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Abstract. This paper presents a general denotational formalism called
the Coroutine Model of Computation for control-oriented computational
models. This formalism characterizes atomic elements with control be-
havior as Continuation Actors, giving them a static semantics with a
functional interface. Coroutine Models are then defined as networks of
Continuation Actors, representing a set of control locations between
which control traverses during execution. This paper gives both a strict
and non-strict denotational semantics for Coroutine Models in terms of
compositions of Continuation Actors and their interfaces. In the strict
form, the traversal of control locations forms a control path producing
output values, whereas in the non-strict form, execution traverses a tree
of potential control locations producing partial information about out-
put values. Furthermore, the given non-strict form of these semantics is
claimed to have useful monotonicity properties.

1 Introduction

Let a control-oriented model describe a system characterized by a network of
control locations traversed sequentially during execution. At each location vis-
ited during execution, an action may be performed that produces outputs or
manipulates the state of the system. However, at each location there is also a
determination of how the traversal through the network of locations will sub-
sequently progress. This determination can depend on both the inputs to the
system, as well as its state, and is often represented as a conditional or guard. In
some control-oriented models this determination can also include the possibility
of the model either suspending or terminating its thread of control in the context
of a larger model or execution environment.

Examples of control-oriented models include traditional imperative program-
ming models, control flow graphs, and automata-based models such as state
machines or labeled transition systems. Languages such as Esterel[3], Reactive
C[4], and StateCharts[8] are also control-oriented in this sense. In the case of
Esterel or Reactive C, the control locations correspond to individual imperative
statements in the language, with the traversal of these locations corresponding
to the control flow of the language. In StateCharts control locations are simply
states with traversal governed by the guards of transitions. These three examples
have the additional feature of suspending and resuming control over a series of
reactions, as defined by Boussinot[3].



Even in structured procedural languages, there are constructs that are of-
ten referred to as “control mechanisms”. These mechanisms include exception
handling, generators, arbitrarily placed return statements, break and continue
statements, and explicit gotos. In the Ptolemy II environment, Modal Models
[11] give a hierarchical layer of control-oriented behavior to heterogeneous mod-
els. Modal Models are guarded state machines where at each state there is an
associated actor, known as a refinement, that is fired when the model is in that
state.

When these control-oriented models represent isolated models of computa-
tion, the formal treatment of their meaning in terms of operational semantics
provides a clear way to reason about them, and gives a way to determine how to
correctly implement them. However, particularly in the context of heterogeneous
models, it is difficult to reason about compositional properties of these models
given there is no clear general way to compose operational semantics such as
those given by Boussinot and de Simone for Esterel[3], Berry for Constructive
Esterel[2], Caspi et al. for LUSTRE[5], and Andre for SyncCharts[1]. Since these
languages are all both control-oriented and synchronous, a motivating kind of
heterogeneity arises when these languages are decomposed into control-oriented
fragments in synchronous compositions.

In the case of SyncCharts, these two components are the control-oriented
State Transition Graphs, which are similar to StateCharts[8], and synchronous
compositions of Macrostates[1]. While in the operational semantics given by An-
dre[1] these two components are entangled, a denotational semantics would allow
each of these parts to be treated separately, and the full model to arise out of
their heterogeneous composition. Such a denotational formalism for synchronous
composition exists in the Synchronous Reactive (SR) model of computation given
by Edwards[6]. In this model, the semantics of a step in execution is given by
the least fixed point of the function derived from composing the functional rep-
resentations of each component in the model. So long as these components can
be represented as monotonic functions, this least fixed point is guaranteed to
uniquely exist.

Using the SR model to express synchronous composition, one should be able
to achieve a model similar to that of SyncCharts or Constructive Esterel as a het-
erogeneous composition of control-oriented models and SR models. Reasoning
about this composition requires a general denotational semantics for control-
oriented models. In particular, with this kind of semantics the conditions can be
determined under which such a model is monotonic. Having such a denotational
semantics for control-oriented models facilitates the analysis of other composi-
tional properties of these models as well. Like the SR model, there are other
models of computation that can similarly be described in a compositional way,
as is done by Tripakis et al.[13]. With the semantics given in this paper, mean-
ingful compositions can be formed between control-oriented models and these
other models.



1.1 Contributions

In order to reason about control-oriented models in a compositional manner,
this paper presents the Coroutine Model of Computation, a general denotation
formalism for control-oriented models. This model consists of atomic elements
called Continuation Actors, and defines Coroutine Models as networks of these
Continuation Actors. A Coroutine Model composes Continuation Actors to form
itself a Continuation Actor. Taking influence from the idea of stars and Reactive
Cells from Andre’s SyncCharts[1], the decisions to take control transitions in
Coroutine Models are treated as part of the individual Continuation Actors in
the network. This choice avoids having to settle on a particular language and
semantics for transition guards and actions, and leads to a simple compositional
semantics for Coroutine Models, defined in terms of the behavior of their con-
stituting Continuation Actors.

Moreover, a meaning is given to non-strict Continuation Actors, which can
make partial control decisions given partial inputs. Correspondingly, a non-strict
dynamic semantics is defined for Coroutine Models containing these non-strict
Continuation Actors. Further, it is argued that these semantics, in fact, form
monotonic functions when the constituting Continuation Actors of a model are
monotonic. Thus, Coroutine Models can be meaningfully put into synchronous
compositions such as the that of SR models. Hence, what we give here is an
abstract semantic[10] for concurrent composition of sequential processes. Our
semantics focuses on the control behavior, and hence complements a semantic
that focuses on concurrency, such as SR[6] or KPN[9].

