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Abstract—In order to improve design time and efficiency
of systems, large scale system design is often split into the
design of separate functions, which are later integrated to-
gether. For real time safety critical applications, the ability
to separately verify timing properties of functions is impor-
tant. If the integration of functions on a particular platform
destroys the timing properties of individual functions, then
it is not possible to verify timing properties separately.
Modern computer architectures introduce timing interfer-
ence between functions due to unrestricted access of shared
hardware resources, such as pipelines and caches. Thus, it
is difficult, if not impossible, to integrate two functions on a
modern computer architecture while preserving their sep-
arate timing properties. This paper describes a realization
of PRET, a class of computer architectures designed for
timing predictability. Our realization employs a thread-
interleaved pipeline with scratchpad memories, and has
a predictable DRAM controller. It decouples execution of
multiple hardware contexts on a shared hardware platform,
which allows for a straight forward integration of different
functions onto a shared platform.

I. INTRODUCTION

Embedded systems interact with the physical envi-
ronment. They react based on sensing of the physical
world and often have to satisfy timing constraints im-
posed by their interaction with the environment. Hard
real-time systems are an important class of embedded
systems that exhibit safety-critical timing properties: a
violation of timing constraints in the system could lead
to catastrophic events. Examples of such systems include
aircraft flight control systems and automotive engine
control units.
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Sangiovanni-Vincentelli et al. [1] outline several chal-
lenges as the designs continue to scale up for these
systems. Among those challenges, this paper deals with
timing composability and timing predictability at the
computer architecture level. Timing composability is the
ability to integrate components while preserving their
temporal properties. Timing predictability is the ability
to predict timing properties of the system.

A. Timing Composability

Large-scale system design relies on the ability to
design and verify components separately, and to later in-
tegrate them. If component properties may be destroyed
during integration, then the components can no longer
be designed and verified separately. In order to preserve
component properties during integration, a federated ar-
chitecture is often used. In a federated architecture, every
major function is implemented separately on a dedicated
hardware unit, often called electronic control unit (ECU).
As these ECUs are only loosely coupled through an
interconnect, interference is limited, preserving certain
properties which are independently verified. However,
since each ECU is only executing a single function,
they are idle for most of the time. In order to reduce
resource consumption, there is a shift towards integrated
architectures, where multiple functions are integrated on
a single, shared hardware platform. The challenges to
switch from a federated to an integrated architecture
are considerable, as noted in [2], [3]. In particular
for hard real-time systems, it is crucial to guarantee
that the timing properties are preserved during system
integration. Modern architectures that allow unrestricted
sharing of resources cause unpredictable interference
between the components. This hinders our ability to
compose functions together on a shared resource while
maintaining timing properties. Caches are a well-known
example of an unpredictable shared resource that can
cause dramatic effects on execution time.



B. Timing Predictability

Several researchers have outlined the importance,
requirements and difficulties of designing timing-
predictable systems [4], [5], [6]. Modern computing ab-
straction layers have abstracted away time. Common pro-
gramming languages such as C or Java do not associate
any timing semantics with a program; a correct execution
of a C or Java program has nothing to do with how long it
takes to run. Thus, when designing systems where timing
needs to be guaranteed, an additional analysis is needed
to determine the worst-case execution time (WCET) in
order to verify that the timing constraints can be met.

However, it is difficult to analyze the execution time
of a program. Wilhelm et al. [7] describe abundant
research and effort that has been put into determining
the WCET of a program. The precision and usefulness
of the analysis heavily depends on the predictability
of the underlying architecture [8], [9]. Conventional
architectures have introduced caches and prediction and
speculation units that improve average-case execution
time (ACET). Such features do not, in general, improve
WCET, yet their complex dynamic behavior makes it
is extremely difficult, if not practically impossible, to
obtain precise bounds on the execution time on modern
architectures.

