
PRET DRAM Controller: Bank Privatization for
Predictability and Temporal Isolation∗

Jan Reineke
University of California, Berkeley

Berkeley, CA, USA
reineke@eecs.berkeley.edu

Isaac Liu
University of California, Berkeley

Berkeley, CA, USA
liuisaac@eecs.berkeley.edu

Hiren D. Patel
University of Waterloo

Waterloo, Ontario, Canada
hdpatel@uwaterloo.ca

Sungjun Kim
Columbia University

New York, NY, USA
skim@cs.columbia.edu

Edward A. Lee
University of California, Berkeley

Berkeley, CA, USA
eal@eecs.berkeley.edu

ABSTRACT
Hard real-time embedded systems employ high-capacity memories
such as Dynamic RAMs (DRAMs) to cope with increasing data and
code sizes of modern designs. However, memory controller design
has so far largely focused on improving average-case performance.
As a consequence, the latency of memory accesses is unpredictable,
which complicates the worst-case execution time analysis neces-
sary for hard real-time embedded systems.

Our work introduces a novel DRAM controller design that is pre-
dictable and that significantly reduces worst-case access latencies.
Instead of viewing the DRAM device as one resource that can only
be shared as a whole, our approach views it as multiple resources
that can be shared between one or more clients individually. We
partition the physical address space following the internal structure
of the DRAM device, i.e., its ranks and banks, and interleave ac-
cesses to the blocks of this partition. This eliminates contention
for shared resources within the device, making accesses tempo-
rally predictable and temporally isolated. This paper describes our
DRAM controller design and its integration with a precision-timed
(PRET) architecture called PTARM. We present analytical bounds
on the latency and throughput of the proposed controller, and con-
firm these via simulation.

∗This work was supported in part by the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley, which
receives support from the National Science Foundation (NSF
awards #0720882 (CSR-EHS: PRET), #0931843 (ActionWebs),
and #1035672 (CSR-)CPS Ptides)), the U. S. Army Research Of-
fice (ARO #W911NF-07-2-0019), the U. S. Air Force Office of
Scientific Research (MURI #FA9550-06-0312), the Air Force Re-
search Lab (AFRL), the Multiscale Systems Center (MuSyC), one
of six research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program, and the
following companies: Bosch, National Instruments, Thales, and
Toyota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

Categories and Subject Descriptors
B.3.0 [Memory Structures]: General

General Terms
Design

Keywords
real-time computing, memory controller, timing predictability, tem-
poral isolation, memory hierarchy

1. INTRODUCTION
Hard real-time embedded systems are an important class of em-

bedded systems in which a violation of timing constraints in any
part of the system could result in catastrophic outcomes. Appli-
cations of such systems include aircraft flight control, automotive
engine control, and nuclear plant control. For the design and cer-
tification of such systems, it is necessary to prove that the behav-
iors these systems implement are guaranteed to meet their timing
constraints. Whether or not this is possible and with what effort
depends on the timing predictability of the software and the under-
lying execution platform.

In addition to predictable timing, it is increasingly important
to achieve temporal isolation between distinct real-time functions.
One function should not disrupt the timing of another. In partic-
ular, in order to reduce implementation cost, there is a shift from
federated architectures, where each major function is implemented
separately on a dedicated execution platform, towards integrated
architectures, where multiple critical functions are integrated on a
single, shared execution platform. For instance, it would be ineffi-
cient to provide separate high-capacity off-chip memories for each
function if the memory requirements of all functions can be met
with a single large memory. When moving to an integrated ar-
chitecture, it is essential to retain the ability to develop and verify
functions separately. This is particularly the case when different
functions are developed by different entities.

Summarizing, the designer of an execution platform for embed-
ded hard-real time systems faces two challenges:

1. The platform should be timing predictable to make the veri-
fication of timing constraints possible.

2. Different functions integrated on the platform should be tem-
porally isolated to enable independent development and ver-
ification.

The integration of several increasingly complex functions in em-
bedded systems yields memory requirements that mandate the use
of high-capacity off-chip memories such as dynamic RAM (DRAM).
This paper presents a novel DRAM controller that tackles the above
two challenges. Predicting DRAM access latencies for conven-
tional memory controllers is challenging for several reasons: the
latency of a memory access depends on the history of previous ac-
cesses to the memory, which determine whether or not a differ-
ent row has to be activated. When several applications share the
memory, the history of previous accesses to the memory is the re-
sult of one of extremely many interleavings of access histories of
the different applications. In addition, DRAM cells have to be re-
freshed periodically. Conventional memory controllers may issue
refreshes and block current requests at—from the perspective of an
application—unpredictable times.

Previous work by Åkesson et al. [1, 2] and Paolieri et al. [3]
achieves timing predictability by dynamically scheduling precom-
puted sequences of SDRAM commands. While these sequences do
not completely eliminate the dependence of timing on access his-
tory, they do allow to compute bounds on latency relatively easily.

Our approach significantly improves worst-case access latencies
of short transfers compared with this previous work. The main in-
novation that enables these improvements is that we view a DRAM
device not as a single resource to be shared entirely among a set of
clients, but as several resources which may be shared among one or
more clients individually. We partition the physical address space
following the internal structure of the DRAM device, i.e., its ranks
and banks. By interleaving accesses to blocks of this partition in
a time-triggered way, we eliminate potential contention for shared
resources within the device, which could otherwise incur high la-
tencies. The time-triggered nature of the approach also eliminates
temporal interference.

Our second innovation is our treatment of refreshes: we defer
refreshes to the end of a transfer, and we perform them “manu-
ally” through row accesses rather than through the standard refresh
mechanism. Both modifications improve access latencies at a slight
loss of bandwidth.

The DRAM controller is part of a larger effort to develop PTARM [4],
a precision-timed (PRET [5, 6]) architecture, which provides pre-
dictable and repeatable timing. PTARM employs a four-stage, four-
thread thread-interleaved pipeline. The four resources provided by
the memory controller are a perfect match for the four hardware
threads of PTARM. We discuss the integration of our controller
within PTARM, including the use of direct memory access units.

2. BACKGROUND: DRAM BASICS
We present the basics of DRAM, and the structure of modern

DRAM modules. Inherent properties of DRAM and the structure of
DRAM modules impose several timing constraints, which all mem-
ory controllers must obey. For more details on different DRAM
standards, we refer the reader to Jacob et al. [7].

Dynamic RAM Cell.
A DRAM cell consists of a capacitor and a transistor as shown

in Figure 1. The charge of the capacitor determines the value of the
bit, and by triggering the transistor, one can access the capacitor.
However, the capacitor leaks charge over time, and thus, it must
be refreshed periodically. According to the JEDEC [8] capacitors
must be refreshed every 64 ms or less.

DRAM Array.
A DRAM array contains a two-dimensional array structure of

DRAM cells. Accesses to a DRAM array proceed in two phases:

row accesses followed by one or more column accesses. A row
access moves one of the rows of the DRAM array into the row
buffer. As the capacitance of the capacitors in the DRAM cells is
low compared with that of the wires connecting them to the row
buffer, sense amplifiers are needed to read out their values. In order
for the sense amplifiers to read out the value of a DRAM cell, the
wires need to be precharged close to the voltage threshold between
0 and 1. Once a row is in the row buffer, columns can be read from
and written to quickly. Columns are small sets of consecutive bits
within a row.

