
PRET DRAM Controller:
Bank Privatization for Predictability
and Temporal Isolation

Sungjun Kim Columbia University
Edward A. Lee UC Berkeley
Isaac Liu UC Berkeley
Hiren D. Patel University of Waterloo
Jan Reineke UC Berkeley <speaker>

CODES+ISSS as part of ESWEEK 2011
Taipei, Taiwan, October 10th, 2011

Reineke et al., Berkeley 2

Predictability and Temporal Isolation

  Many embedded systems
are real-time systems

  Memory hierarchy has a
strong influence on their
performance:

  Need for Predictability

  Trend towards integrated
architectures:

  Need for Temporal Isolation

Hard Real-Time Systems

Safety critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car, Reaction in <10 mSec

Crankshaft-synchronous tasks,

Reaction in <45 µSec

Embedded controllers must finish
their tasks within given time bounds.
Developers would like to know the
Worst-Case Execution Time (WCET)
to give a guarantee.

Jan Reineke What is Predictability? April 7th , 2011 4 / 31

!"#$%&'()*+,-%.*

!"#$%&%

'()*+%+,%-.,)-*/)0%

1%$/*234(2./%$,5(,**4(,56%$/*234+,(2%7803*90%54+:;%

<=-.,>0%3+%?.43(@,%A+*).9B%

C1DE1DF&&%

Audio + video playback
with latency and
bandwidth constraints

Reineke et al., Berkeley 3

Outline

  Introduction
  DRAM Basics
  Related Work: Predator and AMC
  PRET DRAM Controller: Main Ideas
  Evaluation
  Integration into Precision-Timed ARM

Reineke et al., Berkeley 4

Outline

  Introduction

 DRAM Basics
  Related Work: Predator and AMC
  PRET DRAM Controller: Main Ideas
  Evaluation
  Integration into Precision-Timed ARM

Reineke et al., Berkeley 5

Memory Hierarchy:
Dynamic RAM vs Static RAM

Lee, Berkeley 21

Second Problem: Memory Hierarchy

! Register file is a temporary memory under program control.

" Why is it so small?

! Cache is a temporary memory under hardware control.

" Why is replacement strategy application independent?

PRET principle: any temporary memory is under program

control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

DRAM
•  Slow High Latency
•  High Capacity

SRAM
•  Fast Low Latency
•  Low Capacity

Reineke et al., Berkeley 6

Dynamic RAM Organization Overview

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o
w

 D
e
c
o
d
e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d

d
re

s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Device
Set of DRAM banks +

•  Control logic
•  I/O gating

Accesses to banks can be pipelined,
however I/O + control logic are shared

DRAM Cell
Leaks charge Needs to
be refreshed (every 64ms
for DDR2/DDR3)
therefore “dynamic”

DRAM Bank
= Array of DRAM Cells
+ Sense Amplifiers and

 Row Buffer
Sharing of sense
amplifiers and row buffer

DRAM Module
Collection of DRAM Devices

•  Rank = groups of devices
that operate in unison

•  Ranks share data/address/
command bus

Reineke et al., Berkeley 7

DRAM Memory Controller

Translates sequences of memory accesses by Clients (CPUs and I/O) into
legal sequences of DRAM commands

  Needs to obey all timing constraints
  Needs to insert refresh commands sufficiently often
  Needs to translate “physical” memory addresses into row/column/

bank tuples

CPU1

CPU1

I/O

...

DRAM
Module

Interconnect
+ Arbitration

Memory
Controller

Reineke et al., Berkeley 8

Dynamic RAM Timing Constraints

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o
w

 D
e
c
o
d
e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d

d
re

s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Memory Controllers have to conform to different timing constraints
that define minimal distances between consecutive DRAM commands.

Almost all of these constraints are due to the sharing of resources at
different levels of the hierarchy:

Needs to insert
refresh
commands
sufficiently often

Rows within a
bank share
sense amplifiers

Banks within a
DRAM device
share I/O gating
and control logic

Different ranks
share data/address/
command busses

Reineke et al., Berkeley 9

General-Purpose DRAM Controllers

  Schedule DRAM commands dynamically
  Timing hard to predict even for single client:

  Timing of request depends on past requests:
•  Request to same/different bank?
•  Request to open/closed row within bank?
•  Controller might reorder requests to minimize latency

  Controllers dynamically schedule refreshes
  Non-composable timing. Timing depends on behavior

of other clients:
  They influence sequence of “past requests”
  Arbitration may or may not provide guarantees

Reineke et al., Berkeley 10

General-Purpose DRAM Controllers

Load
B1.R3.C2

Load
B1.R4.C3

Load
B1.R3.C5 …

RAS
B1.R3

CAS
B1.C2

… RAS
B1.R4

CAS
B1.C3

… RAS
B1.R3

CAS
B1.C5

…

RAS
B1.R3

CAS
B1.C2

… RAS
B1.R4

CAS
B1.C3

… CAS
B1.C5

Memory
Controller

?