2 Continuation Actor

A Continuation Actor describes a process that has a set of programmatic entry
locations starting from which execution can be entered, concluding by either ter-
minating, suspending, or exiting with an exit label. A Continuation Actoreziting
represents the control leaving the Continuation Actor and moving to some ex-
ternal location referred to by the exit label. A Continuation Actor terminating
represents the end of control flow, whereas a continuation suspending denotes
a pause taken in control flow, yielding control to a containing model or an ex-
ecution environment. A suspended Continuation Actor can be resumed, which
can be thought of as entering with a special, relative entry location that is set
internally to the location at which the Continuation Actor was last suspended.
Finally, continuations can be initialized, which too can be thought of as a special
entry location.

2.1 Continuation Actor Static Semantics

Formally, a Continuation Actor C is defined by the tuple

C=(L0,sS, s, L, G, enter, fire, postfire) (1)



similar to an Actor in Modular Actor Interface semantics[13]. The first three
types represent the input I, output O, and state S of the Continuation Actor,
with the initial state sg € S. The subsequent two components, £ and G, are finite
sets containing entry locations and exit labels. Together, these six components
specify the static semantics of the Continuation Actor. It is worth noting that
the state of the Continuation Actor does not specifically represent the control
state. Rather it represents the entire state of the Continuation Actor, including
information regarding control such as the internal location at which to resume
suspended execution, as well as other state information such as stored data.

With the addition of special elements to £ and G, entry and exit control
actions for C are defined as follows

L = L + initialize, + resume,, (2)
G = G + terminate,, + suspend,, (3)

where T}, is the singleton type containing T and + is a disjoint union. Actions
initialize and resume in IL denote the initialization and resumption of a Continu-
ation Actor, whereas actions in £ denote entrance of a Continuation Actor at the
corresponding location. Similarly, terminate and suspend denote the result of a
Continuation Actor terminating and suspending. Actions in G denote exiting a
Continuation Actor via the corresponding exit labels.

The last three components form the interface of a Continuation Actor, and
define its dynamic semantics. They have the following types:

enter : SxIxL =G (4)
fire:SxIxL—0 (5)
postfire: SxIxL — S (6)

The fire and postfire function are similar to those in [13] and [11], only differ-
ing in their additional input of an entry action. The fire function specifies the
outputs produced by the Continuation Actor with the given state, input, and
entry action. The postfire likewise specifies the change in state consequent the
execution from a given entry. The enter function specifies the control behavior
of the Continuation Actor, and is the extension of the interface beyond that of
anActor[13]. In particular, this function specifies the concluding control decision
made by the execution in the form of an exit action.

The role these interface functions play in execution depends on the model of
computation in which the Continuation Actor is contained. In the case of an SR,
model, for instance, a typical execution is constituted of a series of discrete steps.
In each step n, there will be several iterations, indexed by k, computing a least
fixed point of the relation determined by the contained elements. A Continuation
Actor would, in a particular state s,, € S, be entered and fired for each iteration
with a particular entry action ¥ and input value i¥, producing a exit action g
and output value of. The Continuation Actor would then be postfired at the
end of the step updating its internal state from s,, to s,41 in terms of the final
values for the input and entry action, denoted i} and [}. Such an execution



would fulfill the relations

g* = enter(s,, i¥, I¥) (7)
ok = fire(s,, i*, IF) (8)
$n41 = postfire(s,, iM M) (9)

Note that the state is not superscripted by an iterative step since it is main-
tained over iterations of a fixed point computation. Later, the semantics of the
particular case of a Coroutine Model will be described in detail.

2.2 Non-Strict Continuation Actors

In certain models of computation, input and output values can be partially
known during execution. Examples of this include Synchronous Reactive mod-
els[6] and models in synchronous languages such as Constructive Esterel[2] and
SyncCharts[1]. The input and output types of components in these models are
extended to represent this partial information by being lifted into pointed Com-
plete Partial Orders (pCPOs), which are partially ordered sets having two im-
portant conditions:

(a) Each chain has a least upper bound in the set.
(b) There is a bottom element | such that for all ¢ in the set, L < a.

In the case where partial information simply means that a variable may either be
known to have a particular value or not known, the corresponding pCPO often
used is constructed by adjoining a bottom element to the set of values associated
with the type of the variable. In this case, all particular values are incomparable
in the order, and all greater than the adjoined bottom element. Furthermore, the
particular (non-bottom) values in the original type are all maximal values in this
pCPO. This pCPO is known as a flat CPO. For tuples of variables, which often
characterize input and output spaces, the corresponding pCPOs are typically the
pointwise products of the flat CPOs for each constituting variable. Nevertheless,
for generality it is not assumed that any of these particular pCPOs is used.
Given that the spaces I and O are lifted into pCPOs a Continuation Actor
can be specified on these lifted types. Consequently, the fire function can be
defined so that partial information about the outputs can be determined from
partial information about the inputs. A function is known as strict if it maps
all input values that are not maximal in the input pCPO to bottom. A function
is otherwise non-strict, and intuitively can be understood as able to determine
some information about the output without total information about the input.
Non-strict functions play an important role in models of computation such SR[6]
where constructive methods are used to iteratively determine consistent valua-
tions of input and output variables which can have cyclic dependencies. Note
that the state here is not lifted into a pCPO, and thus the postfire function
has no non-strict version analogous to that of fire. The enter function can
similarly extended to operate over partial information about inputs producing



partial information about exit actions in G. These partial control choices can be
represented as sets of possible exit actions given the partial information about
the input. Hence the enter function in such a Continuation Actor has a lifted

type
enter: S x [ x L — 2C.

If this representation of partial information about control actions, 2€, is
ordered by reverse-inclusion, where

a<b=a2Db

a pCPO is formed with L being the whole set G. The motivation behind this
ordering is that a strict increase in this order corresponds to making more specific
control decisions, with the singleton elements representing a unique and thus
total decision. Monotonicity of the enter function, as required in certain domains
with constructive semantics, therefore corresponds to the requirement that

VseS,leLqsa<b = enter(s,a,l) D enter(s, b, )

Intuitively, this monotonicity property means that as more is known about
the input, the control choices at the least do not become less known, and may
become more known. In particular, for the enter function this means that as
more is known about the input additional control choices can never be added,
and some may be removed potentially narrowing down the control behavior to
a single choice.