DRAM Devices.
DRAM arrays form banks in a DRAM device. Figure 1 illus-

trates a bank’s structure, and the location of banks within DRAM
devices. Modern DRAM devices have multiple banks, control logic,
and I/O mechanisms to read from and write to the data bus as shown
in the center of Figure 1. Different banks within a device can be
accessed concurrently. This is known as bank-level parallelism.
However, the data, command, and address busses are shared among
all banks, as is the I/O gating, connecting the banks to the data bus.

A DRAM device receives commands from its memory controller
through the command and address busses. The following table lists
the four most important commands and their function:

Command Abbr. Description
Precharge PRE Stores back the contents of the row buffer

into the DRAM array, and prepares the
sense amplifiers for the next row access.

Row
access

RAS Moves a row from the DRAM array through
the sense amplifiers into the row buffer.

Column
access

CAS Overwrites a column in the row buffer or
reads a column from the row buffer.

Refresh REF Refreshes several1rows of the DRAM array.
This uses the internal refresh counter to de-
termine which rows to refresh.

To read from or write to the DRAM device, the controller needs
to first precharge (PRE) the bank containing the data that is to be
read. It can then perform a row access (RAS = row access strobe),
followed by one or more column accesses (CAS = column access
strobe). Column accesses can be both reads and writes. For higher
throughput, column accesses are performed in bursts. The length
of these bursts is usually configurable to four or eight words. In a
x16-device, columns consist of 16 bits. A burst of length four will
thus result in a transfer of 64 bits. To decrease the latency between
accesses to different rows, column accesses can be immediately fol-
lowed by precharge operations, which is known as auto-precharge
(aka closed-page policy).

There are two ways of refreshing DRAM cells within the 64 ms
timing constraint:

1. Issue a refresh command. This refreshes all banks of the de-
vice simultaneously. The DRAM device maintains a refresh
counter to step through all of the rows. To refresh every row
and thus every DRAM cell every 64 ms, the memory con-
troller has to issue at least 8192 refresh commands in every
interval of 64 ms. Earlier devices had exactly 8192 rows
per bank. However, recent higher-density devices have up to
65536 rows per bank. As a consequence, for such devices,
a refresh command will refresh several rows in each bank,
increasing refresh latency considerably.

1The number of rows depends on the capacity of the device.

2. Manually refresh rows. The memory controller performs a
row access on every row in every bank every 64 ms. This
forces the memory controller to issue more commands, and
it requires a refresh counter outside of the memory device.
Each refresh takes less time because it only accesses one row,
but refreshes have to be issued more frequently.

DRAM Modules.
To achieve greater capacity and bandwidth, several DRAM de-

vices are integrated on a memory module. The right side of Fig-
ure 1 depicts a high-level view of the dual-ranked dual in-line mem-
ory module (DIMM) that the PRET DRAM controller uses. The
DIMM has eight DRAM devices that are organized in two ranks
of four x16 DRAM devices each. The two ranks share the address
and command inputs, and the 64-bit data bus. The chip select input
determines which of the two ranks is addressed. DRAM devices
within a rank operate in lockstep: they receive the same address
and command inputs, and read from or write to the data bus at the
same time.

Logically, the four x16 DRAM devices that comprise a rank can
be viewed as one x64 DRAM device. This is how we view them for
the remainder of this paper. When referring to a bank i in one of the
two ranks, we are referring to bank i in each of the four x16 DRAM
devices that comprise that rank. A burst of length four results in a
transfer of 4 · 16 · 4 = 256 bits = 32 bytes.

Due to the sharing of I/O mechanisms within a device, consec-
utive accesses to the same rank are more constrained than consec-
utive accesses to different ranks, which only share the command
and address as well as the data bus. We later exploit this subtle
difference by restricting consecutive accesses to different ranks to
achieve more predictable access latencies. Our controller makes
use of a feature from the DDR2 standard known as posted-CAS.
Unlike DDR or other previous versions of DRAMs, DDR2 can de-
lay the execution of CAS commands (posted-CAS). After receiving
a posted-CAS, DDR2 waits for a user-defined latency, known as the
additive latency AL, until sending the CAS to the column decoder.
Posted-CAS can be used to resolve command bus contention by
sending the posted-CAS earlier than the corresponding CAS needs
to be executed. We explain this in more detail in Section 4.1.

DDR2 Timing Constraints.
The internal structure of DRAM modules described above as

well as properties of DRAM cells incur a number of timing con-
straints, which DRAM controllers have to obey. Table 1 gives
an overview of timing parameters for a DDR2-400 memory mod-
ule and brief explanations. These parameters constrain the place-
ment of commands to be send to a DDR2 module. Some of the
constraints (tRCD, tRP , tRFC) are solely due to the structure of
DRAM banks, which are accessed through sense amplifiers that
have to be precharged. Others result from the structure of DRAM
banks and DRAM devices: tCL, tWR, tWTR, tWL. The four-bank
activation window constraint tFAW constrains rapid activation of
multiple banks which would result in too high a current draw. The
additive latency, tAL, can be set by the user and determines how
many cycles after a posted-CAS a CAS is executed.

3. RELATED WORK
The most related work is that of Åkesson et al. [1, 2] and Paolieri

et al. [3]. Åkesson et al. introduce Predator, a predictable SDRAM
controller. Predator is a hybrid between static and dynamic memory
controllers. Instead of dynamically scheduling individual SDRAM
commands, Predator’s backend dynamically schedules precomputed
sequences of SDRAM commands: one for writes, one for reads,
one for switching from reads to writes, one for switching from

writes to reads, and one for refreshes. These sequences obey all
SDRAM timing constraints and have fixed latencies. While they do
not completely eliminate the dependence of timing on the access
history, they do allow to compute latency bounds relatively eas-
ily. To fully utilize the bandwidth DRAM devices provide, the pre-
computed read and write sequences access every bank of a DRAM
module in an interleaved fashion.

To share access to the DRAM, Åkesson et al. propose credit-
controller static-priority (CCSP) arbitration [9], which regulates the
rates of requests, guarantees a maximum bandwidth, and ensures
bounded latency. In contrast to, e.g. TDMA or round robin, CCSP
decouples latency from rate. To provide a client with a low latency
one does not have to allocate a high rate as well. Still, Predator can
also be combined with more common forms of arbitration such as
time-division multiple access (TDMA).

The approach of Paolieri et al. [3] called analyzable memory con-
troller (short AMC) is very similar to that of Predator. The main
difference between AMC and Predator is arbitration. AMC em-
ploys a round-robin arbiter, which they argue is more suitable for
control-based applications than CCSP, which requires to assign pri-
orities and bandwidth requirements.

The main difference between Predator and AMC on the one hand,
and our work on the other, is that the backends of Predator and
AMC share the entire memory among all clients by design. Our
approach allows to share memory, but, as our analytical evaluation
in Section 5 shows, assigning private partitions to clients can sig-
nificantly improve latency of short transfers. In contrast to Preda-
tor and AMC we do not use the standard refresh mechanism, but
perform refreshes manually, accessing all of the rows periodically.
This also improves latency at a slight loss of bandwidth. When
the memory is not shared, we further improve latency by pushing
refreshes to the end of a transfer.