Reineke et al., Berkeley 11

Thread 2

Thread 1

General-Purpose DRAM Controllers

Load
B1.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Arbitration

Memory
Controller

Load
B3.R3.C2

Load
B3.R5.C3

Store
B2.R3.C5

?Load
B1.R3.C2

Load
B3.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Load
B3.R5.C3

Store
B2.R3.C5

Load
B1.R3.C2

Load
B3.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Load
B3.R5.C3

Store
B2.R3.C5

Reineke et al., Berkeley 12

Outline

  Introduction
  DRAM Basics

 Related Work: Predator and AMC
  PRET DRAM Controller: Main Ideas
  Evaluation
  Integration into Precision-Timed ARM

Reineke et al., Berkeley 13

Predictable DRAM Controllers:
Predator (Eindhoven) and AMC (Barcelona)

CPU1

CPU1

I/O

...

DRAM
Module

Interconnect
+ Arbitration

Memory
Controller

Predictable and/or
composable arbitration:
•  Predator: CCSP
•  AMC: TDMA

Closed-page policy: timing
independent of previously
accessed row

Spread each request
over all banks, pipeline
accesses to banks.

Statically precomputed
sequences for writes,
reads, write->read,
read->write, refresh.

Reineke et al., Berkeley 14

Predictable DRAM Controllers:
Predator (Eindhoven)

Load
B1.R3.C2

Load
B1.R4.C3

Store
B1.R3.C5 …

Predictable Memory
Controller: Predator

Read Pattern Read Pattern Write Pattern R/W Pattern

Closed-page policy: timing
independent of previously
accessed row

Spread each request
over all banks, pipeline
accesses to banks.

Statically precomputed
sequences for writes,
reads, write->read,
read->write, refresh.

  increases access
granularity

Reineke et al., Berkeley 15

Thread 2

Thread 1

Predictable DRAM Controllers:
Predator (Eindhoven) and AMC (Barcelona)

Load
B1.R3.C2

Predictable and/or Composable Arbitration
(e.g. time-division multiple access)

Memory
Controller

Load
B3.R3.C2

Load
B3.R5.C3

Store
B2.R3.C5

?Load
B1.R3.C2

Load
B3.R3.C2

Load
B3.R5.C3

Store
B2.R3.C5

…

Reineke et al., Berkeley 16

Outline

  Introduction
  DRAM Basics
  Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas
  Evaluation
  Integration into Precision-Timed ARM

Reineke et al., Berkeley 17

PRET DRAM Controller:
Three Innovations

  Expose internal structure of DRAM devices:
  Expose individual banks within DRAM device as

multiple independent resources

  Defer refreshes to the end of transactions
  Allows to hide refresh latency

  Perform refreshes “manually”:
  Replace standard refresh command with multiple reads

CPU1

CPU1

I/O

...

Interconnect

+ Arbitration

PRET DRAM

Controller DRAM

Module

DRAM

Module

DRAM

Module

DRAM

Bank

Reineke et al., Berkeley 18

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module

  Consists of 4-8 banks in 1-2 ranks
•  Share only command and data bus, otherwise independent

  Partition into four groups of banks in alternating ranks
  Cycle through groups in a time-triggered fashion

Bank
0

Bank
1

Bank
2

Bank
3

Rank 0:

Bank
0

Bank
1

Bank
2

Bank
3

Rank 1:

•  Successive accesses to
same group obey timing
constraints
•  Reads/writes to different
groups do not interfere

Provides four
independent and
predictable resources

Reineke et al., Berkeley 19

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module

Load
B1.R3.C2

Load
B1.R4.C3

Store
B1.R3.C5 …

PRET DRAM
Controller

Read
Pattern

Read
Pattern

Write
Pattern …

Reineke et al., Berkeley 20

Pipelined Bank Access Scheme

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o
w

 D
e
c
o
d
e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d

d
re

s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

Figure 1: A dual-ranked dual in-line memory module.

Table 1: Overview of DDR2-400 timing parameters at the example of the Qimonda HYS64T64020EM-2.5-B2.
Para-
meter

Value (in cycles
at 200 MHz)

Description

tRCD 3 Row-to-Column delay: time from row activation to first read or write to a column within that row.
tCL 3 Column latency: time between a column access command and the start of data being returned.
tWL tCL − 1 = 2 Write latency: time after write command until first data is available on the bus.
tWR 3 Write recovery time: time between the end of a write data burst and the start of a precharge command.
tWTR 2 Write to read time: time between the end of a write data burst and the start of a column-read command.
tRP 3 Time to precharge the DRAM array before next row activation.
tRFC 21 Refresh cycle time: time interval between a refresh command and a row activation.
tFAW 10 Four-bank activation window: interval in which maximally four banks may be activated.
tAL set by user Additive latency: determines how long posted column accesses are delayed.