2.3 Counter Example

An example of a Continuation Actor is a Counter that increments an internal
state s. each time it is resumed, and subsequently suspends. This Counter also
has a threshold stored in an internal state s;, which can be set by an input ;. If
the Counter is resumed and s. > s;, instead of suspending the Counter exits
with exit label g;. Let this Counter also have an output o, that is set to the
current count during each execution. In order to set the value of the threshold
s¢ to input 7;, suppose there is also an explicit entry location l; at which s; is
set before performing the resume action. Assume that i;, s., s;, and o, are all
natural numbers (of type N).
This Counter can defined formally as follows. Let the static semantics be

C Iil g L Iil N, (I s(; Iy, lo, 1
ounter = ( ' k) k) X X 5 (07 7O)u {ta 0, 1}7 {gt})
1t Oc (81, 8¢, St)
The state here is a triple (s, S¢, $¢) € L x N x N, where s; € £ holds the entry

location to resume at after a suspension, s. € N is the current counter value, and
s¢ € N is the current threshold value. In addition to the entry location l;, which



sets the threshold, there are two internal entry locations [y and [;. s; is set to [y
initially, and in this state the counter is reset under a resumption, but upon the
completion of any entry s; is set by the postfire function to ly, indicating that
the Counter is counting when it is resumed. The interface functions are then

suspend I =g or initialize

enter ) | =
if s. > s; then g; else suspend [ =1

enter((s;, Sc, it), it, lr) =1

0 I = ly or initialize
fire((si, sc, st), i, 1) = < fire((s;, Sc, ¢), 4, 51) | = resume

Se+1 l=1liorl

(I1, 0, s¢) I =y or initialize

postfire((s;, s¢, st), i, $1) | = resume
(ll7 SC+1a St) l:ll
postfire((s;, s¢, it), i, Ir) =1

postfire((s;, s, st), i, 1) =

Note that here there is a difference between internal location [; and entry ac-
tion resume, and likewise between [y and initialize, and that these cannot be
conflated. If the Counter were entered with resume in its initial state, it would
be map to ly rather than I;. Although initialize is always the same case as [,
initialize is maintained as separate as a matter of satisfying the interface obli-
gation of providing such an entry action.

2.4 State Example

Another example of a Continuation Actor would be one that represents a state
in a state machine, where the state evaluates outgoing guard expressions as part
of its enter function and performs corresponding transition actions as part of its
fire function. Let this formulation of a state, called StateCA, be parameterized
by a finite set of transitions 7 and a default action ggef. Each transition 7, € T
is defined by the following tuple:

e = (Pk> Q&> k)

where p;, : T — 2 are transition predicates, g : I — O are transition actions (gger
is of the same type), and g are exit labels, referring to the remote destination
of control upon taking the corresponding transition. Let m,, m,, and m, be the
projection functions for these components.

Given these parameters, characterizing the local behavior of the state, such
a StateCA A can be given the following static semantics:

S o L
=~ N ———
AT, qaet) = (1,0, 71,70 0, {my(r) |7 €T



Here, there are no explicit entry locations and the exit labels for A are the
locations m4(7y) corresponding to each transition 7. There is only one state,
denoted u. In addition to the given transitions let the set of transitions be
adjoined with an additional default transition defined

Tdet = (VT € T o 7mp(T), qdes, suspend)

to form 7’. This predicate of this default transition is true if those of all other
transitions are false, the action is the given default action, and instead of an exit
label the third component denotes suspension. Assume that there also exists a
function

chooser : 1 — T’

that, given an input, chooses a transition 7 for which the predicate m,(7)(4) is
true.! If none are true, let it return default transition. The interface functions
for A are simply:

enter(s, i, [) = my(chooser (7))
fire(s, i, 1) = my(chooser (i))(7)
postfire(s, i, ) =u

3 The Coroutine Model of Computation

Models in the Coroutine Model of Computation describe networks of Continu-
ation Actors, connected to each other such that the exit labels of one Contin-
uation Actor refer to entry locations of another. The referent can either be an
explicit entry location, the initialize action, or the resume action on a target
Continuation Actor. Given this structure, when one Continuation Actor in the
network ezits, control can proceed to another Continuation Actor following these
connections. Furthermore, when a Continuation Actor suspends or terminates
during execution the containing Coroutine Model does as well. An execution of a
Coroutine Model is thus a sequence of executions of the contained Continuation
Actors forming a control path through the structure and terminating with ei-
ther suspension or termination. The Coroutine Model is also given its own entry
locations and exit labels that can connect internally to the respective exit labels
and entry locations of its contained Continuation Actors.

In this manner, a Coroutine Model can also be entered by entering one of
its entry locations, as well as be resumed by resuming the Continuation Actor
in which the execution of the model had been previously suspended. The model
can also be initialized by initializing a particular initial Continuation Actor. It
can erit with one of its exit labels, and also suspend or terminate if one of its
contained Continuation Actors does. It follows that a Coroutine Model is itself a

! This allows for the possibility that the predicates are not mutually exclusive in which
case choose determines a means to select a unique transition.



Continuation Actor. This compositionality property allows for Coroutine Models
to form hierarchies, and likewise for specified Continuation Actors to be built
out of other Continuation Actors.

3.1 Coroutine Models

Formally, a Coroutine Model M is described by the following tuple

M = (Qa 4o, mi, mo, D, K, 77) (1())

Here, Q is a finite set of Continuation Actors that constitute the model, and
qo € Q is an initial Continuation Actor. The two components my and mg map
between the inputs and outputs of the whole model and those specific inputs
and outputs of particular Continuation Actors in Q, while the binary opera-
tor @ : 0 x O — O is used to combine the mapped output values produced by
different Continuation Actors.