Bhat and Mueller [10] eliminate interferences between refreshes
and memory accesses of tasks, so that WCET analysis can be per-
formed without having to consider refreshes. Instead of spreading
the refreshes over time, they bundle them, and refresh all lines of
a DRAM device in a single or few bursts of refreshes. These re-
fresh bursts can then be scheduled in periodic tasks and taken into
account during schedulability analysis. This approach can be im-
plemented in software. However, it neither deals with interferences
between different tasks in a multi-core system nor does it provide
latency guarantees.

Refreshes have earlier been considered in WCET analysis by
Atanassov and Puschner [11]. They determine the maximal im-
pact of DRAM refreshes on execution time in the long run. Execu-
tion time may increase by approximately 2% for the DRAM device
considered in [11]. The approach is limited to timing compositional
architectures [12].

Bourgade et al. [13] propose a static analysis of the DRAM state
based on abstract interpretation. Their analysis tracks, for all pro-
gram points, which rows may be open at those points. This infor-
mation is then used to bound memory access times. The analysis
of Bourgade et al. is useful and valid as long as the DRAM is not
shared by several clients. Another restriction of this approach is
that it does not consider refreshes.

4. PRET DRAM CONTROLLER
The memory controller is split into a backend and a frontend.

The backend issues commands to the DRAM module, and the fron-
tend connects to the processor. For this section, we specifically
refer to a DDR2 667MHz/PC2-5300 memory module operating at
200Mhz, which has a total size of 512MB over two ranks with four
banks on each rank. While our discussion of the design of this

DIMMaddr+cmd

chip select 0
16

 data

chip select 1

x16
Device

16
 data

16
 data

16
 data

x16
Device

x16
Device

x16
Device

x16
Device

x16
Device

x16
Device

x16
Device

64

data

Rank 0 Rank 1

address

I/O
 R

eg
ist

er
s

+
Da

ta
 I/

OAddress
Register

Control
Logic

Mode
Register

16
data

command

chip select

DRAM Device

BankBankBankBankRow
Address

Mux

Refresh
Counter

I/O
Gating

DRAM
Array

Ro
w

De
co

de
r

Sense Amplifiers
and Row Buffer

Column Decoder/
Multiplexer

Ro
w

Ad
dr

es
s

Bank

CapacitorBit line

Word line

Transistor

Figure 1: A dual-ranked dual in-line memory module.

Table 1: Overview of DDR2-400 timing parameters at the example of the Qimonda HYS64T64020EM-2.5-B2.
Para-
meter

Value (in cycles
at 200 MHz)

Description

tRCD 3 Row-to-Column delay: time from row activation to first read or write to a column within that row.
tCL 3 Column latency: time between a column access command and the start of data being returned.
tWL tCL − 1 = 2 Write latency: time after write command until first data is available on the bus.
tWR 3 Write recovery time: time between the end of a write data burst and the start of a precharge command.
tWTR 2 Write to read time: time between the end of a write data burst and the start of a column-read command.
tRP 3 Time to precharge the DRAM array before next row activation.
tRFC 21 Refresh cycle time: time interval between a refresh command and a row activation.
tFAW 10 Four-bank activation window: interval in which maximally four banks may be activated.
tAL set by user Additive latency: determines how long posted column accesses are delayed.

Resource/Rank

Cycles

tRCD

0/0 1/1 2/0 3/1 0/0

Command Bus

1/1

...
R
A
S

C
A
S

N
O
P

R
A
S

C
A
S

N
O
P

R
A
S

C
A
S

N
O
P

N
O
P

N
O
P

N
O
P

R
A
S

C
A
S

N
O
P

R
A
S

C
A
S

N
O
P

Rank 0
Resource 0+2

Rank 1
Resource 1+3

R
A
S

C
A
S

Data Bus

C
A
S

Burst from
Rank 0

Posted-
CAS
with

tAL=2

Auto-Precharge

R
A
S

C
A
S

Posted-
CAS

Auto-Precharge P
R
E

Burst to
Rank 1

R
A
S

P
R
E

Posted-
CAS

Burst from
Rank 0

P
R
E

R
A
S

Auto-Precharge

C
A
S

Posted-
CAS

...

...
R
A
S

...

tCL
tWL tWR

tRP
tRCD

tFAW

N
O
P

Figure 2: The periodic and pipelined access scheme employed
by the backend. In the example, we perform a read from re-
source 0 (in rank 0), a write to resource 1 (in rank 1), and a
read from resource 2 (in rank 0).

DRAM controller is specific to our DDR2 memory module, the key
design features are applicable to other modern memory modules.

4.1 DRAM Controller Backend
The backend views the memory device as four independent re-

sources: each resource consisting of two banks within the same
rank. By issuing commands to the independent resources in a pe-
riodic and pipelined fashion, we exploit bank parallelism and re-
move interference amongst the resources. This is unlike conven-
tional DRAM controllers that view the entire memory device as
one resource. Other partitions of the eight banks would be possi-
ble, as long as all of the banks that are part of a resource belong to
the same rank of the memory module, and each of the two ranks
contains two resources.

Figure 2 shows an example of the following access requests from
the frontend: read from resource 0 in rank 0, write to resource 1 in
rank 1, and read from resource 2 in rank 0. The controller peri-
odically provides access to the four resources every 13 cycles. In
doing so, we exploit bank parallelism for high bandwidth, yet, we
avert access patterns that otherwise incur high latency due to the
sharing of resources within banks and ranks.

The backend translates each access request into a row access
command (RAS), a posted column access command (posted-CAS)
or a NOP. We refer to a triple of RAS, CAS and NOP as an access
slot. In order to meet row to column latency shown in Table 1, the
RAS command and the first CAS command need to be 3 cycles
apart. However, we can see from Figure 2 that if we waited for 3
cycles before issuing the CAS to access the first resource, it would
conflict with the RAS command for accessing the second resource
on the command bus. Instead, we set the additive latency tAL to 2.
This way, the posted-CAS results in a CAS two cycles later within
the DRAM chip. This is shown in Figure 2 as the posted-CAS
appears within its rank 2 cycles after the CAS was issued on the
command bus, preserving the pipelined access scheme.

The row access command moves a row into the row buffer. The
column access command can be either a read or a write, causing a
burst transfer of 8·4 = 32 bytes, which will occupy the data bus for
two cycles (as two transfers occur in every cycle). We use a closed-
page policy (also known as auto-precharge policy), which causes
the accessed row to be immediately precharged after performing
the column access (CAS), preparing it for the next row access. If
there are no requests for a resource, the backend does not send any
commands to the memory module, as is the case for resource 3 in
Figure 2.

There is a one cycle offset between the read and write laten-
cies. Given that requests may alternate between reads and writes,
the controller inserts a NOP between any two consecutive requests.
This avoids a collision on the data bus between reads and writes.
By alternating between ranks, no two adjacent accesses go to the
same rank. This satisfies the write-to-read timing constraint tWTR

incurred by the sharing of I/O gating within ranks. In addition, we
satisfy the four-bank activation window constraint because within
any window of size tFAW we activate at most four banks due to
the periodic access scheme.