Resource/Rank

Cycles

tRCD

0/0 1/1 2/0 3/1 0/0

Command Bus

1/1

...
R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

N

O

P

N

O

P

N

O

P

R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

Rank 0
Resource 0+2

Rank 1
Resource 1+3

R

A

S

C

A

S

Data Bus

C

A

S

Burst from

Rank 0

Posted-
CAS
with

tAL=2

Auto-Precharge

R

A

S

C

A

S

Posted-
CAS

Auto-Precharge
P

R

E

Burst to

Rank 1

R

A

S

P

R

E

Posted-
CAS

Burst from

Rank 0

P

R

E

R

A

S

Auto-Precharge

C

A

S

Posted-
CAS

...

...
R

A

S

...

tCL

tWL tWR

tRP

tRCD

tFAW

N

O

P

Figure 2: The periodic and pipelined access scheme employed
by the backend. In the example, we perform a read from re-
source 0 (in rank 0), a write to resource 1 (in rank 1), and a
read from resource 2 (in rank 0).

DRAM controller is specific to our DDR2 memory module, the key
design features are applicable to other modern memory modules.

4.1 DRAM Controller Backend
The backend views the memory device as four independent re-

sources: each resource consisting of two banks within the same
rank. By issuing commands to the independent resources in a pe-
riodic and pipelined fashion, we exploit bank parallelism and re-
move interference amongst the resources. This is unlike conven-
tional DRAM controllers that view the entire memory device as
one resource. Other partitions of the eight banks would be possi-
ble, as long as all of the banks that are part of a resource belong to
the same rank of the memory module, and each of the two ranks
contains two resources.

Figure 2 shows an example of the following access requests from
the frontend: read from resource 0 in rank 0, write to resource 1 in
rank 1, and read from resource 2 in rank 0. The controller peri-
odically provides access to the four resources every 13 cycles. In
doing so, we exploit bank parallelism for high bandwidth, yet, we
avert access patterns that otherwise incur high latency due to the
sharing of resources within banks and ranks.

The backend translates each access request into a row access
command (RAS), a posted column access command (posted-CAS)
or a NOP. We refer to a triple of RAS, CAS and NOP as an access
slot. In order to meet row to column latency shown in Table 1, the
RAS command and the first CAS command need to be 3 cycles
apart. However, we can see from Figure 2 that if we waited for 3
cycles before issuing the CAS to access the first resource, it would
conflict with the RAS command for accessing the second resource
on the command bus. Instead, we set the additive latency tAL to 2.
This way, the posted-CAS results in a CAS two cycles later within
the DRAM chip. This is shown in Figure 2 as the posted-CAS
appears within its rank 2 cycles after the CAS was issued on the
command bus, preserving the pipelined access scheme.

The row access command moves a row into the row buffer. The
column access command can be either a read or a write, causing a
burst transfer of 8·4 = 32 bytes, which will occupy the data bus for
two cycles (as two transfers occur in every cycle). We use a closed-
page policy (also known as auto-precharge policy), which causes
the accessed row to be immediately precharged after performing
the column access (CAS), preparing it for the next row access. If
there are no requests for a resource, the backend does not send any
commands to the memory module, as is the case for resource 3 in
Figure 2.

There is a one cycle offset between the read and write laten-
cies. Given that requests may alternate between reads and writes,
the controller inserts a NOP between any two consecutive requests.
This avoids a collision on the data bus between reads and writes.
By alternating between ranks, no two adjacent accesses go to the
same rank. This satisfies the write-to-read timing constraint tWTR

incurred by the sharing of I/O gating within ranks. In addition, we
satisfy the four-bank activation window constraint because within
any window of size tFAW we activate at most four banks due to
the periodic access scheme.

With the closed-page policy, in case of a write, we need 13 cycles
to access the row, perform a burst access, and precharge the bank
to prepare for the next row access. This is the reason for adding a
NOP after four access slots: to increase the distance between two
access slots belonging to the same resource from 12 to 13 cycles.
The backend does not issue any refresh commands to the memory

READ WRITE READ

Reineke et al., Berkeley 21

time

time

PRET DRAM Controller:
“Manual” Refreshes

(refresh latencies not to scale)

  Every row needs to be refreshed every 64ms
  Dedicated refresh commands refresh one row

in each bank at once
  We replace these with “manual” refreshes

through reads
  Improves worst-case latency of short requests

Dedicated refresh commands vs refreshes through reads.