C. Contribution

The key challenges we help overcome are the diffi-
culty of designing timing-predictable systems and the
difficulty of integrating functions when designing com-
plex large-scale systems. Edwards and Lee [10] proposed
a paradigm shift in the design of computer architectures,
focusing on timing predictability instead of average-case
performance. In this paper, we review the goals of that
work, and outline progress in an ongoing project at
Berkeley toward the goals. We describe a realization of
PRET that is designed for timing predictability, to enable
simple architectural timing analysis for each context.
This realization provides interference-free concurrent
execution of multiple contexts to allow for simple and
efficient integration of multiple independent functions.

D. Related Work

Several researchers have proposed modifications
to modern computer architectures that improve tim-
ing predictability with some average-case performance
penalty [11], [12], [13], [14], [15], [16], [17], [18].
Yan and Zhang [11] propose modifications to a VLIW
architecture to make instructions execute in constant
time. They extend the VLIW compiler to support full if
conversion, hyperblock scheduling, and intra-block nop
insertion to enable efficient WCET analysis. Rochange

and Sainrat [14] propose modifications to a dynamic su-
perscalar pipeline by stalling instructions between basic
blocks. They make the timing of basic blocks indepen-
dent of one another, by stalling instruction fetching of
a basic block until all instructions in the previous basic
block have been completed. Whitham and Audsley [12]
describe similar work with a superscalar architecture,
combining it with trace scheduling to direct the processor
branch predictions towards the worst-case path. Uhrig
and Maier [13] and Barre et al. [16] both modify a
conventional simultaneous multi-threaded architecture.
They make the timing of one thread independent of the
behavior of other threads by assigning it the highest
priority. That one thread thus has priority when any
resource contention occurs, simplifying its timing anal-
ysis. However, there are no guarantees for the other
hardware threads in the processor. El-Haj-Mahmoud and
Al-Zawawi [15] propose a processor architecture that can
be partitioned into a set of virtual processors. The timing
of these virtual processors is independent of each other
providing composable timing to tasks running on the
different virtual processors. The partitioning of the ar-
chitecture is flexible. The architecture can be partitioned
into a few higher-performance processors or many sim-
ple low-performance processors or a combination of the
two extremes. Schoeberl [17] introduces JOP, the Java
Optimized Processor which is a timing predictable Java
processor. It uses a two-level stack architecture along
with fixed-length microcode into which the Java byte
code is translated. Every microcode instruction has a
fixed execution time independent of its context. Hansson
et al. [18] proposed CoMPSoC, which is a template for
composable multi-processor systems on chip. They also
introduce the CoMPSoc design methodology in which
real-time requirements are described per application on a
level that is understood by the developer. The particular
configuration of the system, including the network on
chip, is then derived automatically from these require-
ments. Wilhelm et al. [9] give recommendations for
future architectures in time-critical embedded systems.
Based on the principle to reduce the interference on
shared resource, they recommend to use caches with
LRU replacement, separate instruction and data caches,
and so-called compositional architectures, such as the
ARM7.

Akesson et al. [19] and later Paolieri et al. [20]
proposed DRAM controllers with predictable and com-
posable timing behavior. They decouple execution time
of memory accesses by devising DRAM access patterns
which can be executed independently of previous mem-
ory accesses. In addition they make use of predictable
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arbitration mechanisms such as TDMA or latency-rate
servers to share the DRAM in systems with multiple
clients.

The work presented in this paper looks to redesign
the architecture with timing predictability as the main
focus, only introducing performance improvements when
predictability is not sacrificed.

II. PRECISION TIMED MACHINE

Computer architects have gone to great lengths to
improve the average-case performance of their architec-
ture. Features such as caches and branch predictors are
common schemes which greatly improve performance on
the average. These schemes predict the dynamic behavior
of a program to avoid stalling the processor. However,
such schemes can have a detrimental effect on the worst-
case execution time: in case of a misprediction the
execution time is often greater than if no prediction was
made in the first place. Determining within a worst-case
execution time analysis whether or not a misprediction
occurs, however, is often extremely difficult. The predic-
tion depends on the internal state of the prediction unit,
which is determined by its execution history. In case of a
cache, the execution history is the sequence of memory
accesses that have been performed since the cache was
turned on. The execution history may thus contains
memory accesses of previously executed tasks, and, in
case of a shared cache on a multi-core system, of mem-
ory accesses by concurrently running tasks. Similarly,
the execution history of a branch prediction unit is the
sequence of branches that have or have not been taken.
Even if the execution history is determined by the task
under analysis only, static analysis of branch prediction
and caches is hard, as the number of possible execution
histories explodes with increasingly complex program
flow. If the execution history depends on concurrently
executing tasks, as in multi-core systems, or on other
tasks, as in premptive multi-tasking, analysis becomes
even more challenging.

