaton-based
model for actors. Instead we will discuss some general ideas
as well as some cases for which we have algorithms. We
limit our discussion to discrete-time automata (DTA) in the
sense that time is counted by discrete transitions. DTA gen-
erate actors over a discrete time domain, T = N. The ideas
naturally apply also to timed automata [2] and yield actors
where T = R≥0.

One possible model is an automaton whose transitions
are labeled with subsets of P ∪Q, the set of input or output
ports. An example is shown in Figure 5. The state drawn
with two circles is the accepting state. In this implicit-tick
model each transition corresponds to one time unit. If the
transition is labeled by some set of ports V ⊆ P ∪Q, then an
event at each port in V occurs at the corresponding instant
in N. V may be empty, as in the self-loop transition of the
automaton shown in the figure. In this case, no events occur
at that time instant.

The implicit-tick model cannot capture event traces where
more than one event occurs simultaneously at the same
port (and therefore an implicit-tick actor cannot be input-
complete). An alternative is to dissociate the elapse of time
from transitions, by introducing a special label, t, denoting
one time unit. Then, we can use automata whose transitions
are labeled with single ports or t, that is, whose alphabet is
P ∪Q∪ {t}. We call this the explicit-tick model. We do not
further discuss this model here: it is explored in [1].

A DTA M defines an actor A(M) = (P,Q,RA(M)) as
follows. Every (finite or infinite) accepting run of M gen-
erates a (finite or infinite) word w in the language of M ,
denoted L(M). Every word w can be mapped to a unique
event trace pair Tr(w) ∈ Tr(P ) × Tr(Q), as illustrated in
Figure 5. Then, RA(M) is the set of all event trace pairs gen-
erated by words in L(M), i.e., the set {Tr(w) | w ∈ L(M)},
also denoted Tr(L(M)). An ITA is an implicit-tick automa-
ton on finite words. An ITBA is an implicit-tick Büchi au-
tomaton. Finite-word DTA are strictly less expressive than
corresponding Büchi versions. Every ITA M can be trans-
formed into an ITBA M ′ such that A(M) = A(M ′).

Two distinct words w and w′ of an ITA M can result
in the same event trace, for instance, if w′ = w · ∅n, for
different n ≥ 1. To avoid technical complications related
to this, we will assume that M is tick-closed, that is, for
any w ∈ L(M), w · ∅∗ ⊆ L(M). The ITA of Figure 5 is
tick-closed. Any ITA M can be transformed to a tick-closed
ITA M ′ so that A(M) = A(M ′). In the rest of this section
we assume all ITA to be tick-closed. We also assume that
automata are finite-state, all their states are reachable from
the initial state, and there is no state that cannot reach an
accepting state by a non-empty path.

Given actors represented by discrete-time automata, we
are interested in answering various questions.



“Given M and M ′, is A(M) = A(M ′)?” For ITA, there is
a bijection between infinite words and event traces, that is,
∀w,w′ ∈ (2P∪Q)ω : w 6= w′ ⇐⇒ Tr(w) 6= Tr(w′). (Note
that Tr(w) may be finite, even though w is infinite, if w ends
in ∅ω.) The same bijection does not hold for finite words as
explained above. Nevertheless, because ITA are assumed to
be tick-closed, we can show:

Proposition 9. For two ITA (ITBA) M1 and M2, we
have A(M1) = A(M2) iff L(M1) = L(M2).

“Given M , is A(M) deterministic?” Determinism of M
does not imply determinism of A(M), because of the dif-
ferent role of input and output symbols. A(M) is non-
deterministic iff there are two words w,w′ ∈ L(M), with
(x, y) = Tr(w) and (x′, y′) = Tr(w′), such that x = x′ but
y 6= y′.

Proposition 10. For any ITA or ITBA M it is decidable
whether A(M) is deterministic.

The proof uses a synchronous product of M with itself syn-
chronizing only on input events to check for words with the
same input event trace, but a different output event trace [1].

“Given M1 and M2, compute M so that A(M) =
A(M1)||A(M2).” M can be computed as a product of M1

and M2, so that L(M) contains exactly those words w such
that Tr(w) = Tr(w1)∪Tr(w2), for wi ∈ L(Mi) and i = 1, 2.
If M1 and M2 belong to the implicit-tick model, M is a syn-

chronous product, so that a pair of transitions
P1∪Q1−→ of M1

and
P2∪Q2−→ of M2 yields a transition

P1∪P2∪Q1∪Q2−→ in M .
“Given M1 and M2, and a bijection θ from the output

ports of M1 to the input ports of M2, compute M so that
A(M) = A(M1)θA(M2).”

Feeding the output of M1 (after relabeling) into the input
of M2 can be achieved by a product of both automata syn-
chronizing on the corresponding ports. The main challenge
in computing the serial composition is to ensure that the
constraint inθ is satisfied (see Definition 6). We assume M1

and M2 are ITA. We construct the composite automaton M
as the synchronous product of M1, M2 and a third automa-
ton Min capturing the constraint inθ. We can construct Min

as an alternating automaton such that Tr(L(Min)) = inθ [1].
Min can then be converted into a non-deterministic automa-
ton using standard techniques.

“Given M , input port p and output port q, compute M ′

such that A(M ′) = A(M)(p = q).” If M is an ITA or an
ITBA, then M ′ can be easily obtained by removing from M

all transitions
P ′∪Q′
−→ except those that satisfy p ∈ P ′ ⇐⇒

q ∈ Q′.
An important question is to check for actor refinement.