Reineke et al., Berkeley 22

time

= 63 ms

0 1 2 3 8191 0

PRET DRAM Controller:
Defer Refreshes

  Refreshes do not have to happen periodically
  Refresh every row at least every 64 ms
  Schedule refreshes slightly more often than

necessary Enables to defer refreshes

time

0 1 2 3 8191 0

<= 64 ms

time

<= 64 ms

0 1 2 3 8191 0

DMA

Reineke et al., Berkeley 23

General-Purpose DRAM Controller
 vs PRET DRAM Controller

General-Purpose Controller
  Abstracts DRAM as a

single shared resource
  Schedules refreshes

dynamically

  Schedules commands
dynamically

  “Open page” policy
speculates on locality

PRET DRAM Controller
  Abstracts DRAM as multiple

independent resources
  Refreshes as reads:

shorter interruptions
  Defer refreshes:

improves perceived latency
  Follows periodic, time-

triggered schedule
  “Closed page” policy:

access-history independence

Reineke et al., Berkeley 24

Outline

  Introduction
  DRAM Basics
  Related Work: Predator and AMC
  PRET DRAM Controller: Main Ideas

 Evaluation
  Integration into Precision-Timed ARM

Reineke et al., Berkeley 25

Conventional DRAM Controller (DRAMSim2)
vs PRET DRAM Controller:
Latency Evaluation

256 512 768 1,024 1,280 1,536 1,792 2,048
0

200

400

600

800 Benefit of burst length 8 over burst length 4

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator, BL = 4, accounting for all refreshes
DLr(x): PRET, BL = 4, accounting for all refreshes
Shared Predator, BL = 8, accounting for all refreshes
DLr(x): PRET, BL = 8, accounting for all refreshes

Figure 8: Latencies of Predator and PRET for request sizes up
to 2KB under burst lengths 4 and 8.

5.4 Bandwidth
We describe the peak bandwidth achieved by the PRET DRAM

controller. In the case of the burst length being 4, disregarding
refreshes, we send out four CAS commands every 13 cycles. Each
CAS results in a transfer of a burst of size 8 ·4 = 32 bytes over the
period of two cycles5. The memory controller and the data bus are
running at a frequency of 200 MHz. So, disregarding refreshes the
controller would provide a bandwidth of 200 MHz· 4

13 · 32 bytes ≈
1.969GB/s. We issue a refresh command in every 60th slot. This
reduces the available bandwidth to 59

60 · 1.969GB/s ≈ 1.936GB/s,
which are 60.5% of the data bus bandwidth.

For burst length 8, we transfer 8 · 8 = 64 bytes every five cycles
and perform a refresh in every 39th slot, resulting in an available
bandwidth of 200MHz · 38

39 ·
1
5 · 64 bytes ≈ 2.494GB/s, or 77.95%

of the data bus bandwidth.

6. EXPERIMENTAL EVALUATION
We present experimental results to verify that the design of the

PRET DRAM controller honors the derived analytical bounds. We
have implemented the PRET DRAM controller, and compare it
via simulation with a conventional DRAM controller. We use the
PTARM simulator6 and extend it to interface with both memory
controllers to run synthetic benchmarks that simulate memory ac-
tivity. The PTARM simulator is a C++ simulator that simulates
the PRET architecture with four hardware threads running through
a thread-interleaved pipeline. We use a C++ wrapper around the
DRAMSim2 simulator [17] to simulate memory access latencies
from a conventional DRAM controller. A first-come, first-served
queuing scheme is used to queue up memory requests to the DRAM-
Sim2 simulator. The PRET DRAM controller was also written in
C++ based on the description in Section 4. The benchmarks we use
are all written in C, and compiled using the GNU ARM cross com-
piler. The DMA transfer latencies that are measured begin when
the DMA unit issues its first request and end when the last request
from the DMA unit is completed.

6.1 Experimental Results
We setup our experiment to show the effects of interference on

memory access latency for both memory controllers. We first setup
our main thread to run different programs that initiate fixed-size

5In double-data rate (DDR) memory two transfers are performed
per clock cycle.
6The PTARM simulator is available for download at http://
chess.eecs.berkeley.edu/pret/release/ptarm.

0 0.5 1 1.5 2 2.5 3
0

1,000

2,000

3,000

Interference [# of other threads occupied]

la
te

nc
y

[c
yc

le
s]

4096B transfers, conventional controller
4096B transfers, PRET controller

1024B transfers, conventional controller
1024B transfers, PRET controller

Figure 9: Latencies of conventional and PRET memory con-
troller with varying interference from other threads.

DMA transfers (256, 512, 1024, 2048 and 4096 bytes) at random
intervals. The DMA latencies of the main thread is what is mea-
sured and shown in Figure 9 and Figure 10. To introduce interfer-
ence within the system, we run a combination of two programs on
the other hardware threads in PTARM simulator. The first program
continuously issues DMA requests of large size (4096 bytes) in or-
der to fully utilize the memory bandwidth. The second program
utilizes half the memory bandwidth by issuing DMA requests of
size 4096 bytes half as frequently as the first program. In Figure 9,
we define thread occupancy on the x-axis as the memory bandwidth
occupied by the combination of all threads. 0.5 means we have one
thread running the second program along side the main thread. 1.0
means we have one thread running the first program along side the
main thread. 1.5 means we have one thread running the first pro-
gram, one thread running the second program, and both threads are
running along side the main thread, and so on. 3 is the maximum
we can achieve because the PTARM simulator has a total of four
hardware threads (the main thread occupies one of the four). We
measured the latency of each fixed size transfer for the main thread
to observe the transfer latency in the presence of interference from
memory requests by other threads.