A common side effect of having multiple prediction
units that introduce variable execution latency is a phe-
nomenon known as timing anomalies [21], [22]. Timing
anomalies are situations where a local worst-case be-
havior does not result in the global worst-case execution
time. For example, a cache miss should intuitively result
in a longer execution time than a cache hit. This is not
always the case. For instance, if the cache miss allows
the processor to resolve a conditional branch that it
would otherwise mispredict. Branch misprediction would
not only entail a miss penalty in itself, it can also result in
further memory accesses negatively influencing the state

of the cache. This phenomenon makes analyzing worst-
case execution time extremely difficult if not practically
infeasible for some architectures, as analyses have to
consider all possibilities, i.e. cache hit and cache miss,
in order to be correct.
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Fig. 1. An example of interleaved threading removing data depen-
dencies; reproduced from a presentation by Krste Asanović.

A. Thread-Interleaved Pipelines

Pipelines improve the throughput of instructions exe-
cuted on a processor by overlapping execution of suc-
cessive instructions. However, pipeline hazards caused
by instruction dependencies force the pipeline to stall.
Common architectures add hardware units in attempt to
predict branches or prefetch data to avoid later stalls.
As mentioned before, these units may increase worst-
case execution time and make timing analysis extremely
difficult. Our realization of PRET employs a thread-
interleaved pipeline to retain the benefit of pipelining,
i.e. high instruction throughput, without suffering from
pipeline stalls and complex prediction units.

Multi-threaded architectures contain multiple hard-
ware contexts. They increase throughput over regular
pipelined architectures by quickly switching context
whenever a thread is stalled. However, dynamic thread-
scheduling policies is challenging for execution time
analysis. A thread-interleaved pipeline [23], [24] is a
special multi-threaded architecture that fetches instruc-
tions from hardware threads in a round-robin order.
Thread-interleaved processors preserve the benefits of a
multi-threaded architecture – increased throughput, but
use a predictable fine-grained thread-scheduling policy
– round robin. Providing enough hardware threads then
removes data dependencies between the instructions ex-
ecuting in the pipeline. For example, if there is the same
number of hardware threads as there are pipeline stages,
each stage of the pipeline will be occupied by a different
hardware thread; there will be no dependencies between
pipeline stages, and the execution time of each hardware
thread is independent of all others. In our implementation
of thread-interleaving, if one thread is stalled waiting
for a memory access, the other threads can continue to
execute normally without being affected. Figure 1 shows
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an example of how thread-interleaved pipelines removes
data dependencies.

B. Scratchpad Memories

Besides the pipeline, the memory hierarchy of an
architecture is a major source of timing unpredictability.
Caches are a small but fast memory that is often used
to bridge the latency gap between processors and main
memory. They buffer frequently used instructions and
data, exploiting spatial and temporal locality. Which
instructions and data to cache is decided by the cache’s
replacement policy. Since caches are abstracted away
from the programmer by the architecture, the program-
mer is not aware of whether the data is fetched from
main memory or the cache. Fetching from the cache or
the memory however has huge implications on the per-
formance of the memory operation; often, the difference
is hundreds of processor cycles. Thus, a huge part of
analyzing execution time depends on whether or not a
memory access can be accurately classified as a cache
access or memory access. However, the destination of the
memory access is highly dependent on the replacement
policy and current state of the cache [25], which makes
this prediction difficult.