Let Irq and O be the input and output types of M. The input and output
maps then have the following types:

mp: Il g€ Qollpg — 1 (11)
mo Il g€ Qa0 = O (12)

where the operator IT here denotes a dependent type product, and the types
I, and O, denote the input and output types for Continuation Actor ¢. By
composition with my and mg, the input and output types of each Continuation
Actor are made identical.

Let two sets of internal entry locations and exit labels be defined for the
model

L=XqeqQ.l, (13)

where the operator X' here denotes a dependent type sum. In other words, mem-
bers of £ are of the form (g, x) where ¢ € Q and x € L,, and likewise for G with
respect to G,. Let the finite sets L and Goq be the entry locations and exit
labels of the model, distinct from their internal counterparts.

The functions k and 7 give the structure to the model. The former maps lo-
cations in £ to internal locations in £. The latter maps each exit labels of each
Continuation Actor to either entry actions of another, including to the initialize
and resume special locations, or to exit labels in Gaq. They can therefore be
given the following types:

K ﬁM — L (15)
n:G— L+ Gnm (16)
When the conclusion of the execution of ¢ is to exit with exit label g, and

(¢', k) = n(q, g), control proceeds with entry action k performed on Continuation
Actor ¢’. When instead 7n(q, g) € Gaq, control exits the model.



The state space of model M is constructed from a product of the state
spaces of the Continuation Actors in Q along with the internal entry location
corresponding to the entry action to be taken when the model resumes from a
suspension. That is

Sm=Lx ]S, (17)
7€Q

Correspondingly, the initial state of M is
som = ((qo, initialize), Soqy5 - - -, S0gq,), Where g € Q,1 <k <mn (18)

so that calling resume on model in its initial state has the effect of initializing
q0-

The above, in total, give the static semantics for Coroutine Model M as a
Continuation Actor:

Cam = (Im, Opg, Saas soms Lty Gm) (19)

3.2 Strict Dynamic Semantics

For a Coroutine Model M, specified as in (19), enter, fire, and postfire func-
tions can be defined compositionally, in terms of the specifications and corre-
sponding interfaces of the contained Continuation Actors in Q. The definitions
of these functions constitute a denotational dynamic semantics for Coroutine
Models as Continuation Actors.

Prior to describing the traversal of control in the model, the interface func-
tions are augmented using the input and output maps to functions that have
types corresponding to the model:

entery (s, i, (¢, 1)) = (g, enter,(sq, mi(q, ), 1)) (20)

firey (s, i, (¢,1)) = molq, fireq(sq, mi(q, i), 1)) (21)

postfire; (s, i, (¢, 1)) = r4(s, postfire (s,, mi(q, i), 1)) (22)
)

where the function 74(s, v) replaces the element in s corresponding to g with
value v.

The process of traversing a control path through the model, following exit
labels of Continuation Actors to entry locations of subsequent Continuation
Actors, ultimately reaching suspension, termination, or the exiting of the model,
is described by a the entery function in conjunction with the structural map 7.
In order to put these two pieces together, first it should be noted that the type
of entery function is

entery : Sy Xy x LG+ Z (23)

where Z = Q x (suspend,, + terminate,,)

When the image of enter; is in G, control then can continue to another Continu-
ation Actor determined by 7, whereas if the image is in Z the control ends in the



model with a suspension or termination. To connect this with 7, an augmented
version of the function is defined as follows:

v: G+ Q x {terminate, suspend} — L+ G + Z (24)
ng) 9€6

= 25

(o) {g =g (29

This function can then be composed with enter;; to form the traversal function,
which describes the control traversal through the model:

e:SXIyxL=>L+Gm+Z (26)
(s, 1) = voentery(s, i) (27)

Since L is in both the domain and codomain of ¢, it can be iterated over, starting
with an initial location [y, forming a series

(lo, €(s, 1)(lo), €(s, 1)*(lo), -..)

possibly ending with a terminating value in either Goq or Z. This series generated

by € is the control path of the model for state s and input ¢, generated by location
2

lp.

In addition to defining the traversal function with 7, the map k can be
augmented to handle the whole set of entry actions L. To this end, let this
augmentation be defined

0:SpyxLy — L (28)
(qo, initialize) h € initialize,,

0(s, h) = < (sg, resume)  h € resumey, (29)
Ii(h) h € Ly

2 If this path has no terminating value, it is possible that iterating e can diverge.
Depending on the context, this can either be left as a possibility or restricted in
some fashion as for instance is done in Esterel loop constructs in [2].



The enter, fire, and postfire functions for a coroutine model can then be
recursively defined as follows:

enter(s, i, h) = e(s, i, 0(s, h)) (30)
z, where (q, 2) =1 1€ Z
e(s,i, 1) = (1 leGm (31)

e(s, i, €(s, 1, 1)) lel

fire(s, i, h) = f(s, i, 6(s, h), Og) (32)

fsilo) =10 L LEEHOM (g
(s, i, €(s, i, 1), o® firey(s, 4,1)) leLl

postfire(s, i, h) = p(s, i, 0(s, h)) (34)
T’L(S, l) leZz

p(s, 1, 1) = < re(s, (qo, initialize)) l € Gum (35)

p(postfire; (s, i, 1), i, (s, i, 1)) €L

where the functions e, f, and p are the recursive kernels of the respective enter,
fire, and postfire. Here, the enter function simply follows the control path of
the traversal function. The fire function makes the same traversal, but accumu-
lates outputs from the firing of each Continuation Actor with @. The postfire
function similarly traverse the control path, updating the state of each Contin-
uation Actor along the path.

