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Abstract

Multimedia systems are becoming increasingly complex
and concurrent. The Platform-based design (PBD) method-
ology [8] tackles these issues by recommending the use
of formal models, carefully defined abstraction layers and
the separation of concerns. Models of computation [10]
(MoCs) can be used within this methodology to enable spe-
cialized synthesis and verification techniques. In this paper,
these concepts are leveraged in an industrial case study: the
JPEG encoder application deployed on the Intel MXP5800
imaging processor. The modeling is carried out in the
Metropolis [4] design framework. We show that the system-
level model using our chosen model of computation allows
performance estimation within 5% of the actual implemen-
tation. Moreover, the chosen MoC is amenable to automa-
tion, which enables future synthesis techniques.

1 Introduction

Data streaming systems such as audio, video, and im-
age codecs as well as wireless communication will be the
driving force behind consumer technology in the near fu-
ture. With increasing system requirements and decreasing
development times, the RTL design abstraction is no longer
sufficient, a higher level which allows for rapid design space
exploration must be used. High levels of abstraction not
only shorten verification time, but also favor design reuse,
formal verification, rapid prototyping and last but not least,
the usage of synthesis techniques.

However, using a higher level of abstraction requires
choosing an appropriate model of computation to describe,
model, and reason about the system. At the RTL level,
a synchronous MoC with combinational blocks being de-
scribed by Boolean expressions is sufficient to handle the
majority of designs. At the system level, the landscape is

much more fragmented. No single MoC can satisfy most of
the requirements. This implies that the modeling framework
itself needs to support various models of computation.

The Platform-based design methodology advocates the
use of formal models of computation, precisely defined
abstraction layers and the separation of concerns to fa-
cilitate system level design. The separation between ap-
plication and architecture is central to this methodology.
The application includes the portion of the design that
is implementation-independent and specifies which opera-
tions need to be carried out. The architecture, on the other
hand, specifies how the operations will be carried out and at
what cost. The definition of an operation and the rules for
composing these operations are captured by the MoC – or
the common semantic domain between application and ar-
chitecture. Design space exploration is seen in this frame-
work as the procedure of carrying out different mappings
between the application and architecture models and evalu-
ating the quality of implementations that are derived.

As with any other methodology, the proof of its power
can only come applying it to real-world case studies. In this
paper, we take a system from the multimedia domain and
apply the design methodology with the help of the Metropo-
lis framework, which is based on PBD principles.

2 The Case Study

The application for the case study primarily involves soft
real-time requirements and data streaming while the chosen
architecture is heterogeneous and highly concurrent.

2.1 JPEG Encoder Application

The JPEG encoder [13] application, is required in many
types of multimedia systems, from digital cameras to high-
end scanners. The application compresses raw image data
and emits a compressed bitstream. This application was
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Figure 1. JPEG encoder block diagram

chosen since it is representative of a wide class of multi-
media applications. In particular, the DCT, quantization,
and Huffman blocks in the JPEG encoder algorithm are uti-
lized in several video compression algorithms including the
H.264 standard [15].

A block diagram for the JPEG encoder is shown in Fig-
ure 1. The input for the application is a stream of raw RGB
data. In color space conversion, the raw data is first con-
verted into YCbCr format, where each of the three compo-
nents is a single unsigned byte.

Next, each of the component values is level shifted such
that it can be stored as a signed byte. The values are
then bundled into 8x8 blocks and processed independently.
First, each 8x8 block passes through a forward integer DCT
block.

The subsequent step in the algorithm is quantization.
Each component in each 8x8 block is divided by a user-
supplied coefficient from a quantization table. Two sepa-
rate tables are used, each with 64 coefficients, one for the
luminance components and the other for the chrominance
components.

After the division has taken place, the next step is to re-
arrange the component values within each 8x8 block from
row-major into zig-zag order. This ordering tends to group
the higher frequency components together, preferably lead-
ing to long sequences of zeros.