Scratchpad memories [26] were initially introduced
to save power in embedded systems. Scratchpads, like
caches, are small but fast memory, except that scratch-
pads strip away the hardware logic for the replacement
policy. Instead of a hardware-controlled replacement
policy, the scratchpad replacements are managed by
software. This can be done either explicitly by the
programmer, or automatically with compiler-inserted in-
structions. Because the scratchpad allocation is done
in software, the contents of the scratchpad are known
statically, and precise and efficient timing analysis is
easy.

As noted before, if the cache is shared by sev-
eral threads in a multi-threaded architecture, then each
thread’s memory access influences the execution history
and therefore the state of the cache. Even with scratch-
pads unrestricted sharing would be problematic. We
partition the scratchpad memories among all hardware
threads in PRET. In doing so, each thread’s scratchpad
allocation is independent, allowing us to do timing
analysis of each thread independently.

C. Dynamic Random Access Memory

Modern DRAM (Dynamic Random Access Memory)
architectures are highly parallel, containing multiple
banks that can service memory requests concurrently.
However, if subsequent memory operations from the
processor need to access the same bank, then a bank

conflict occurs and the second access must wait until
the first access finishes. Modern memory controllers
attempt to optimize throughput by queueing up memory
requests and reordering them to reduce bank conflicts.
This creates timing variability because the latency for
each access to DRAM depends on the memory accesses
surrounding it.

The PRET core leverages its predictable scheduling
policy of multiple hardware threads and the parallel
structure of the DRAM to achieve a predictable DRAM
access [27]. Each hardware thread is assigned private
banks of the DRAM. Since the hardware threads execute
in a round-robin fashion, bank conflicts cannot occur
because threads access different memory banks for their
own request. No consecutive memory request will go
to the same bank. Shared memory can be achieved by
allocating separate DRAM banks that are accessed in a
time-triggered fashion by the threads. Alternatively, the
scratchpad can also be used to provide a small shared
memory with shorter access latency.

Another source of timing variability in DRAM stems
from its need to be refreshed periodically. DRAM cells
leak charge, which causes them to lose their data over
time. Thus, they need periodic refreshes to retain their
data. Refreshes are commonly initiated by the DRAM
controller, which uses a built-in timer to ensure refreshes
occur when needed. However, if a memory access occurs
during a refresh, then the memory access needs to
be queued until the refresh is finished. Thus, to be
conservative, timing analysis would need to take into
account a possible refresh during any memory operation.
In our approach, we propose using a distributed RAS-
only refresh [28] to each bank separately, instead of
refreshing all banks at once. Memory refresh operations
are now equivalent to row accesses of a bank, which
allows the memory controller to refresh each thread’s
banks separately. This can be done independently for
each thread when there are no memory operations from
that thread. It is also possible to bring the abstraction
level of refreshes up to the software and use a static
analyzer to insert refresh instructions in the program as
long as it can guarantee that the refresh requirements are
met. This allows a more accurate execution time analysis
of memory accesses, because we ensure that there are no
conflicts between DRAM accesses and refreshes.

D. Discussion

The PRET architecture decouples the execution of
hardware threads in its thread-interleaved pipeline. This
allows us to do separate timing analysis for all threads,
and guarantee that the analysis will hold when we
compose tasks together using different hardware threads.
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For an integrated architecture, this is crucial because
it allows us to composably integrate independent com-
ponents while preserving the temporal properties. This
allows for a simple and efficient integration of large-scale
systems.

Within each thread context, instructions are indepen-
dent of their execution context within the program, and
the latency of memory operations no longer depends
on any previous memory operations as it would if
caches or modern memory controllers were employed.
This enables a simple and accurate architectural timing
analysis of a program.

III. CONCLUSION

As systems continue to scale in size and complexity,
the ability to design and verify functions separately is
crucial. It allows the complexity of the whole system
to be broken down into simpler functions. This modu-
larization can lead to shortened design time and safer
designs. However, if the hardware platform destroys
timing properties of functions during system integra-
tion, then the timing properties of functions can no
longer be designed and verified separately. In this paper
we describe an implementation of PRET that allows
concurrent programs to be composed while preserving
their temporal properties. This implementation utilizes a
thread-interleaved pipeline, scratchpad memories and a
composable and predictable DRAM controller.
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