It should be noted that the state update over the traversal is independent
from the traversal itself and the firings, hence it represents a set of changes
that are only committed to after the traversal and output values are established.
Nevertheless, if the model is suspended and resumed, the state changes take effect
when it is resumed. Amongst these state changes is certainly, in particular, the
change in the location at which to resume.

3.3 Non-strict Semantics

In a Coroutine Model where the constituting Continuation Actors are defined
over pCPOs, representing partial information about inputs, outputs, and control
decisions, a non-strict semantics can be given. Rather than determining a single
control path through the Continuation Actors, given partial input information
several control actions may be possible at each Continuation Actor, thereby
generating instead a tree of control paths. If the enter function of each Contin-
uation Actor is monotonic, then as the input information becomes more specific
the control choices at each Continuation Actor in the tree become no greater,
and possibly fewer, thereby pruning the control tree (or at least making it no
larger).



Given the enter function for a Continuation Actor defined over pCPOs has
a codomain of 29, the correspondingly lifted version of entery is defined:

entery (s, i, (¢, 1)) = {(¢, 9)| g € entery(sq, mi(q, 7), )} (36)

The firey function on the other hand has essentially the same definition. Given
this change in entery, the function 7 can also be lifted:

v(G) = {n(g)|g € GNGIU(GN(Gm + Zm)) (37)

Combining these two parts, a non-strict traversal function € can then be defined

€:S x Ty x L — 25F9m+2 (38)
é(s,i) = voe(s,i) (39)

Hence, for a given state and input, € maps a location to a set of successor
locations potentially including terminal locations in Gnq or Z. A control tree
is thereby generated. If iterated over, € generates a tree of entry locations with
terminations or suspensions as leaves. It is worth noting that the codomain of
¢ can also be expressed as 2% x 29M x 22 and thus the image of € can always
be decomposed into these three sets denoting the possible control choices within
each of their respective categories.

Non-strict versions of the enter and fire functions for the coroutine model
can then be defined in terms of their kernels e and f

{z}, where (¢, 2) =1 1€ Z
{l} L€ Gum

e(s, i, 1) = (40)
U e(s, i, 1) lel
I'eé(s, i,1)
) leZ4+Gpm
f(s, i, 1, 0) = [ £(s, i, ', o firey(s, i, 1) LeL (41)

ree(s,il)

The form of both definitions is similar, in that the control tree in each is traversed
recursively building a collection of results for all control paths. These results are
then combined by an operation to form the greatest consistent conclusion that
can drawn across all of them. In the non-strict enter, the sets of final control
decisions for each path are combined with a union to conservatively give a set
of all reachable control decisions for the model. In the fire function, an output
is computed along each path, and the outputs for all paths are combined with a
greatest lower bound. The resulting partial output consists of only the consistent
information across all possible paths.

Given this non-strict characterization of Coroutine Model semantics, Corou-
tine Models can be given a clear denotational meaning in the context of fixed-
point semantics. Synchronous compositions of Coroutine Models can therefore



be constructed within semantics such as those of SR[6]. Important in such syn-
chronous models is the property of monotonicity, which can be reasoned about
in a clear way with the above denotational semantics. In order to perform this
kind of domain-theoretic reasoning about the above semantic equations it must
be determined that these equations have clear domain-theoretic solutions. In
fact, this is the case, and the following can be proven:

Theorem 1. Given a non-strict Coroutine Model M, if the input Inq and out-
put Qpq types of the model are finite-height pCPOs and operator & is mono-
tonic, then the above recursive equations characterizing the kernel functions e
and f have unique least fixed-point solutions in the partial order of functions with
codomains 2 and Qyy, respectively.

Since solutions to the equations for the recursive kernels exist, then it can
further be asked if under the right conditions enter and fire are monotonic
functions from Iy to 2¢ and Oy, respectively. In fact these functions are mono-
tonic, and more specifically continuous, under the conditions described in the
following theorem:

Theorem 2. Given a non-strict Coroutine Model M, if the input Inq and output
O types of the model are finite-height pCPOs and operator @ is monotonic,
and if for each q € Q the functions enter, and fire, are monotonic in terms
of I, and the mapping functions my and mqg are monotonic, then the non-strict
kernels e and £ are continuous in terms of Ing.

It follows that enter and fire defined in terms of these non-strict kernels are
both continuous, and thus monotonic as well. The proof of this fact involves
noting that the union operator is the greatest lower bound under the order of
reverse inclusion. Both definitions then are formally similar and can be altered
in simple ways to get the same general formula for both. This general formula,
taking the greatest lower bound of every branch formed by the traversal, can
be shown to be monotonic because an increase in the codomain of the traversal
function, ordered by reverse inclusion, corresponds to there being fewer branches,
and thus fewer possible control paths. Furthermore, the greatest lower bound of
a set of decreasing size always corresponds to the value of this bound remaining
equal or increasing. That is

ACB & ADB = [|AC[|B (42)
The proof follows from working out the details of this general relationship. The

most important consequence of this theorem is that, under the above conditions,
monotonicity is compositional for Coroutine Models.

4 Related Work

The semantics of the component-based model 42 defined by Maraninchi[12] also
gives an atomic interface description for components that includes control along



with data, but the aims of the control dimension are very different. The control
ports of a component in 42 receive tokens from a model controller, whereas
the entry locations and exit labels of Continuation Actors are meant to form
a network of control relationships. Since the control behavior of a 42 model is
specified by its controller, which can be any imperative program, 42 by itself does
not constitute any particular dynamic semantics. Moreover, there is no particular
way in the interface semantics of 42 to handle non-strict control decisions.