The first part of the Huffman encoding step is run-length
compression which takes long strings of zeros and repre-
sents them in a concise intermediate form. The second stage
is the actual Huffman table lookup, which translates the in-
termediate form into compact bit sequences. Like the quan-
tization tables, the Huffman tables are statically specified
by the user.

The final JPEG image file consists of header data along
with the compressed bitstream. The header data includes
the quantization and Huffman tables for both the chromi-
nance and luminance components.

2.2 The Intel MXP5800 Platform

The Intel MXP5800 digital media processor is a hetero-
geneous, programmable processor optimized for document
image processing applications. It implements a data-driven,
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Figure 2. Block Diagram of MXP5800

shared register architecture with a 16-bit data path and a
core running frequency of 266 MHz. The MXP5800 pro-
vides specialized hardware to accelerate frequently repeated
image processing functions along with a large number of
customized programmable processing elements.

The basic MXP5800 architecture, shown in Figure 2,
consists of eight Image Signal Processors (ISP1 to ISP8)
connected with programmable Quad Ports (8 per ISP). Quad
Ports are used for data I/O and are essentially FIFOs of size
2 each. They provide blocking read and write semantics
which ensures that all communication is data driven. Quad
Ports are statically configured by the application developer
according to the data flow topology of the application. In
addition to Quad Port connections, various ISPs are con-
nected to other units such as DMA channels and expansion
ports.

Each ISP consists of five programmable Processing El-
ements (PEs), instruction/data memory, 16 16-bit General
Purpose Registers (GPRs) for passing data between PEs and
up to two hardware accelerators for key image processing
functions. Two of the PEs are used for Data I/O: The Input
PE (IPE) which is used to read data from the Quad Ports,
and the Output PE (OPE) for writing data to a Quad Port. Of
the remaining 3 PEs per ISP, one is for general purpose use
(GPE) and two PEs have Multiply/Accumulate (MACPE)
capabilities in addition to the general purpose functionality.

Each general purpose register in an ISP has a set of 8
data valid (DV) flags - one per PE. If all the DV flags for
a register are cleared, a PE may atomically write data to
the register and set the DV flags for all of the destination
PEs. Each of the destination PEs can clear its own flag
when it reads the data. In this way, the global registers serve
as a single-place blocking-read, blocking-write FIFOs for
multiple writers and readers. A Memory Control Handler
(MCH) provides the interface to the SRAM data memory
block and has support for a number of different read/write
modes which support variable offsets and stride lengths.

Each ISP is optimized for a particular task and the



hardware accelerators in the ISP reflect that optimization.
ISP2, ISP5 andISP6 each have variable-tap and single-
tap triangular filters. ISP4 and ISP8 contain Huffman
encode/decode engines that are useful for many compres-
sion/decompression applications.ISP3 contains G4 en-
code/decode blocks.ISP7 contains 8x8 DCT/iDCT hard-
ware. Finally,ISP1 has an additional 16 KB of data SRAM
instead of a hardware accelerator.

The major characteristic of this architecture platform is
the extremely high degree of parallelism and heterogeneity.
Harnessing the flexibility of the PEs to extract high perfor-
mance is the main design challenge.

3 Choosing the Model of Computation

To apply the platform-based methodology, it is first nec-
essary to choose the appropriate model of computation to
describe both the application and architecture. The MoC
will address many aspects of the design flow. It will dictate
how the application and architecture modeling is carried out
and which synthesis techniques can be applied. In choosing
a MoC, there is a tension between modeling requirements
on one hand and the accuracy and strength of claims on the
other. For instance, if communication and computation re-
quirements are simply estimated, then deadlock cannot be
ruled out, and significant discrepancies may exist between
actual and estimated performance.