With the closed-page policy, in case of a write, we need 13 cycles
to access the row, perform a burst access, and precharge the bank
to prepare for the next row access. This is the reason for adding a
NOP after four access slots: to increase the distance between two
access slots belonging to the same resource from 12 to 13 cycles.
The backend does not issue any refresh commands to the memory

mod 13 counter

PRET DRAM Controller Backend

Memory
Map

Command
Generator

M
UX

Req. Buf

DE
M

UX

Resp. Buf

Req. Buf

Resp. Buf

Req. Buf

Resp. Buf

Req. Buf

Resp. Buf

resourcecommand

Figure 3: Sketch of implementation of the backend.

module. Instead, it relies on the frontend to refresh the DRAM cells
using regular row accesses.

Implementation and Interface to Frontend.
For each resource, the backend contains single-place request and

response buffers, written to and read from by the frontend. A re-
quest consist of an access type (read or write), a logical address,
and in the case of a write, the data to be written. Requests are
serviced at the granularity of bursts, i.e. 32 bytes in case of burst
length 4 and 64 bytes in case of burst length 8.

The access scheme can be implemented relatively easily by a
modulo-13 counter (as the backend has period 13) and two sim-
ple combinational circuits, as schematically illustrated in Figure 3.
The “resource" circuit determines which request buffer to use when
generating the command and address to be sent to the memory
module. The logical addresses are mapped to physical addresses
based on the output of the “resource” circuit, which determines the
appropriate bank. Similarly, the output of the “command” and “re-
source” circuits are used to determine when and from which buffer
to send data on the data bus in case of writes, and, in case of reads,
which response buffer to fill.

Longer Bursts for Improved Bandwidth.
Depending on the application, bandwidth might be more impor-

tant than latency. Bandwidth can be improved by increasing the
burst length from 4 to 8. Extending the proposed access scheme to
a burst length of 8 is straightforward with the insertion of two ad-
ditional NOP commands after each request to account for the extra
two cycles of data being transfered on the data bus. In this case, the
access slot latency for each request is increased from three to five to
include the extra two NOP commands, and data will be transferred
in four out of five cycles rather than in two out of three. Then, of
course, latency of transfers of size less than or equal to 32 bytes
increases, but the latency of large transfers decreases and higher
bandwidth is achieved.

4.2 DRAM Controller Frontend
In this section, we discuss our integration of the backend within

the PTARM PRET architecture [4]. We also discuss how the PRET
DRAM controller could be integrated into other predictable archi-
tectures, such as those proposed by the MERASA [14], PREDA-
TOR [12], JOP [15], or CoMPSoC [16] projects, which require
predictable and composable memory performance.

4.2.1 Integration with the PTARM Architecture
PTARM [4], a PRET machine [5], is a thread-interleaved im-

plementation of the ARM instruction set. Thread-interleaved pro-
cessors preserve the benefit of a multi-threaded architecture – in-
creased throughput, but use a predictable fine-grained thread-scheduling
policy – round robin. If there is the same number of hardware
threads as there are pipeline stages, at any point in time, each stage
of the pipeline is occupied by a different hardware thread; there are

Thread Thread Thread Thread

DMADMADMADMA

32 KB
I-SPM

32 KB
D-SPM DR

AM
 C

on
tro

lle
r

Ba
ck

en
d

Du
al

-R
an

ke
d

DD
R2

M

em
or

y
M

od
ul

e

DR
AM

 C
on

tro
lle

r
Fr

on
te

nd

Figure 4: Integration of PTARM core with DMA units, PRET
memory controller and dual-ranked DIMM.

no dependencies between pipeline stages, and the execution time of
each hardware thread is independent of all others. PTARM has four
pipeline stages and four hardware threads. Each hardware thread
has access to an instruction scratchpad and a data scratchpad. The
scratchpads provide single-cycle access latencies to the threads.
The two scratchpads are shared among the four threads, allow-
ing for shared memory communication among the threads. How-
ever, due to the thread-interleaving, only one thread can access the
scratchpad at any time. Each hardware thread is also equipped with
a direct memory access (DMA) unit, which can perform bulk trans-
fers between the two scratchpads and the DRAM. Both scratchpads
are dual-ported, allowing a DMA unit to access the scratchpads in
the same cycles as its corresponding hardware thread. In our im-
plementation of thread-interleaving, if one thread is stalled waiting
for a memory access, the other threads are unaffected and continue
to execute normally.

The four resources provided by the backend are a perfect match
for the four hardware threads in the PTARM thread-interleaved
pipeline. We assign exclusive access to one of the four resources
to each thread. In contrast to conventional memory architectures,
in which the processor interacts with DRAM only by filling and
writing back cache lines, there are two ways the threads can inter-
act with the DRAM in our design. First, threads can initiate DMA
transfers to transfer bulk data to and from the scratchpad. Second,
since the scratchpad and DRAM are assigned distinct memory re-
gions, threads can also directly access the DRAM through load and
store instructions.

Whenever a thread initiates a DMA transfer, it passes access to
the DRAM to its DMA unit, which returns access once it has fin-
ished the transfer. During the time of the transfer, the thread can
continue processing and accessing the two scratchpads. If at any
point the thread tries to access the DRAM, it will be blocked un-
til the DMA transfer has been completed. Similarly, accesses to
the region of the scratchpad which are being transferred from or to
will stall the hardware thread2. Figure 4 shows a block diagram
of PTARM including the PRET DRAM controller backend and the
memory module. The purpose of the frontend is to route requests
to the right request buffer in the backend and to insert a sufficient
amount of refresh commands, which we will discuss in more detail.

When threads directly access the DRAM through load (read) and
store (write) instructions, the memory requests are issued directly
from the pipeline. Figure 6, which we will later use to derive the
read latency, illustrates the stages of the execution of a read in-
struction in the pipeline. At the end of the memory stage, a re-
quest is put into the request buffer of the backend. Depending on
the alignment of the pipeline and the backend, it takes a varying
number of cycles until the backend generates corresponding com-
mands to be sent to the DRAM module. After the read has been
performed by the DRAM and has been put into the response buffer,
again, depending on the alignment of the pipeline and the back-
end, it takes a varying number of cycles for the pipeline to reach

2This does not affect the execution of any of the other hardware
threads.

the write-back stage of the corresponding hardware thread. Unlike
the thread-interleaved pipeline, the DMA units are not pipelined,
which implies that there are no “alignment losses”: the DMA units
can fully utilize the bandwidth provided by the backend.

Store Buffer.
Stores are fundamentally different from loads in that a hardware

thread does not have to wait until the store has been performed in
memory. By adding a single-place store buffer to the frontend, we
can usually hide the store latency from the pipeline. Using the store
buffer, stores which are not preceded by other stores can be per-
formed in a single thread cycle. By thread cycle, we denote the time
it takes for an instruction to pass through the thread-interleaved
pipeline. Other stores may take two thread cycles to execute. A
bigger store buffer would be able to hide latencies of successive
stores at the expense of increased complexity in timing analysis.