A denotational semantics for Stateflow is given by Hamon [7] in which states
are represented as continuations. However, the intention of Hamon’s semantics
are aimed at giving a formal treatment specifically to Stateflow. Consequently,
the denotations given are functional programs relevant particularly in the con-
text of understanding compilation. Since these functional programs act on both
data and continuation environments, there is no clear way give this formalism a
non-strict interpretation or compose it with other models that do not involve its
environments. Although Hamon’s semantics provide a backtracking mechanism,
partial information cannot be combined from several potential paths as it can
in the non-strict semantics given here. Finally, Hamon’s model treats transition
guards and actions as a part of the semantics of the execution. Here, in contrast,
the role of guards and transition actions are considered to be part of the Con-
tinuation Actors. The semantics of Coroutine Models is thereby considerably
simpler and applicable to a wider set of cases where different guard languages
or other mechanisms are used to determine control transitions.

5 Conclusion

The Coroutine Model of Computation defined here provides a general denota-
tional model for representing control-oriented behavior, capable of use in hier-
archical and heterogeneous systems. Both a strict and a non-strict denotational
semantics have been given for Coroutine models allowing the compositional anal-
ysis between these models, and models with other semantics, to be expressed in
functional terms. In particular, the non-strict semantics enable such models to be
used in synchronous composition with clear conditions for monotonicity. Corou-
tine Models also fit the definition of a Director given by Tripakis et al.[13] as
a function from the interfaces of the constituting actors and structure of the
model to an actor representation of the composite model. Given this language,
many control-oriented models can be expressed in its terms by defining a set of
constituting Continuation Actors and potentially making small modifications to
the model semantics. Some preliminary work has thus far been done for fully
modeling the semantics of SyncCharts[1] in terms of Coroutine Models. Work
has also been done to implement the Coroutine Model of Computation in the
Ptolemy II environment, where it can be used to develop and test executable
heterogeneous models.
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6 Appendix: Monotonicity

In this section, the semantics given for non-strict Coroutine Models, and closely
related semantics, are shown to be monotonic. In order to make this argument,
several definitions and preliminary arguments will be made.

Firstly, a class of operators called domain folds will be defined. These oper-
ators combine the range values of a function evaluated over the members of a
given set with a binary operator called an accumulator. The conditions will then
be given for these operators to be monotonic over different parts of the domain.

6.1 Commutative Domain Folds

Definition 1. Let there be a monoid V. = (V, o, ey). If V is partially ordered,
let the monoid with this partial ordering be called an accumulator. If the accu-
mulator is commutative let it be called a commutative accumulator or CA.
If o is a monotonic function of both operands, let it be called a monotonic
accumulator or MA. Let an accumulator be called rising iff

Va,beV qa<aobANb<aob
and let it be called falling iff
Va,beV qaob<a ANaob<bd

Given the above definitions, acronyms shall generally be used, for instance
falling Monotonic Commutative Accumulator shall be fMCA, and so
forth. Note that rising and falling indicate that the corresponding operators are
respectively upper bounds and lower bounds on their operands. This might not
correspond to least upper bound and greatest lower bound, since multiplication
on positive integers in the divisor order, for instance, is rising but not a least
upper bound in the order.

Definition 2. Given V is a commutative accumulator, and set X is a finite set
called here the domain, o commutative domain fold (CDF) is defined as a
function

14
ﬂ 22X X (X = V)=V

having the defining properties that for a set G € 2%, a function f : X — V, and
any element a € G:

[ir=ev ana | 5= ﬂz\ e 1@

Proposition 1. For a CDF, a non-empty finite set A € 2%, and a subset

BCA
L=Vl



Proof. Given set B is finite, let there be a finite sequence of its elements {b, } n<n,
where N = |B|. A sequence of subsets of B can be defined B,, = by |k < n for
all n < N, such that B, 11 = B, Ub,. Let it be assumed that for n < N

b =Lntobnt

It follows from the definition of a CDF that for n < N

I = fo F(bm)
A\B, (A\B.)\{bs} "

and hence

ﬂ:f - (MA\Bn)\{bn}f ¢ f(b”)) ° ﬂ;f B H?A\Bn)\{bn}f ° (ﬂ;f ° f(b"))

by the commutativity and associativity of o From the definitions for a CDF and
By, forn < N

ﬂ;ﬂf B ﬂ;nm{bn}f ° f(bn)

Taking also that from the above definitions clearly for n < N

(A\ Bp)\{bn} = A\ Byy1 and B, = By, 11\ {bn}

it follows that

A W

Since By = {b1}, by induction the proposition is proven.

Since CDFs are defined over a domain of subsets, 2%, and functions, X — V,
partial orders will be defined over these types.

Definition 3. Let <, = C and <, = D define two partial orderings of 2X. For
a partially ordered set V', let <y x be the pointwise-functional partial ordering of
functions X = V.

Definition 4. A CDF is set-monotonic iff it is monotonic as a function of
its first domain component 2% where either the order on 2% is <, and the CDF
1s defined on a rising accumulator, or the order is <, and the CDF is defined on
a falling accumulator. A CDF is function-monotonic iff it is monotonic as a
function of its second domain component X — V ordered by <y x and the CDF
is defined on a monotonic accumulator. If a CDF is continuous in either of these
senses, it is respectively set-continuous or function-continuous. If a CDF
18 both set-monotonic and function-monotonic, it will be called a monotonic
commutative domain fold or MCDF. If it is additionally continuous in both
senses, it will be called a continuous commutative domain fold or CCDF.



Note that given this definition, a MCDF is also monotonic over tuples
2% x (X — V) ordered pointwise with the corresponding orderings on the com-
ponents.

Theorem 3. Any CDF defined on a rCA or fCA, with the respective orders
<, or <p on 2%, is set-monotonic. Any CDF defined on a monotonic accumu-
lator is function-monotonic. If the accumulator is a TMCA or fMCA, with the
corresponding orders, then the CDF is a MCDF.