In Figure 9, we show measurements taken from two different
DMA transfer sizes, 1024 and 4096 bytes. The marks in the figure
show the average latency measured over 1000 iterations. The error
bars above and below the marks show the worst-case and best-case
latencies of each transfer size over the same 1000 iterations. In both
cases, without any interference, the conventional DRAM controller
provides better access latencies. This is because without any inter-
ference, the conventional DRAM controller can often exploit row
locality and service requests immediately. The PRET DRAM con-
troller on the other hand uses the periodic pipelined access scheme,
thus even though no other threads are accessing memory, the mem-
ory requests still need to wait for their slot to get access to the
DRAM. However, as interference is gradually introduced, we ob-
serve increases in latency for the conventional DRAM controller.
This could be caused by the first-come, first-served buffer, or by
the internal queueing and handling of requests by DRAMSim2.
The PRET DRAM controller however is unaffected by the inter-
ference created by the other threads. In fact, the latency values
that were measured from the PRET DRAM controller remain the

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

transfer size [bytes]

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

Conventional controller
PRET controller

Figure 10: Latencies of conventional and PRET memory con-
troller with maximum load by interfering threads and varying
transfer size.

same under all different thread occupancies. This demonstrates the
temporal isolation achieved by the PRET DRAM controller. Any
timing analysis on the memory latency for one thread only needs
to be done in the context of that thread. We also see the range of
memory latencies for the conventional DRAM controller increase
as the interference increases. But the range of access latencies for
the PRET DRAM controller not only remains the same through-
out, but is almost negligible for both transfer sizes7. This shows the
predictable nature of the PRET DRAM controller.

In Figure 10 we show the memory latencies under full load (thread
occupancy of 3) for different transfer sizes. This figure shows that
under maximum interference from the other hardware threads, the
PRET DRAM controller is less affected by interference even as
transfer sizes increase. More importantly, when we compare the
numbers from Figure 10 to Figure 8, we confirm that the theoret-
ical bandwidth calculations hold even under maximum bandwidth
stress from the other threads.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a DRAM controller design that is

predictable with significantly reduced worst-case access latencies.
Our approach views the DRAM device as multiple independent re-
sources that are accessed in a periodic pipelined fashion. This elim-
inates contention for shared resources within the device to provide
temporally predictable and isolated memory access latencies. We
refresh the DRAM through row accesses instead of standard re-
freshes. This results in improved worst-case access latency at a
slight loss of bandwidth. Latency bounds for our memory con-
troller, determined analytically and confirmed through simulation,
show that our controller is both timing predictable and provides
temporal isolation for memory accesses from different resources.

Thought-provoking challenges remain in the development of an
efficient, yet predictable memory hierarchy. In conventional multi-
core architectures, local memories such as caches or scratchpads
are private, while access to the DRAM is shared. However, in
the thread-interleaved PTARM, the instruction and data scratchpad
memories are shared, while access to the DRAM is not. We have
demonstrated the advantages of privatizing parts of the DRAM for
worst-case latency. It will be interesting to explore the consequences
of the inverted sharing structure on the programming model.

We envision adding instructions to the PTARM that allow threads
to pass ownership of DRAM resources to other threads. This would,
7The range (worst-case latency - best-case latency) was approxi-
mately 90ns for 4096 bytes transfers and approximately 20ns for
1024 byte transfers.

for instance, allow for extremely efficient double-buffering imple-
mentations. We also plan to develop new scratchpad allocation
techniques, which use the PTARM’s DMA units to hide memory
latencies, and which take into account the transfer-size dependent
latency bounds derived in this paper.

8. REFERENCES
[1] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a

predictable SDRAM memory controller,” in CODES+ISSS.
ACM, 2007, pp. 251–256.

[2] B. Akesson, “Predictable and composable system-on-chip
memory controllers,” Ph.D. dissertation, Eindhoven
University of Technology, Feb. 2010.

[3] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An
analyzable memory controller for hard real-time CMPs,”
IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90,
2010.

[4] I. Liu, J. Reineke, and E. A. Lee, “A PRET architecture
supporting concurrent programs with composable timing
properties,” in 44th Asilomar Conference on Signals,
Systems, and Computers, November 2010.

[5] S. A. Edwards and E. A. Lee, “The case for the precision
timed (PRET) machine,” in DAC. New York, NY, USA:
ACM, 2007, pp. 264–265.

[6] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke,
“Temporal isolation on multiprocessing architectures,” in
DAC. ACM, June 2011.

[7] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers,
September 2007.

[8] JEDEC, DDR2 SDRAM SPECIFICATION JESD79-2E.,
2008.

[9] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens,
“Real-time scheduling using credit-controlled static-priority
arbitration,” in RTCSA, Aug. 2008, pp. 3 –14.

[10] B. Bhat and F. Mueller, “Making DRAM refresh
predictable,” in ECRTS, 2010, pp. 145–154.