Scheduling of Refreshes.
DRAM cells need to be refreshed at least every 64 ms. A refresh

can either be performed by a hardware refresh command, which
may refresh several rows of a device at once3, or by performing in-
dividual row accesses “manually”. We opt to do the latter. This has
the advantage that a single row access takes less time than the ex-
ecution of a hardware refresh command, thereby improving worst-
case latency, particularly for small transfers. The disadvantage, on
the other hand, is that more manual row accesses have to be per-
formed, incurring a slight hit in bandwidth.

In our device, each bank consists of 8192 rows. Thus, a row has
to be refreshed every 64ms/8192 = 7.8125µs. At a clock rate of
200 MHz of the memory controller, this corresponds to 7.8125µs ·
(200cycles/µs) = 1562.5 cycles. Since each resource contains
two banks, we need to perform two refreshes every 1562.5 cycles,
or one every 781.25 cycles. One round of access is 13 cycles at
burst length 4, and includes the access slots to each resource plus a
nop command. So we schedule a refresh every b781.25/13cth =
60th round of the backend. This way, we are scheduling refreshes
slightly more often than necessary. Scheduling a refresh every
60 · 13 cycles means that every row, and thus every DRAM cell,
is refreshed every 60 · 13 cycles · 8192 · 2/(200000 cycles/ms) ≤
63.90ms. We are thus flexible to push back any of these refreshes
individually by up to 0.1ms = 20000 cycles without violating the
refreshing requirement.

We make use of this flexibility for loads from the pipeline and
when performing DMA transfers: if a load would coincide with a
scheduled refresh, we push back the refresh to the next slot. Simi-
larly, we skip the first refresh during a DMA transfer and schedule
an additional one at the end of the transfer. This pushes back the
refresh of a particular row by at most 60 · 13 cycles. More so-
phisticated schemes would be possible, however, we believe their
benefit would be slim. Following this approach, two latencies can
be associated with a DMA transfer:

1. The time from initiating the DMA transfer until the data has
been transferred, and is, e.g., available in the data scratchpad.

2. The time from initiating the DMA transfer until the thread-
interleaved pipeline regains access to the DRAM.

Our conjecture is that latency 1 is usually more important than la-
tency 2. Furthermore, our approach does not deteriorate latency 2.
For loads sent from the pipeline, the pushed back refreshes become
invisible: as the pipeline is waiting for the data to be returned and
takes some time to reach the memory stage of the next instruction,

3Internally, this still results in several consecutive row accesses.

Cycles

Backend Period
R
A
S

C
A
S

N
O
P

Slot Width
SW = 3 cycles

Access Slot 0 1 2 3

Backend Period
BP = SW*S + 1 = 13 cycles

Number of Slots
S = 4

IF/WB

Cycles

Pipeline Period

Processor Cycle Length
CL = 2 cycles

Pipeline Period, Thread Cycle
PP = CL*T = 8 cycles

Number of Threads
= Number of Pipeline Stages

T = 4
MEMEXID

N
O
P

Figure 5: Terms related to the backend and the PTARM
thread-interleaved pipeline.

it is not able to use successive access slots of the backend, and thus
it is unable to observe the refresh at all. With this refresh scheme,
refreshes do not affect the latencies of load/store instructions, and
the refreshes scheduled within DMA transfers are predictable so
the latency effects of the refresh can be easily analyzed.

4.2.2 Integration with Other Multi-Core Processors
Several recent projects strive do develop predictable multi-core

architectures [14, 12, 15, 16]. These could potentially profit from
using the proposed DRAM controller. The frontend described in
the previous section makes use of specific characteristics of the
PTARM architecture. However, when integrating the backend with
other architectures, we cannot rely on these characteristics. A par-
ticular challenge to address is that most multi-core processors use
DRAM to share data, while local scratchpads or caches are private.
This can be achieved by sharing the four resources provided by
the backend within the frontend. A particularly simple approach
would first combine the four resources into one: an access to the
single resource would simply result in four smaller accesses to the
resources of the backend. This single resource could then be shared
among the different cores of a multi-core architecture using pre-
dictable arbitration mechanisms such as Round-Robin or CCSP [9]
or predictable and composable ones like time-division multiple ac-
cess (TDMA). However, sharing the DRAM resources comes at the
cost of increased latency. We investigate this cost in Section 5.3.

5. ANALYTICAL EVALUATION
The purpose of this section is twofold: to derive latency and

bandwidth guarantees for our memory controller for different pos-
sible configurations, and to compare our controller in terms of la-
tency and bandwidth with Predator and AMC.

Within PTARM, we either access the DRAM directly through
loads and stores, or through DMA transfers. We proceed to derive
best- and worst-case latencies for these two types of accesses.

5.1 Terms and Parameters
Figure 5 introduces parameters we will use in our latency deriva-

tions. The first part of the figure concerns the backend. A backend
period (BP) consists of a number of access slots, denoted by S.
In our current design S = 4 corresponding to the four resources
exposed by the backend. Each access slot requires slot width SW
cycles. In this section, “cycle” always refers to cycles of the mem-
ory controller. At burst length 4, each access slot consists of a RAS,
a CAS, and a NOP, so SW = 3 = BL/2 + 1. In case of burst
length 8, SW = 5 = BL/2 + 1. Thus, the length of a backend
period, denoted BP is the product of the number of access slots
S and the slot width SW plus the number of NOPs inserted after
every S access slots. As we have seen earlier, we have to insert one

NOP to satisfy timing constraints at burst length 4. At burst length
8, this is not necessary.

The second part of Figure 5 concerns the thread-interleaved pipeline.
Since the frequency of the thread-interleaved pipeline differs from
the DRAM controller, a cycle of the pipeline can take several cy-
cles of the DRAM controller. We denote the processor cycle length
by CL, which is 2 in our current design, as the thread-interleaved
pipeline is running at 100 MHz. Note that CL does not have to be
an integer. The number of cycles it takes to execute one instruction
of a thread is CL multiplied with the number of pipeline stages,
which in our case is the same as the number of threads T . We call
this, a thread cycle or pipeline period PP = CL ·T . In the current
design of PTARM, T = 4, and so PP = 8.

5.2 Latency of Loads and Stores in PTARM
To determine the load latency, consider Figure 6, which decom-

poses a load into three parts. At the end of its memory stage, the
pipeline stores its load command in the command buffer of the
memory controller.

Depending on the alignment of the backend and the pipeline,
the memory controller will send out corresponding RAS and CAS
when its access slot is active. LetBEL denote the backend latency,
i.e., the time a command spends in the command buffer before the
corresponding RAS command has been sent out. BEL can be any-
where between 1 cycle and BP cycles4.

After the RAS command has been sent to the DDR2 module, it
takes DRAM read latency, DRL, cycles until the requested data
is provided on the data bus. For a given memory module, and
our access scheme, DRL is constant, in our case 10 + BL

2
cy-

cles. However, the requesting thread can only receive this data in
its write-back stage. We denote the time that the data is buffered
in the memory controller before it is received by the processor by
thread alignment latency TAL. The read latency RL is then the
sum of the backend latency, the DRAM read latency, and the thread
alignment latency, i.e. RL = BEL+DRL+ TAL.