3.1 Kahn Process Network variants

Since the application is data-streaming in nature and will
be mapped onto a highly concurrent architecture, a Kahn
Process Networks [7] (KPN) representation is natural. In
KPN, a set of processes communicate via one-way FIFO
channels. Reads from channels block when no tokens are
present – processes cannot query the channel status. How-
ever, this model is Turing-complete, so the scheduling and
buffer sizing problems are still undecidable. Therefore, oc-
currences of artificial [6] deadlock cannot be ruled out if the
generic KPN model is used.

The solution is to consider refinements of the generic
KPN model that allow stronger statements to be made while
restricting expressiveness. One possible refinement is to use
dataflow [9], which separates the execution of each process
into atomic firing actions. However, many key properties
are still undecidable in a general dataflow model.

At the other end of the spectrum, we can consider well-
behaved refinements of KPN that excessively restrict ex-
pressiveness. Homogeneous and static dataflow [11] are
two such examples. In homogeneous dataflow, each process
consumes and produces the same number of data tokens on
each firing, for all channels. In static dataflow, the num-
ber of tokens produced and consumed must be constant for
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Figure 3. Classification of MoCs

each firing on all channels, but can vary between channels.
Cyclo-static dataflow [5] is a slight generalization that per-
mits the firing characteristics of each process to vary in a
cycle. The main advantage of a cyclo-static dataflow model
is reduced buffer size requirements.

A classification of these MoCs along an axis of expres-
siveness vs. strength of properties that can be proved is
shown in Figure 3. The approximate location of the MoC
that we have chosen is also shown in the diagram.

3.2 Chosen model of computation

The model of computation we have chosen is most sim-
ilar to cyclo-static dataflow [5], but contains several exten-
sions. Only one writer is permitted per channel, but multiple
reader processes are allowed. For all channels, each reader
process can read each data token exactly once. Also, we
allow limited forms of data-dependent communication.

Like other dataflow models, processes in this MoC con-
sume and produce tokens according to firing rules. Multiple
firing rules can be specified for each process. Each process
cycles between its firing rules in a fixed pattern. If a data-
dependent number of tokens is to be exchanged on a chan-
nel, the sender is required to first indicate how many such
tokens will be sent in a “header” token. In this way, the
property of effectiveness [6] is guaranteed.

To enable support for executing multiple processes on a
single processing element, this MoC has support for mul-
titasking. In particular, a process may only be suspended
between firings.

Scheduling, buffer sizing, and mapping are decidable
problems for this MoC. Like many specialized dataflow
models, our dataflow model induces stronger constraints
on the application as opposed to the architecture. In fact,
many dataflow models can be supported by multiprocessor
architectures that allow efficient blocking read and blocking
write operations.

4 Modeling the Case Study and Carrying out
Design Space Exploration

Design space exploration for this case study is carried
out in the Metropolis Framework. In this section, we be-
gin with a short introduction of Metropolis, describe how



Implementation Language Concurrency Lines of Code
IJG C++ Sequential 18,000
MXP5800 Library ASM Concurrent 915
Metropolis MMM Concurrent 2,695

Table 1. JPEG encoder models

we modeled the application and the architecture within this
framework, and present our approach to design space ex-
ploration.

4.1 The Metropolis Design Framework

The Metropolis Design Framework is an embodiment
of the Platform-based design methodology. The Metropo-
lis framework consists of a specification language – the
Metropolis Metamodel – as well as a compiler, simulator,
and a set of plugins that can interface with external tools.
The Metamodel specification language is generic enough to
encompass many different models of computation including
discrete-event, synchronous reactive, and KPN.

There are three kinds of objects in Metropolis –
processes, media, and quantity managers. Processes pos-
sess their own threads of control while media are passive
objects that provide services to processes and other me-
dia. Processes generate events when they execute, these
events can be annotated with various quantities of interest
by quantity managers [3]. Examples of quantities include
time, power, or access to a shared resource. Events may be
related by using declarative constraints in Linear Temporal
Logic [12] or the Logic of Constraints [2].