[11] P. Atanassov and P. Puschner, “Impact of DRAM refresh on
the execution time of real-time tasks,” in Proc. IEEE
International Workshop on Application of Reliable
Computing and Communication, Dec. 2001, pp. 29–34.

[12] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems,”
IEEE TCAD, vol. 28, no. 7, pp. 966–978, 2009.

[13] R. Bourgade, C. Ballabriga, H. Cassé, C. Rochange, and
P. Sainrat, “Accurate analysis of memory latencies for
WCET estimation,” in RTNS, Oct. 2008.

[14] T. Ungerer et al., “MERASA: Multi-core execution of hard
real-time applications supporting analysability,” IEEE Micro,
vol. 99, 2010.

[15] M. Schoeberl, “A java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol. 54,
no. 1-2, pp. 265 – 286, 2008.

[16] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken,
“CoMPSoC: A template for composable and predictable
multi-processor system on chips,” ACM TODAES, vol. 14,
no. 1, pp. 1–24, 2009.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” Computer
Architecture Letters, vol. 10, no. 1, pp. 16 –19, Jan. 2011.

Varying Interference: Varying Transfer Size:

Reineke et al., Berkeley 26

PRET DRAM Controller vs Predator:
Analytical Evaluation

5.3.1 Derivation of Worst-case DMA Latencies
To carry out a transfer of x bytes, a DMA unit needs to send⌈
x

BL·8
⌉

requests to the backend. It has to wait up to BEL cycles to
send the first request, then it can send requests every BP = 4 ·(1+
BL
2) cycles. BEL is at most BP . After sending the last request

to the backend, it takes DRL = 10 + BL
2 cycles for the resulting

burst transfer to finish. Thus, the latency DL(x) of a transfer of x
bytes from the DRAM in cycles of the memory controller is

DL(x) = BEL+BP ·
(⌈ x

BL · 8

⌉
− 1

)
+DRL (4)

≤ (4 + 2 ·BL) ·
⌈ x
BL · 8

⌉
+ 10 +

BL
2

. (5)

This equation, however, does not consider refreshes yet. As
noted before, we associate two latencies with a DMA transfer:

1. The time DLr(x) from initiating the DMA transfer until the
data has been transferred, and is, e.g., available in the data
scratchpad. The superscript r indicates that DLr(x) does not
include the final refresh.

2. The time DLr(x) from initiating the DMA transfer until the
thread-interleaved pipeline regains access to the DRAM. The
superscript r indicates that DLr(x) includes the final refresh.

One could further distinguish between transfers from DRAM to
scratchpad and from scratchpad to DRAM. Due to space constraints,
we only consider the former, which incurs higher latencies. DLr(x)
can be computed from DL(x) by adding latency incurred by re-
freshes beyond the first one, which will be accounted for in DLr(x):

DLr(x) = DL(x) +BP

⌈ ⌈
x

BL·8
⌉

RFP − 1
− 1

⌉
(6)

= DL(x) + (4 + 2 ·BL)

⌈ ⌈
x

BL·8
⌉

RFP − 1
− 1

⌉
(7)

where RFP is the refresh period. At burst length 4, RFP = 60,
at burst length 8, RFP = 39. DLr(x) is simply DLr(x) +BP .

In order to assess the value of privatization, we also determine
latencies for a scenario in which the four resources of the backend
are shared among four clients in a round-robin fashion. These four
clients could be the four threads of the PTARM or four cores in a
multi-core processor. This shall also indicate whether the PRET
DRAM controller is a viable option in such a scenario.

By DLn,s(x) we denote the latency of a transfer of size x, where
the DMA unit has access to n resources, which are each shared
among s clients. A transfer of size x will then be split up into n
transfers of size x/n. Due to the sharing of the resources, only
every sth access slot is available in each resource.

DLn,s(x) = s ·BP ·
⌈ x
n ·BL · 8

⌉
+DRL (8)

= s · (4 + 2 ·BL) ·
⌈ x
n ·BL · 8

⌉
+

BL
2

+ 9. (9)

For space reasons, we limit our analysis to the second of the two
latencies associated with a DMA transfer, which is derived simi-
larly to the non-shared case:

DLr
n,s(x) = DLn,s(x) +BP

⌈
s ·

⌈
x

n·BL·8
⌉

RFP − 1

⌉
(10)

= DLn,s(x) + (4 + 2 ·BL)

⌈
s ·

⌈
x

n·BL·8
⌉

RFP − 1

⌉
.(11)

32 64 96 128 160 192 224 256
0

25

50

75

100

125

150

“Manual” refreshes

Private resources in backend

Hiding refreshes

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator BL = 4 w/ refreshes
DLr

4,4(x): Shared PRET BL = 4 w/ refreshes
DLr(x): PRET BL = 4 w/ refreshes
DLr(x): PRET BL = 4 w/o refreshes

Figure 7: Latencies for small request sizes up to 256 bytes un-
der Predator and PRET at burst length 4. In this, and all of the
following figures, one cycle corresponds to 5 ns.