“Given M1 and M2, is A(M1) v A(M2)?” We show that
checking actor refinement on ITA can be reduced to check-
ing language containment with respect to an appropriate
closure. Given automaton M , we construct an (initially infi-
nite state) automaton M∞v that recognizes the refinement
closure of M , i.e., it accepts all words of M , but also all
words that correspond to traces that refine the traces of M .
We define M∞v for a single output port q, but the construc-
tion can be generalized to multiple output ports. Figure 6
shows an example. We add a counter n to count the sur-
plus of q events. Whenever later in a word M requires a
q event, we allow this event to be absent and decrease the

Figure 6: Refinement closure of Figure 5.

counter. The following gives a precise definition of this idea,
parameterized with a bound k on the counter.

Definition 17. Let M = (S, s0, E, F ) be an ITA with a
single output port q, states S, initial state s0 ∈ S, accept-
ing states F ⊆ S, and transitions E. For k ∈ N, the k-
bounded refinement closure of M is the automaton Mkv =
(Skv, skv,0, Ekv, Fkv) such that Skv = {(s, n) | s ∈ S, 0 ≤
n ≤ k}, skv,0 = (s0, 0), and Fkv = {(s, n) ∈ Skv | s ∈ F}.
For every transition (s1, σ, s2) ∈ E, we have the following
transitions in Ekv:(

(s1, n), σ, (s2, n)
)

if 0 ≤ n ≤ k(
(s1, n), σ ∪ {q}, (s2, n+ 1)

)
if 0 ≤ n < k, q /∈ σ(

(s1, n), σ ∪ {q}, (s2, n)
)

if n = k, q /∈ σ(
(s1, n), σ\{q}, (s2, n− 1)

)
if 0 < n ≤ k, q ∈ σ

The (unbounded) refinement closure of M is the automa-
ton M∞v defined in a similar way, but where counter n is
unbounded.

Lemma 1. Let M1 and M2 be ITA with the same input
ports P and the same, single output port q. Then A(M1) v
A(M2) iff for every w ∈ L(M1) such that Tr(w) = (x, y)
and x ∈ inA(M2), w ∈ L(M2,∞v).

Unfortunately, M2,∞v is not a finite-state automaton, in
fact, L(M2,∞v) is not always regular. Let L(M) = ({p, q} ·
∅)∗, where p is the only input port and q the only output
port. Then L(M∞v) contains all words of the form ({p, q} ·
{q})n · {p}n, for any n ∈ N. Based on this, we can show
that L(M∞v) is not regular. Despite this difficulty, we can
make use of the finite memory property of M1 and M2 to
find an upper bound on the size of the refinement closure,
which proves that checking refinement for ITA is decidable:

Proposition 11. Let M1 and M2 be deterministic ITA
with the same input ports P and the same, single output
port q. A(M1) v A(M2) iff for every w ∈ L(M1) such that
Tr(w) = (x, y) with x ∈ inA(M2), w ∈ L(M2,Nv), where
N = |S1| × |S2|.

“Given ITBA M with sets of input and output ports P and
Q, respectively, and given an output port q ∈ Q and an input
trace x ∈ Tr(P ), what is T lb(A(M), x, q)?” To compute this,
we need a finite representation for x. A natural choice is to
represent x as a deterministic ITBA Mx that only refers to
ports in P . We require that Mx generates a single trace x.
These assumptions imply that Mx has the form of a “lasso”
(a single path eventually returning to an earlier state).

First, we compute a product of M and Mx such that the
two automata synchronize on inputs. We remove from the
product all strongly connected components (SCCs) that con-
tain no accepting state of M and denote the result by M ′.



We assign a weight to each transition
P ′/Q′
−→ of M ′: weight

1 if q ∈ Q′ and weight 0 otherwise. With these weights M ′

can be viewed as a weighted directed graph. We run Karp’s
algorithm [21] to compute the minimum cycle mean of M ′,
denoted MCM. MCM is the minimum over all simple cycles

κ in M ′′ of the ratio w(κ)
|κ| , where w(κ) is the sum of weights

of all transitions in κ and |κ| is the length of κ (i.e., the
number of transitions in κ).

Proposition 12. T lb(A(M), x, q) = MCM .

(proof sketch) The tricky part is that Karp’s algorithm con-
siders all cycles, including non-accepting (in the Büchi sense)
cycles. However, all cycles are guaranteed to belong to an
accepting SCC (otherwise the SCC is removed by construc-
tion of M ′). Then, from any cycle it is possible to reach an
accepting state and then return to the cycle. This “detour”
may increase the throughput by some amount ε, however,
ε can be made arbitrarily small by taking the detour very
infrequently (but infinitely often, to be accepting).

9. DISCUSSION AND FUTURE WORK
We have proposed an interface theory for timed actors

with a refinement relation based on the earlier-is-better prin-
ciple, suitable for worst-case performance analysis. Our
framework is compositional and unifies existing formalisms,
allowing different types of models to be used in the same de-
sign process, e.g., automata models could refine SDF models.

The earlier-is-better principle may not seem directly ap-
plicable in scenarios where outputs should be produced not
too late but not too early either. A possible alternative ap-
proach is to combine the earlier-is-better refinement with a
corresponding later-is-better version, obtained by replacing
y v y′ by y′ v y in Condition (2) of Definition 10. Sep-
arate specifications could then be used, expressing upper
and lower bounds on timing behavior, and refined using the
earlier- or later-is-better relation, respectively. Examining
in detail this hybrid approach is part of future work.

Other directions for future work include examining the al-
gorithmic complexity of the various computational problems
and coming up with practically useful algorithms; imple-
menting the algorithms and performing experiments; inte-
grating new representations under our framework; and hav-
ing a comparative study of the different representations, for
instance, in terms of expressiveness and complexity.
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