4.2 JPEG Application Modeling

Starting from both a sequential C++ implementation [1]
and the concurrent assembly language implementation pro-
vided in the Intel MXP5800 development kit, we assembled
an architecture-independent model of the JPEG encoder in
Metropolis expressed in our dataflow model. The model
carries out a full implementation of the 4:4:4 JPEG encoder
baseline algorithm. A total of 20 FIFO channels and 18
separate processes are used in the application model. Char-
acteristics of the original C++, assembly, and Metamodel
designs are provided in Table 1.

To describe the application model in further detail, we
will concentrate on the breakdown of the discrete cosine
transform step in the algorithm. At the top level, the re-
quired two-dimensional DCT can be broken down into four
basic steps: two one-dimensional DCT operations, each fol-
lowed by a transpose operation. Each of the 1D-DCT block
reads in 8 spatial data values (corresponding to either a row
or a column) and outputs 8 frequency values. The algorithm
used to carry out the 1D-DCT is based on the implementa-
tion given by Chen-Wang [14]. Each one dimensional DCT
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Figure 4. Dataflow model for 1D-DCT
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Figure 5. MXP5800 ISP Modeling in Metropolis

operation is broken down into concurrent steps, as shown in
Figure 4. The diagram shows that all the channels require
multiple readers. This observation, along with the fact that
the architecture supports multiple readers through data valid
bits, is the reason why our MoC explicitly supports this type
of communication.

4.3 Architecture Modeling

The MXP5800 architecture platform can be modeled in
Metropolis by using processes, media, and quantity man-
agers in the Metropolis Metamodel. A single ISP is mod-
eled as shown in Figure 5. The rectangles in the diagram
represent tasks, the ovals represent media, while the dia-
mond is the quantity manager. The ISP contains the Huff-
man hardware accelerator, and is sufficient for implement-
ing the JPEG encoder application. If we want to use the
DCT hardware accelerator, another ISP is needed. In this
case, the two ISPs will be connected through Quad Ports.
Modeling various ISPs with different hardware accelerators
is very similar, we use the diagram in Figure 5 as an exam-
ple.

Each PE is modeled as a medium, which supports multi-
ple tasks running on it. Each task is modeled as a process.



These processes represent the possible functionality exe-
cuted on the PE. After mapping, the behavior of each task
will be restricted by the corresponding process from the ap-
plication; there is a one-to-one correspondence between ar-
chitecture processes and application processes.

The scheduling of multiple tasks on a single PE is car-
ried out by the quantity manager connected to this PE. The
quantity managers support static scheduling, which is re-
quired by the MoC.

The communication between programming elements oc-
curs through either global registers or local SRAM. The
global register file is modeled as a netlist that contains
16 global registers. Each global register is modeled as a
medium, which implements blocking write but allows mul-
tiple simultaneous reads. These global registers can be ac-
cessed by all PEs, hardware accelerators, and the MCH. To
reduce the modeling complexity, an interface medium in the
netlist is used to communicate with the PEs, accelerators,
and MCH.

The SRAM is controlled by a memory command han-
dler(MCH). The MCH contains a global register interface
(GR interface), arbiter and memory. The GR interface is
used to communicate with the global register file and is
modeled as a process that waits for the appropriate data
valid bits to be set in the global register file. The ar-
biter obtains memory access requests from the GR inter-
face through multiple FIFO channels, then uses a round-
robin access scheme to select one of them to access the local
memory, which is modeled as a medium.

To model running time, a global time quantity manager is
used. Every PE, every global register and the local memory
are connected to it. Both computation and communication
costs can be modeled by sending requests to this global time
quantity manager and obtaining time annotations.