We can eliminate the parameter TAL from this equation, as it
follows from the backend latency: the write-back stage in which
the data is received occurs CL + k · PP cycles after the memory
stage issued the request for the smallest k such thatCL+k ·PP ≥
BEL + DRL. Here k is the number of thread cycles between
sending the read request and receiving the data. This smallest k
is determined by

⌈
BEL+DRL−CL

PP

⌉
. So, the read latency RL is

determined as follows:

RL =

⌈
BEL+DRL− CL

PP

⌉
· PP + CL. (1)

Based on RL we determine the number of thread cycles RTC
that a read takes, where PP is the length of a thread cycle (aka
pipeline period):

RTC =

⌈
RL

PP

⌉
=

⌈
BEL+DRL− CL

PP

⌉
+ 1. (2)

The only variable parameter left in these equations is the backend
latency BEL. BEL depends on the alignment of the backend and
the thread-interleaved pipeline. BEL may vary from one memory
access of a thread to the next. Whether it varies and how depends
on the backend period BP and the pipeline period PP . If BP and
PP are rational numbers, they have a least common multiple lcm,
the system’s hyperperiod. Alignments between the backend and the
thread-interleaved pipeline recur periodically every lcm(PP,BP)

cycles, which corresponds to lcm(PP,BP)
PP

thread cycles. If the two
4Note that BEL is always at least 1 as it includes the RAS com-
mand.

Backend Accesses

Thread i

Cycles

MEMEX WB/IF

Access Slot

ID

N
O
P

R
A
S

C
A
S

i-2 % S i-1 % S i i+1 % S i+2 % S

...

Backend Latency
BEL = 4 cycles

Data Bus to
DDR2 Module DATA

DRAM Read Latency
DRL = 12 cycles

WB/IF ID

... ...

Thread Alignment Latency
TAL = 4 cycles

MEM

Read Latency RL

Figure 6: Example of a load operation by hardware thread i in
the thread-interleaved pipeline.

periods do not have a common multiple, BEL will not be periodic
in general. Let BEL(i) denote the BEL in thread cycle i, then

BEL(i) = BEL(0)− (i · PP) mod BP. (3)

Our current version of PTARM contains four threads, so T = 4,
at a clock frequency of 100 MHz, so CL = 2, and thus PP = 8.
For burst length 4, BP = 13. Then BEL(i) periodically cycles
through lcm(PP,BP)

PP
= 104

8
= 13 different values. If the thread-

interleaved pipeline and the backend are activated simultaneously,
then BEL(0) will be 1 for the first thread, 2 for the second thread,
and so on. For thread 0, the backend latency then cycles through 1,
6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 8 periodically.

We can plug these values into the read latency equations. As-
suming additionally DRL = 10 + BL

2
= 12, we get RTC =⌈

BEL+DRL−CL
PP

⌉
+ 1 =

⌈
BEL+10

8

⌉
+ 1. As the backend latency

BEL is at most BP = 13, RTC is either
⌈
1+10

8

⌉
+ 1 = 3 or⌈

13+10
8

⌉
+ 1 = 4 thread cycles. For burst length 8, RTC varies

between 3 and 5 thread cycles.
For comparison, Predator [2], which has been designed for high

bandwidth, takes 53 cycles to service the smallest possible request
at burst length 4 and 70 cycles at burst length 8, which translates to
8 and 10 thread cycles, respectively.

By delaying refreshes until after a load has been performed, they
do not have an impact on load latency. As the data is returned
shortly before (burst length 8) or even at the same time (burst length
4) as the next access slot comes around a thread is not able to utilize
two consecutive access slots through loads.

Stores are fundamentally different from loads, as the pipeline
does not have to wait for a store to finish before resuming execu-
tion. By buffering stores, we can shield the pipeline from store
latencies. However, in the long run, with finite buffers, we are still
limited by the sustainable bandwidth of the memory: The mem-
ory is able to process a store every BP cycles. Furthermore re-
freshes are scheduled in every RFP th access slot, where RFP
denotes the refresh period. In the long run, a store thus requires
BP
PP
· RFP

RFP−1
thread cycles. In the case of burst length 4, this is

13
8
· 60

59
= 1.65, in case of burst length 8, this is 20

8
· 39

38
= 2.57.

Stores, which are not surrounded by other stores can be handled
within a single thread cycle. Other stores, may take 2 or 3 cycles
depending on the burst length and the state of the store buffer. By
introducing a larger store buffer, we would be able to to hide the
latency of a bounded number of consecutive stores, at the expense
of higher implementation cost and increased complexity in timing
analysis.

5.3 Latency of DMA Transfers
We anticipate that the main way of transferring data to and from

the DRAM will be through the DMA mechanism, which can fully
utilize the bandwidth provided by the memory. Unlike loads and
stores from the pipeline, DMA transfers can be of varying sizes.

5.3.1 Derivation of Worst-case DMA Latencies
To carry out a transfer of x bytes, a DMA unit needs to send⌈
x

BL·8

⌉
requests to the backend. It has to wait up toBEL cycles to

send the first request, then it can send requests everyBP = 4 ·(1+
BL
2
) cycles. BEL is at most BP . After sending the last request

to the backend, it takes DRL = 10 + BL
2

cycles for the resulting
burst transfer to finish. Thus, the latency DL(x) of a transfer of x
bytes from the DRAM in cycles of the memory controller is

DL(x) = BEL+BP ·
(⌈ x

BL · 8

⌉
− 1
)
+DRL (4)

≤ (4 + 2 ·BL) ·
⌈ x

BL · 8

⌉
+ 10 +

BL

2
. (5)

This equation, however, does not consider refreshes yet. As
noted before, we associate two latencies with a DMA transfer:

1. The time DLr(x) from initiating the DMA transfer until the
data has been transferred, and is, e.g., available in the data
scratchpad. The superscript r indicates that DLr(x) does not
include the final refresh.

2. The time DLr(x) from initiating the DMA transfer until the
thread-interleaved pipeline regains access to the DRAM. The
superscript r indicates that DLr(x) includes the final refresh.

One could further distinguish between transfers from DRAM to
scratchpad and from scratchpad to DRAM. Due to space constraints,
we only consider the former, which incurs higher latencies. DLr(x)
can be computed from DL(x) by adding latency incurred by re-
freshes beyond the first one, which will be accounted for in DLr(x):

DLr(x) = DL(x) +BP

⌈ ⌈
x

BL·8

⌉
RFP − 1

− 1

⌉
(6)

= DL(x) + (4 + 2 ·BL)

⌈ ⌈
x

BL·8

⌉
RFP − 1

− 1

⌉
(7)

where RFP is the refresh period. At burst length 4, RFP = 60,
at burst length 8, RFP = 39. DLr(x) is simply DLr(x) +BP .

In order to assess the value of privatization, we also determine
latencies for a scenario in which the four resources of the backend
are shared among four clients in a round-robin fashion. These four
clients could be the four threads of the PTARM or four cores in a
multi-core processor. This shall also indicate whether the PRET
DRAM controller is a viable option in such a scenario.