Proof. For any sets G, G’ € 2%, if G <, G’ or G <, G', then in the two cases
of orderings, (a) G C G’ or (b) G D G'. In the first case, using the above
given proposition, it follows from (a) the rising property of the commutative
accumulator function o that for any f: X — V

lor=lowet e lot v Lo

Likewise, in the second case (b) where o is falling

lor=lore ot =v o

Therefore, in both cases the CDF is set-monotonic over 2X.
For any f, f' : X — V, by the definition of a pointwise order on functions
with ordered codomains

Ve eGof<yx f = f(z)<v f(z)

v
HG\{x}f

is function-monotonic for all x, then it follows from this assumption, and the
monotonicity of the accumulator function o that

I fer@sv | ror@
G\{z} T VG\{z}
hence by the defining relations of CDF's

s Ll

Thus, if the CDF is function-monotonic on G\ {z}, then it is function-monotonic

on (. Since v v
Iy r=ev=],r

and hence the CDF is function-monotonic on ), using the same construction
above for constructing a sequence {Gy, },<|q| by induction over this sequence it
is proved that the CDF is function-monotonic.

The final assertion follows, by definition, from the other two constituting
propositions.

If it is assumed that



Corollary 1. If a CDF is set-monotonic it is also set-continuous. If a CDF is
function-monotonic and defined over an accumulator with a finite-height partial
ordering, then it is also function-continuous.

Proof. Since the domain of a CDF is finite, the set 2% is also finite, and thus has
a finite-height in its ordering. Therefore the set-monotonicity of a CDF implies
that it is also set-continuous.

A function-monotonic CDF is pointwise monotonic over V for each z € X.
Given the codomain V is finite-height, the CDF is continuous in each component
of the function, therefore it is function-continuous.

6.2 Existence of the General Formula

Given this notion of monotonicity and continuity over CDF's, arising from the
monotonicity and rising/falling property of their accumulators, a generic formula
representing the non-strict semantics can be given. This formula can then be
shown to lead to a well-defined semantics, and further one that is monotonic
over input values.

In the following discussion, as well as subsequent sections, I and O shall be
finite-height partial orders (and thus complete), both with bottom elements L
and Lg. O shall also be a fMCA. The set £ shall be finite, and the power-set
2L will be ordered over reverse inclusion D. On O let there also be a monotonic
binary operation @ : O x O — O with a unit ug. These assumptions will be
carried throughout all of the following material.

Definition 5. Let the function k be defined with respect to three functions € and
Y as follows:

Kep : IXLXxO0—=0) = (IxLx0O—0)

kenlolli o) = | 80 e 00006, D)
where o denotes a function being formed over the corresponding domain element.
Lemma 1. Function k is conlinuous.

Proof. For each value of ¢, [, and o, in their respective sets, let a function
f: L — O be defined for these values

f(x) = o(i, z, 00 (i, 1))

For each such function, k. y[¢](¢, [, 0) is function-continuous CDF, since the
accumulator on @ is monotonic and finite-height. Since k. y is continuous in each
of its components, tuples (i, I, 0), as a function of them it is also continuous.

Definition 6. Let the function T, ¢, ¢ be defined as follows:

Tererpe: (IXLXO = 0) = (IxLx0— 0)
Teoer.[0] = ey (€] © e, (9]



Lemma 2. Function T, ¢, 4.¢ 95 continuous.

Proof. The components of function T, ., y.¢[¢] are

T€a7€b7¢7§[¢](i7 L 0) = Héaﬂﬁ[d(iv L 0) o Hebaw[¢](ia L 0)

The first term of the components is a constant with respect to ¢. Since k., (@] is
continuous, it is continuous over its components as a function of ¢. It follows from
the monotonicity of o and the finite-height of O, that T., ., 4 ¢[¢] is pointwise
continuous as a function of ¢. Since it is pointwise continuous, it is continuous.

Theorem 4. (existence) FunctionTe, ¢, ¢ has a unique least fized point, pTe, ¢, ¢
Proof. Since the pointwise partial order of functions

IxLxO—0O

has a bottom value, ¢, (i, [, 0) = L, this order is pointed. Moreover, because
O is finite-height, it is complete, and thus the pointwise function order of func-
tions over O is also complete. The function T, ., 4.¢ is then a continuous endo-
morphism over the pointed CPO of functions, and therefore by the theorem of
Kleene, must have a unique least fixed point.

A corollary of the fixed point theorem of Kleene is that the least fixed point
of function T, ., v,¢ can be iteratively computed from the bottom function ¢,
by taking the limit of successive applications of the function of this bottom. That
is,

Pl eppe = | | T2 cpe(d1)

new

The existence of this least fixed point allows a precise definition to be given
for the general formula.

Definition 7. The general formula ¢ shall be defined

¢(7/7 l) = MTea,eb,w,é(ia l7 u@)

6.3 Continuity of the General Formula

Given the general formula @ is expressed as a least fixed point of the function
Te, 0.6, the iterative construction above can be used to prove properties re-
garding the general formula by showing both that the bottom element ¢, in
the domain of T has the property and that 7" preserves it. Inductively, the con-
sequence of these two conditions is that every function produced by iteratively
applying T to ¢ has this property. Given the iterative construction for the least
fixed point, it follows that the least fixed point also has the said property.

Specifically, the property of interest is the continuity of the general formula
as a function from I to @. The two properties required to prove this inductively
will be shown below, with the assumptions necessary to do so, followed by the
statement of the property by induction.



Lemma 3. Function ¢, is continuous over I and Q.

Proof. Since this function is a constant function of I and O, it is vacuously
continuous.

Lemma 4. If the functions € and v are monotonic functions of 1, and ¢ is
continuous as a function of T and O, then ke (@] is also continuous as a function

of I and Q.