4.4 Design Space Exploration and Results

Given the application and architectural models in
Metropolis as described in Sections 4.2 and 4.3 respec-
tively, the design space can be explored by attempting dif-
ferent mappings between the application model and the ar-
chitectural model. Each mapping scenario is specified in
Metropolis with two types of information. The first is a spe-
cific set of synchronization constraints between the events
in both models corresponding to the services that consti-
tute the MoC. Along with these events – which represent
the read, write, and execution services defined in our MoC
– the parameters such as register location or local memory
address can also be configured. The second is the set of
schedules for the PEs that determine the execution order be-
tween the tasks. Both of these are relatively compact, mean-
ing that new mapping scenarios can be created quickly and
without modifying either the application or the architectural

Process Hardware Balanced OPE Emph. OPE Heavy
Level Shift IPE IPE IPE IPE

Add4-R OPE OPE OPE
Sub4-R OPE OPE OPE
Add2-R IPE OPE OPE
Sub2-R IPE OPE OPE

Mult1-R MACPE1 MACPE1 MACPE1
Mult2-R DCT HW MACPE2 MACPE2 MACPE2
Add4-C Accelerator IPE IPE OPE
Sub4-C OPE OPE OPE
Add2-C IPE IPE OPE
Sub2-C OPE OPE OPE

Mult1-C MACPE1 MACPE1 MACPE1
Mult2-C MACPE2 MACPE2 MACPE2

Table 2. Mapping assignments

models.
The application is a total of 2,695 lines as shown pre-

viously in Table 1. The architectural model is 2,804 lines,
while the mapping code is 633 lines. Each additional map-
ping scenario can be described with approximately 100
lines of additional code, and without modifying any of the
other code.

To show the fidelity of our modeling methodology
and mapping framework, we initially abstracted two map-
ping scenarios from the implementations provided in Intel
MXP5800 algorithm library and carried out simulation in
the Metropolis environment. We also tried an additional
two scenarios which did not have a corresponding assem-
bly language implementation. For all of the scenarios, only
the mapping of the fine granularity 1D-DCT processes was
varied.

The first scenario makes use of the DCT hardware ac-
celerator and clearly has the highest performance. The
other three scenarios use various software implementations
of the row-wise and column-wise 1D-DCT operations. For
these three scenarios, the transpose process is mapped to
the MCH, which natively supports this type of operation.
Register mappings are taken from the Intel library imple-
mentations and consist of 1, 2, or 4 global registers per
FIFO channel. The second scenario uses a balanced par-
titioning of the processes among the available PEs, while
the third and fourth scenarios put progressively more load
on the OPE. The details for all four scenarios are provided
in Table 2.

For each scenario, the number of clock cycles required
to encode an 8x8 sub-block of a test image was recorded
through simulation in Metropolis. For the first two scenar-
ios, implementations from the MXP5800 library are avail-
able and were compared by running the code on a develop-
ment board. The results are shown in Figure 6. The cycle
counts reported with the Metropolis simulation are approx-
imately 1% higher than the actual implementation since we
did not support the entire instruction set for the processing
elements. The latter two scenarios provide reasonable rel-
ative performance, but assembly implementations were not
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Figure 6. Performance Comparisons

available for comparison.
As long as the granularity of the each dataflow process

is small (such as for most DSP-like systems), we expect
that this model will provide very accurate estimates of per-
formance. Regardless of the computational granularity, the
schedules and deadlock analysis capabilities of this MoC
will still remain valid.

5 Conclusions and Future Work

In this paper, we described a case study that makes use
of the platform-based design methodology to enhance de-
sign space exploration. The main steps in the design flow
are choosing the model of computation, modeling the ap-
plication and architecture in a common framework using
this MoC, and evaluating different mappings. In this pa-
per, we illustrated how application/architecture separation,
declarative synchronization statements and quantity annota-
tion can be used within the Metropolis framework to realize
the goals of the case study. Design space exploration can be
carried out to analyze different mappings of the application
on the architecture.

If the MoC chosen captures the important characteristics
of the system, as shown, then accurate performance esti-
mates can be obtained at a fraction of the cost and much
faster than with other verification methods and tools. The
main tradeoff when choosing a MoC, as described in Sec-
tion 3, is between expressiveness and analysis capabilities.
After determining that a particular MoC captures the main
characteristics of a particular class of systems, automated
design space exploration techniques can be developed.
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