By DLn,s(x) we denote the latency of a transfer of size x, where
the DMA unit has access to n resources, which are each shared
among s clients. A transfer of size x will then be split up into n
transfers of size x/n. Due to the sharing of the resources, only
every sth access slot is available in each resource.

DLn,s(x) = s ·BP ·
⌈ x

n ·BL · 8

⌉
+DRL (8)

= s · (4 + 2 ·BL) ·
⌈ x

n ·BL · 8

⌉
+
BL

2
+ 9. (9)

For space reasons, we limit our analysis to the second of the two
latencies associated with a DMA transfer, which is derived simi-
larly to the non-shared case:

DLr
n,s(x) = DLn,s(x) +BP

⌈
s ·
⌈

x
n·BL·8

⌉
RFP − 1

⌉
(10)

= DLn,s(x) + (4 + 2 ·BL)

⌈
s ·
⌈

x
n·BL·8

⌉
RFP − 1

⌉
.(11)

32 64 96 128 160 192 224 256
0

25

50

75

100

125

150

“Manual” refreshes

Private resources in backend

Hiding refreshes

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator BL = 4 w/ refreshes
DLr

4,4(x): Shared PRET BL = 4 w/ refreshes
DLr(x): PRET BL = 4 w/ refreshes
DLr(x): PRET BL = 4 w/o refreshes

Figure 7: Latencies for small request sizes up to 256 bytes un-
der Predator and PRET at burst length 4. In this, and all of the
following figures, one cycle corresponds to 5 ns.

5.3.2 Analysis of Worst-case DMA Latencies
For comparison, we have also determined access latencies for

Predator based on Åkesson’s dissertation [2]. Figure 7 shows ac-
cess latencies of PRET and Predator for transfers up to 256 bytes,
as they frequently occur in fine-grained scratchpad allocation code,
or when filling cache lines. We compare four scenarios involving
PRET and Predator:

1. DLr(x): Latencies of transfers using one of the four resources
at burst length 4, excluding the cost of a final refresh.

2. DLr(x): Latencies of transfers using one of the four resources
at burst length 4, including the cost of all refreshes.

3. DLr
4,4(x): Latencies of transfers using all of the four re-

sources at burst length 4 shared among four clients (using
round-robin arbitration), including the cost of all refreshes.

4. Latencies of transfers using Predator at burst length 4 shared
among four clients (using round-robin arbitration), including
the cost of all refreshes.

Hiding refreshes (Scenario 1 vs Scenario 2) saves BP = 13
cycles in all cases. The benefit of private resources can be seen
comparing Scenario 2 with Scenario 3. When sharing all banks,
the minimum transfer size is 128 bytes (one burst of 32 bytes to
each of the four resources). For transfer sizes that are not multiples
of this size, private resources reduce latency significantly. The most
extreme case is that of a 32-byte transfer where latency is reduced
from 77 to 38 cycles. The slight advantage of shared PRET (Sce-
nario 3) compared with shared Predator (Scenario 4) can mostly be
explained by the manual refresh mechanism employed in PRET.

For larger transfers, the bandwidth provided by the memory con-
troller becomes more important, and private DRAM resources are
less beneficial. This is illustrated in Figure 8. For both burst length
4 and 8, PRET and Predator show very similar latencies. Predator’s
slightly flatter slope is due to fewer read/write switches and the use
of the standard refresh mechanism, which adversely affects laten-
cies of small transfers. For 2 KB transfers, burst length 8 reduces
latency by approximately 22% compared with burst length 4.

256 512 768 1,024 1,280 1,536 1,792 2,048
0

200

400

600

800 Benefit of burst length 8 over burst length 4

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator, BL = 4, accounting for all refreshes
DLr(x): PRET, BL = 4, accounting for all refreshes
Shared Predator, BL = 8, accounting for all refreshes
DLr(x): PRET, BL = 8, accounting for all refreshes

Figure 8: Latencies of Predator and PRET for request sizes up
to 2KB under burst lengths 4 and 8.

5.4 Bandwidth
We describe the peak bandwidth achieved by the PRET DRAM

controller. In the case of the burst length being 4, disregarding
refreshes, we send out four CAS commands every 13 cycles. Each
CAS results in a transfer of a burst of size 8 ·4 = 32 bytes over the
period of two cycles5. The memory controller and the data bus are
running at a frequency of 200 MHz. So, disregarding refreshes the
controller would provide a bandwidth of 200 MHz· 4

13
· 32 bytes ≈

1.969GB/s. We issue a refresh command in every 60th slot. This
reduces the available bandwidth to 59

60
· 1.969GB/s ≈ 1.936GB/s,

which are 60.5% of the data bus bandwidth.
For burst length 8, we transfer 8 · 8 = 64 bytes every five cycles

and perform a refresh in every 39th slot, resulting in an available
bandwidth of 200MHz · 38

39
· 1
5
· 64 bytes ≈ 2.494GB/s, or 77.95%

of the data bus bandwidth.

6. EXPERIMENTAL EVALUATION
We present experimental results to verify that the design of the

PRET DRAM controller honors the derived analytical bounds. We
have implemented the PRET DRAM controller, and compare it
via simulation with a conventional DRAM controller. We use the
PTARM simulator6 and extend it to interface with both memory
controllers to run synthetic benchmarks that simulate memory ac-
tivity. The PTARM simulator is a C++ simulator that simulates
the PRET architecture with four hardware threads running through
a thread-interleaved pipeline. We use a C++ wrapper around the
DRAMSim2 simulator [17] to simulate memory access latencies
from a conventional DRAM controller. A first-come, first-served
queuing scheme is used to queue up memory requests to the DRAM-
Sim2 simulator. The PRET DRAM controller was also written in
C++ based on the description in Section 4. The benchmarks we use
are all written in C, and compiled using the GNU ARM cross com-
piler. The DMA transfer latencies that are measured begin when
the DMA unit issues its first request and end when the last request
from the DMA unit is completed.

6.1 Experimental Results
We setup our experiment to show the effects of interference on

memory access latency for both memory controllers. We first setup
our main thread to run different programs that initiate fixed-size

5In double-data rate (DDR) memory two transfers are performed
per clock cycle.
6The PTARM simulator is available for download at http://
chess.eecs.berkeley.edu/pret/release/ptarm.

0 0.5 1 1.5 2 2.5 3
0

1,000

2,000

3,000

Interference [# of other threads occupied]

la
te

nc
y

[c
yc

le
s]

4096B transfers, conventional controller
4096B transfers, PRET controller

1024B transfers, conventional controller
1024B transfers, PRET controller

Figure 9: Latencies of conventional and PRET memory con-
troller with varying interference from other threads.

DMA transfers (256, 512, 1024, 2048 and 4096 bytes) at random
intervals. The DMA latencies of the main thread is what is mea-
sured and shown in Figure 9 and Figure 10. To introduce interfer-
ence within the system, we run a combination of two programs on
the other hardware threads in PTARM simulator. The first program
continuously issues DMA requests of large size (4096 bytes) in or-
der to fully utilize the memory bandwidth. The second program
utilizes half the memory bandwidth by issuing DMA requests of
size 4096 bytes half as frequently as the first program. In Figure 9,
we define thread occupancy on the x-axis as the memory bandwidth
occupied by the combination of all threads. 0.5 means we have one
thread running the second program along side the main thread. 1.0
means we have one thread running the first program along side the
main thread. 1.5 means we have one thread running the first pro-
gram, one thread running the second program, and both threads are
running along side the main thread, and so on. 3 is the maximum
we can achieve because the PTARM simulator has a total of four
hardware threads (the main thread occupies one of the four). We
measured the latency of each fixed size transfer for the main thread
to observe the transfer latency in the presence of interference from
memory requests by other threads.