5.3.2 Analysis of Worst-case DMA Latencies
For comparison, we have also determined access latencies for

Predator based on Åkesson’s dissertation [2]. Figure 7 shows ac-
cess latencies of PRET and Predator for transfers up to 256 bytes,
as they frequently occur in fine-grained scratchpad allocation code,
or when filling cache lines. We compare four scenarios involving
PRET and Predator:

1. DLr(x): Latencies of transfers using one of the four resources
at burst length 4, excluding the cost of a final refresh.

2. DLr(x): Latencies of transfers using one of the four resources
at burst length 4, including the cost of all refreshes.

3. DLr
4,4(x): Latencies of transfers using all of the four re-

sources at burst length 4 shared among four clients (using
round-robin arbitration), including the cost of all refreshes.

4. Latencies of transfers using Predator at burst length 4 shared
among four clients (using round-robin arbitration), including
the cost of all refreshes.

Hiding refreshes (Scenario 1 vs Scenario 2) saves BP = 13
cycles in all cases. The benefit of private resources can be seen
comparing Scenario 2 with Scenario 3. When sharing all banks,
the minimum transfer size is 128 bytes (one burst of 32 bytes to
each of the four resources). For transfer sizes that are not multiples
of this size, private resources reduce latency significantly. The most
extreme case is that of a 32-byte transfer where latency is reduced
from 77 to 38 cycles. The slight advantage of shared PRET (Sce-
nario 3) compared with shared Predator (Scenario 4) can mostly be
explained by the manual refresh mechanism employed in PRET.

For larger transfers, the bandwidth provided by the memory con-
troller becomes more important, and private DRAM resources are
less beneficial. This is illustrated in Figure 8. For both burst length
4 and 8, PRET and Predator show very similar latencies. Predator’s
slightly flatter slope is due to fewer read/write switches and the use
of the standard refresh mechanism, which adversely affects laten-
cies of small transfers. For 2 KB transfers, burst length 8 reduces
latency by approximately 22% compared with burst length 4.

Predator:
•  abstracts DRAM as

single resource
•  uses standard refresh

mechanism

 PRET controller

improves worst-case
access latency of small
transfers

Reineke et al., Berkeley 27

PRET DRAM Controller vs Predator:
Analytical Evaluation

256 512 768 1,024 1,280 1,536 1,792 2,048
0

200

400

600

800 Benefit of burst length 8 over burst length 4

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator, BL = 4, accounting for all refreshes
DLr(x): PRET, BL = 4, accounting for all refreshes
Shared Predator, BL = 8, accounting for all refreshes
DLr(x): PRET, BL = 8, accounting for all refreshes

Figure 8: Latencies of Predator and PRET for request sizes up
to 2KB under burst lengths 4 and 8.

5.4 Bandwidth
We describe the peak bandwidth achieved by the PRET DRAM

controller. In the case of the burst length being 4, disregarding
refreshes, we send out four CAS commands every 13 cycles. Each
CAS results in a transfer of a burst of size 8 ·4 = 32 bytes over the
period of two cycles5. The memory controller and the data bus are
running at a frequency of 200 MHz. So, disregarding refreshes the
controller would provide a bandwidth of 200 MHz· 4

13 · 32 bytes ≈
1.969GB/s. We issue a refresh command in every 60th slot. This
reduces the available bandwidth to 59

60 · 1.969GB/s ≈ 1.936GB/s,
which are 60.5% of the data bus bandwidth.

For burst length 8, we transfer 8 · 8 = 64 bytes every five cycles
and perform a refresh in every 39th slot, resulting in an available
bandwidth of 200MHz · 38

39 ·
1
5 · 64 bytes ≈ 2.494GB/s, or 77.95%

of the data bus bandwidth.

6. EXPERIMENTAL EVALUATION
We present experimental results to verify that the design of the

PRET DRAM controller honors the derived analytical bounds. We
have implemented the PRET DRAM controller, and compare it
via simulation with a conventional DRAM controller. We use the
PTARM simulator6 and extend it to interface with both memory
controllers to run synthetic benchmarks that simulate memory ac-
tivity. The PTARM simulator is a C++ simulator that simulates
the PRET architecture with four hardware threads running through
a thread-interleaved pipeline. We use a C++ wrapper around the
DRAMSim2 simulator [17] to simulate memory access latencies
from a conventional DRAM controller. A first-come, first-served
queuing scheme is used to queue up memory requests to the DRAM-
Sim2 simulator. The PRET DRAM controller was also written in
C++ based on the description in Section 4. The benchmarks we use
are all written in C, and compiled using the GNU ARM cross com-
piler. The DMA transfer latencies that are measured begin when
the DMA unit issues its first request and end when the last request
from the DMA unit is completed.

6.1 Experimental Results
We setup our experiment to show the effects of interference on

memory access latency for both memory controllers. We first setup
our main thread to run different programs that initiate fixed-size

5In double-data rate (DDR) memory two transfers are performed
per clock cycle.
6The PTARM simulator is available for download at http://
chess.eecs.berkeley.edu/pret/release/ptarm.