Proof. Let 1,7 €1, 0,0 € Q, 1 <y, and 0 <g 0. It follows from the mono-

tonicity of € over I that
e(i, 1) < e(@, 1)

Given that 2% is ordered over reverse-inclusion, and accumulator Q is falling,
it follows that each component of k. y[¢] is set-monotonic over values of €(i, ).
Combining these two above propositions

V . . V . .
[ 00 e 0mvi < 66 e 00w )

e(i,1)

(note that in the above, the only i’ in the RHS is in €).
It follows from the monotonicity of ¥ and & that

0® (i, ) 0@y, 1) and 0@y, 1) < o ®Y(i, )
Therefore, given the continuity of ¢ over I and Q, for any I, I’ € L
o(i, U', 0@ (i, 1) < o(i', ', 0D (i, 1))
o1, U'; 0@ (i, 1)) < o0, ', o' @ 9(i, 1))
Because this is the case for all I, as a function of I’
o(i, o, 0D Y(i, 1)) < ¢(i', o, 0@ Y(i', 1))
o, o, 0@ 1P(i, 1)) < ¢(i, 8, 0" DY(3, 1))

are both the case as over function orders. Since each component of k. y[¢] is
function-monotonic, it follows that

1% ) - Vv , ‘o
[ICCRESTCRNES IR ETIC)

e(i’,1)

and

1% \%
I oG e omwi )< || 6o o @i, 1)
e(i, 1) €(i, 1)

Combining the first of these two relations with the above relation in terms of ¢,
by transitivity, . y[¢] is shown to be monotonic in I, while the second shows
it is monotonic in O. Since the codomain O of k¢ [@#] is finite-height ke [d)] is
continuous in both I and O.



Lemma 5. Given that €., €, and 1 are monotonic in 1, and £ is continuous in
I and O, if ¢ is continuous over I and O, then T, ¢, 4[P] is also continuous
over I and Q.

Proof. From the previous lemma, if ¢ and £ are continuous, given the assump-
tions, both ke, 4[] and ke, [¢] are continuous. Since operator o is continuous
on O, it follows that T¢, , 4 ¢[4#] is continuous over I and O.

Theorem 5. (continuity) Given that €,, €y, and ¥ are monotonic in I, and £ is
continuous in I and O the least fized point of the function T¢, ¢, .¢ 5 continuous
over I and Q.

Proof. Given the above two lemmas, stating that ¢, is continuous, and that
for any continuous function ¢ the function T¢, ., 4¢[¢] is also continuous, by
induction 77" 7€b7'¢’-,f[¢ 1] is continuous for all n < w. Since this property does not
change at the limit of this series, via the iterative form of Kleene, this proves
that the least fixed point of Tt , 4.¢ is continuous.

Corollary 2. Given the above assumptions, the general formula @ is continuous
in L.

Proof. This follows immediately from the definition of @ and the above theorem.

6.4 Continuity of the Semantics

Having shown above that the formula & both exists and under a set of as-
sumptions, is continuous, the fire and enter functions forming the non-strict
semantics given in [sem ref] can be shown likewise to exist and to be continu-
ous, by simply showing that they are both of the form ®. Consider the traversal
function €. Since the type of € is

E:SxIxL— 2572 2 §xIxL— 25 %x2%
it can be broken up into two functions
éz:SxIxL—27
€z(s, i, 1) =¢€(s,i, )N Z
ér:SxIxL—2F
éc(s,i,l)=¢(s, i, )NL
the first describing the set of possible terminating successors in the traversal

and the second describing the set of possible non-terminating successors. The
non-strict fire and enter functions can the be rewritten in these terms:

enter’(s, i,1) = |_| 29 T |—| enter’(s, i, ')
z€éz(s,1,1) l'eérp(s,i,l)
fire'(s, i, [, 0) = |—| o®f,(s, i, 1) M |_| fire'(s, i, I', o ® £,(s, i, 1))

2€€z(s,14,1) l'eér(s,i,l)



In order to cast these formulae into the form of the @, a couple definitions and
modifications must be made. Let the following functions be defined:

genter(sa iv la 0) = 22 ffire(sa ia la 0) = 0

wenter(& iv l) = E wfire = fq

Let enter’ also be extended to take an additional parameter o of types 2£. This
is just a dummy parameter. The new functions can thus be substituted into the
definitions for enter and fire:

enter’(s, i, [, 0) = |_| Eenter (8, 1y 2, 0D Yenter(s, i, 1)) M |_| enter’(s, i, l', 0 ® Yenter (s, 1, 1))

2€€z(s,1,1) leér(s,i,l)

fire'(s, i, [, 0) = |_| Efire(8, 1, 2, 0B Yfire(s, 1, 1)) T |_| fire'(s, i, I', 0 ® Ypire(s, i, 1))
z€éz(s,i,1) Icép(s,i,l)

The codomains of the two functions are 2° and O, which both form falling
monotonic commutative accumulators with operation N — where for the former
this means taking the union. The iterated forms of M in the expression are thus
continuous commutative domain folds. These formulae can thus be expressed in
terms of the general formula as follows:

enter = #T€27€£7wente7“7£ente7‘(87 Z.’ l7 E)
fire = MT€27€£7¢fircx§firc (57 i, 1, L@)

By the above theorem for the existence of this precise definition for the two
functions, these two functions indeed do exist and are unique (the recursive ex-
pression alone is not enough without the requirement of being the least of the
possibly many fixed points that satisfy the recursive equation). Furthermore, it
follows from the theorem of continuity that if €, @, Yenter, and . are mono-
tonic, and also that {cnter and &fire are both continuous, then the enter and
fire are both continuous in I. For a coroutine model constructed of monotonic
non-strict Continuation Actors, the € and ;.. functions are both monotonic by
definition. The remaining functions fit the above requirements by their given def-
initions. Hence, enter and fire define a continuous semantics for the coroutine
domain. Consequently, a coroutine model built from monotonic Continuation
Actors should behave reasonably in a synchronous composition.