In Figure 9, we show measurements taken from two different
DMA transfer sizes, 1024 and 4096 bytes. The marks in the figure
show the average latency measured over 1000 iterations. The error
bars above and below the marks show the worst-case and best-case
latencies of each transfer size over the same 1000 iterations. In both
cases, without any interference, the conventional DRAM controller
provides better access latencies. This is because without any inter-
ference, the conventional DRAM controller can often exploit row
locality and service requests immediately. The PRET DRAM con-
troller on the other hand uses the periodic pipelined access scheme,
thus even though no other threads are accessing memory, the mem-
ory requests still need to wait for their slot to get access to the
DRAM. However, as interference is gradually introduced, we ob-
serve increases in latency for the conventional DRAM controller.
This could be caused by the first-come, first-served buffer, or by
the internal queueing and handling of requests by DRAMSim2.
The PRET DRAM controller however is unaffected by the inter-
ference created by the other threads. In fact, the latency values
that were measured from the PRET DRAM controller remain the

http://chess.eecs.berkeley.edu/pret/release/ptarm
http://chess.eecs.berkeley.edu/pret/release/ptarm

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

transfer size [bytes]

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

Conventional controller
PRET controller

Figure 10: Latencies of conventional and PRET memory con-
troller with maximum load by interfering threads and varying
transfer size.

same under all different thread occupancies. This demonstrates the
temporal isolation achieved by the PRET DRAM controller. Any
timing analysis on the memory latency for one thread only needs
to be done in the context of that thread. We also see the range of
memory latencies for the conventional DRAM controller increase
as the interference increases. But the range of access latencies for
the PRET DRAM controller not only remains the same through-
out, but is almost negligible for both transfer sizes7. This shows the
predictable nature of the PRET DRAM controller.

In Figure 10 we show the memory latencies under full load (thread
occupancy of 3) for different transfer sizes. This figure shows that
under maximum interference from the other hardware threads, the
PRET DRAM controller is less affected by interference even as
transfer sizes increase. More importantly, when we compare the
numbers from Figure 10 to Figure 8, we confirm that the theoret-
ical bandwidth calculations hold even under maximum bandwidth
stress from the other threads.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a DRAM controller design that is

predictable with significantly reduced worst-case access latencies.
Our approach views the DRAM device as multiple independent re-
sources that are accessed in a periodic pipelined fashion. This elim-
inates contention for shared resources within the device to provide
temporally predictable and isolated memory access latencies. We
refresh the DRAM through row accesses instead of standard re-
freshes. This results in improved worst-case access latency at a
slight loss of bandwidth. Latency bounds for our memory con-
troller, determined analytically and confirmed through simulation,
show that our controller is both timing predictable and provides
temporal isolation for memory accesses from different resources.

Thought-provoking challenges remain in the development of an
efficient, yet predictable memory hierarchy. In conventional multi-
core architectures, local memories such as caches or scratchpads
are private, while access to the DRAM is shared. However, in
the thread-interleaved PTARM, the instruction and data scratchpad
memories are shared, while access to the DRAM is not. We have
demonstrated the advantages of privatizing parts of the DRAM for
worst-case latency. It will be interesting to explore the consequences
of the inverted sharing structure on the programming model.

We envision adding instructions to the PTARM that allow threads
to pass ownership of DRAM resources to other threads. This would,

7The range (worst-case latency - best-case latency) was approxi-
mately 90ns for 4096 bytes transfers and approximately 20ns for
1024 byte transfers.

for instance, allow for extremely efficient double-buffering imple-
mentations. We also plan to develop new scratchpad allocation
techniques, which use the PTARM’s DMA units to hide memory
latencies, and which take into account the transfer-size dependent
latency bounds derived in this paper.

8. REFERENCES
[1] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a

predictable SDRAM memory controller,” in CODES+ISSS.
ACM, 2007, pp. 251–256.

[2] B. Akesson, “Predictable and composable system-on-chip
memory controllers,” Ph.D. dissertation, Eindhoven
University of Technology, Feb. 2010.

[3] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An
analyzable memory controller for hard real-time CMPs,”
IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90,
2010.

[4] I. Liu, J. Reineke, and E. A. Lee, “A PRET architecture
supporting concurrent programs with composable timing
properties,” in 44th Asilomar Conference on Signals,
Systems, and Computers, November 2010.

[5] S. A. Edwards and E. A. Lee, “The case for the precision
timed (PRET) machine,” in DAC. New York, NY, USA:
ACM, 2007, pp. 264–265.

[6] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke,
“Temporal isolation on multiprocessing architectures,” in
DAC. ACM, June 2011.

[7] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers,
September 2007.

[8] JEDEC, DDR2 SDRAM SPECIFICATION JESD79-2E.,
2008.

[9] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens,
“Real-time scheduling using credit-controlled static-priority
arbitration,” in RTCSA, Aug. 2008, pp. 3 –14.

[10] B. Bhat and F. Mueller, “Making DRAM refresh
predictable,” in ECRTS, 2010, pp. 145–154.

[11] P. Atanassov and P. Puschner, “Impact of DRAM refresh on
the execution time of real-time tasks,” in Proc. IEEE
International Workshop on Application of Reliable
Computing and Communication, Dec. 2001, pp. 29–34.

[12] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems,”
IEEE TCAD, vol. 28, no. 7, pp. 966–978, 2009.

[13] R. Bourgade, C. Ballabriga, H. Cassé, C. Rochange, and
P. Sainrat, “Accurate analysis of memory latencies for
WCET estimation,” in RTNS, Oct. 2008.

[14] T. Ungerer et al., “MERASA: Multi-core execution of hard
real-time applications supporting analysability,” IEEE Micro,
vol. 99, 2010.

[15] M. Schoeberl, “A java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol. 54,
no. 1-2, pp. 265 – 286, 2008.

[16] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken,
“CoMPSoC: A template for composable and predictable
multi-processor system on chips,” ACM TODAES, vol. 14,
no. 1, pp. 1–24, 2009.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” Computer
Architecture Letters, vol. 10, no. 1, pp. 16 –19, Jan. 2011.

	Introduction
	Background: DRAM Basics
	Related Work
	PRET DRAM Controller
	DRAM Controller Backend
	DRAM Controller Frontend
	Integration with the PTARM Architecture
	Integration with Other Multi-Core Processors

	Analytical Evaluation
	Terms and Parameters
	Latency of Loads and Stores in PTARM
	Latency of DMA Transfers
	Derivation of Worst-case DMA Latencies
	Analysis of Worst-case DMA Latencies

	Bandwidth

	Experimental Evaluation
	Experimental Results

	Conclusions and Future Work
	References