0 0.5 1 1.5 2 2.5 3
0

1,000

2,000

3,000

Interference [# of other threads occupied]

la
te

nc
y

[c
yc

le
s]

4096B transfers, conventional controller
4096B transfers, PRET controller

1024B transfers, conventional controller
1024B transfers, PRET controller

Figure 9: Latencies of conventional and PRET memory con-
troller with varying interference from other threads.

DMA transfers (256, 512, 1024, 2048 and 4096 bytes) at random
intervals. The DMA latencies of the main thread is what is mea-
sured and shown in Figure 9 and Figure 10. To introduce interfer-
ence within the system, we run a combination of two programs on
the other hardware threads in PTARM simulator. The first program
continuously issues DMA requests of large size (4096 bytes) in or-
der to fully utilize the memory bandwidth. The second program
utilizes half the memory bandwidth by issuing DMA requests of
size 4096 bytes half as frequently as the first program. In Figure 9,
we define thread occupancy on the x-axis as the memory bandwidth
occupied by the combination of all threads. 0.5 means we have one
thread running the second program along side the main thread. 1.0
means we have one thread running the first program along side the
main thread. 1.5 means we have one thread running the first pro-
gram, one thread running the second program, and both threads are
running along side the main thread, and so on. 3 is the maximum
we can achieve because the PTARM simulator has a total of four
hardware threads (the main thread occupies one of the four). We
measured the latency of each fixed size transfer for the main thread
to observe the transfer latency in the presence of interference from
memory requests by other threads.

In Figure 9, we show measurements taken from two different
DMA transfer sizes, 1024 and 4096 bytes. The marks in the figure
show the average latency measured over 1000 iterations. The error
bars above and below the marks show the worst-case and best-case
latencies of each transfer size over the same 1000 iterations. In both
cases, without any interference, the conventional DRAM controller
provides better access latencies. This is because without any inter-
ference, the conventional DRAM controller can often exploit row
locality and service requests immediately. The PRET DRAM con-
troller on the other hand uses the periodic pipelined access scheme,
thus even though no other threads are accessing memory, the mem-
ory requests still need to wait for their slot to get access to the
DRAM. However, as interference is gradually introduced, we ob-
serve increases in latency for the conventional DRAM controller.
This could be caused by the first-come, first-served buffer, or by
the internal queueing and handling of requests by DRAMSim2.
The PRET DRAM controller however is unaffected by the inter-
ference created by the other threads. In fact, the latency values
that were measured from the PRET DRAM controller remain the

•  Less of a difference
for larger transfers

•  Predator provides
slightly higher
bandwidth due to
more efficient refresh
mechanism

Reineke et al., Berkeley 28

Outline

  Introduction
  DRAM Basics
  Related Work: Predator and AMC
  PRET DRAM Controller: Main Ideas
  Evaluation

  Integration into Precision-Timed ARM

Reineke et al., Berkeley 29

Precision-Timed ARM (PTARM)
Architecture Overview

  Thread-Interleaved Pipeline for predictable timing
without sacrificing high throughput

  One private DRAM Resource + DMA Unit per
Hardware Thread

  Shared Scratchpad Instruction and Data Memories
for low latency access

Lee, Berkeley 24

Hardware

threadHardware

threadHardware

thread

Resulting PRET Architecture
We have realized this in PTArm,

a soft core on a Xilinx Virtex 5 FPGA

Hardware

thread

registers

scratc

h

pad

memory

I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memory
memory

memory

Note inverted memory

compared to multicore!

Fast, close memory is

shared, slow remote

memory is private!http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 30

Conclusions and Future Work

  Temporal isolation and improved worst-case latency by bank
privatization

  How to program the inverted memory hierarchy?

Raffaello Sanzio da Urbino – The Athens School

Reineke et al., Berkeley 31

References

Related Work on Memory Controllers:
  M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An analyzable memory controller for hard real-

time CMPs,” IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90, 2010.
  B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable SDRAM memory controller,” in

CODES+ISSS. ACM, 2007, pp. 251–256.

Work within the PRET project:
  [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee,

PRET DRAM Controller: Bank Privatization for Predictability and Temporal Isolation, International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), October, 2011.

  [DAC ‘11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke,
Temporal Isolation on Multiprocessing Architectures, Design Automation Conference (DAC), June,
2011.

  [Asilomar ‘10] Isaac Liu, Jan Reineke, and Edward A. Lee,
PRET Architecture Supporting Concurrent Programs with Composable Timing Properties, in Signals,
Systems, and Computers (ASILOMAR), Conference Record of the Forty Fourth Asilomar Conference,
November 2010, Pacific Grove, California.

  [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and Edward A.
Lee, "
Predictable Programming on a Precision Timed Architecture," in Proceedings of International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Piscataway,
NJ, pp. 137-146, IEEE Press, October, 2008.

