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ABSTRACT

This paper introduces design contracts between control and em-
bedded software engineers for building Cyber-Physical Systems
(CPS). CPS design involves a variety of disciplines mastered by
teams of engineers with diverse backgrounds. Many system prop-
erties influence the design in more than one discipline. The lack of
clearly defined interfaces between disciplines burdens the interac-
tion and collaboration. We show how design contracts can facilitate
interaction between 2 groups: control and software engineers. A
design contract is an agreement on certain properties of the system.
Every party specifies requirements and assumptions on the system
and the environment. This contract is the central point of inter-
domain communication and negotiation. Designs can evolve inde-
pendently if all parties agree to a contract or designs can be modi-
fied iteratively in negotiation processes. The main challenge lies in
the definition of a concise but sufficient contract. We discuss de-
sign contracts that specify timing and functionality, two important
properties control and software engineers have to agree upon. Vari-
ous design approaches have been established and implemented suc-
cessfully to address timing and functionality. We formulate those
approaches as design contracts and propose guidelines on how to
choose, derive and employ them. Modeling and simulation support
for the design contracts is discussed using an illustrative example.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-purpose and Ap-
plication based Systems—Real-time and embedded systems

1. INTRODUCTION
I Cyber-Physical Systems (CPS) design involves various dis-
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tinct disciplines such as control engineering, software engineer-
ing, mechanical engineers, network engineering, etc. The com-
plexity and heterogeneity of all the different design aspects require
methodologies for bridging the gaps between the disciplines in-
volved. This is known to be challenging since the disciplines have
different views, encompassing terminology, theories, techniques
and design approaches.

In this paper, we focus on interactions between control and em-
bedded software engineers. A multitude of modeling, analysis and
synthesis techniques that deal with codesign of control functions
and embedded software have been developed since the 1970s. We
use the term codesign for approaches that provide an awareness of
constraints across the disciplines such that design of different as-
pects can proceed in parallel.

Advances in embedded system design methods and supporting
tools have led to a strong adoption of model-based design, in which
systems are designed at a higher level of abstraction, followed by
the generation of an implementation. This is a well-established
practice in control engineering and it is also becoming more com-
mon in embedded software engineering.

Despite these advances, gaps between the control and embed-
ded software disciplines remain. There is no clear specification
of required interactions and many assumptions such as timing are
still implicit. Differences in concepts and concerns between con-
trol and software engineering, some of which are mentioned in Ta-
ble 1, hinder communication. For instance, performance refers to
bandwidth and settling time in the control domain, and to response
time and context switching time in the embedded software domain.
Central concepts such as the sampling-to-actuation (StA) delay in
control theory and the response time or execution time for embed-
ded software, do not, by definition, correspond to the same time
interval [34].

The interdisciplinary dependency of design aspects poses a ma-
jor problem as decisions in one domain will affect the other. De-
pendencies are typically non-linear and, since they affect both the
control and embedded software design, they are associated with
trade-offs [2]. For instance, changing the required speed of a feed-
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Concepts/ Control Embedded software
Domain:
Metrics, Robustness, noise | Utilization, response
Constraints sensitivity, band- | time, memory foot-
width, overshoot, | print, WCET, slack,
settling time power consumption
Design pa- || Choice of strategy | Task partition-
rameters (PID, optimal, adap- | ing, scheduling,
tive, etc.), noise/ro- | inter-process com-
bustness trade-off munication
Formalisms, || ODEs, continuous- | C code, synchronous
Theory time control theory, | languages, schedul-
sampled data control | ing theory, model-
theory checking, task mod-
els, UML/SysML

Table 1: Concepts in control and embedded software design

back control system will have an impact on the sampling period
implemented by the computer system and may also have a signif-
icant impact on the StA delay that can be tolerated. Likewise, the
partitioning of executable code into tasks will, together with a trig-
gering and scheduling scheme, have an impact on the characteris-
tics of time delays in the control system.

As a basis for mutual understanding, it is essential to establish
an explicit semantic mapping between the two domains. In this pa-
per, we propose a framework of design contracts between control
and embedded software engineers, with the goals of bridging the
gap between the two worlds, making implicit assumptions explicit,
and thus facilitating interaction and communication. Figure 1 il-
lustrates the concept. System-level requirements and external con-
straints form boundary conditions for design contracts. External
constraints (which could correspond to other contracts) restrict the
freedom available to control and embedded software engineers. For
example, the choice of processing platform bounds achievable ex-
ecution speeds and thus the control performance. The closed-loop
control design, including choice of control strategy and sampling
periods, is ultimately constrained by the available sensing and ac-
tuation capabilities, and the characteristics of the controlled process
(plant).

Application/system level requirements

w\

Platform
constraints

Plant
constraints

ontrol design Software design

Figure 1: Design contracts are arrow between control and soft-
ware design; additional arrows illustrate the context

A design contract, like any other contract, is an agreement, which
entails rights and obligations to the agreeing parties. Design con-
tracts apply this general concept to the engineers involved in the
design of a CPS. Making rights and obligations explicit in the de-
sign contract provides a basis for proper CPS design and decision
making. We focus in particular on the expected timing behavior
and functionality of the embedded control subsystem of a CPS.
The design contract states at what times certain functions must
be computed. The control engineers provide the functions, typi-
cally as mathematical models, and guarantee correct behavior of
the CPS under the assumption that the functions are computed at
the right times. The embedded software engineers assume func-
tional correctness and implement the functions such that the timing

constraints can be met.

The elements of our design contract framework are the follow-
ing: (a) concepts relevant to timing constraints and functionality;
(b) design contracts utilizing these concepts; (c) a process and guide-
lines on how to choose, derive and employ design contracts. The
guidelines encompass specific considerations for modeling and sim-
ulation support. In the rest of the paper, we present the above ele-
ments in detail. Section 2 reviews the state of the art and provides
an overview of design approaches and supporting tools. Examples
of formalized design contracts are given in Section 3. In Section 4
we describe guidelines for deriving and applying design contracts.
Section 5 presents conclusions and future directions.

2. RELATED WORK

We first provide a broad overview of research areas related to the
codesign of control systems and embedded software followed by a
brief survey of work related to contracts.

2.1 Design Approaches

The research field of embedded control systems as part of a CPS
was initiated already in the early 1970s, a time when computer re-
sources were scarce and thus the problems of implementing a con-
troller were critical. The Artist roadmaps give an overview of the
evolution of the field>. A number of aspects that have to be con-
sidered in CPS design have been identified over the years. These
include concepts that link control and embedded software, as well
as trade-offs regarding memory, accuracy and speed. In this paper,
we focus mainly on timing properties such as periods, StA delays
and jitter. With respect to control and embedded software codesign,
we identify the following strands in state of the art research.

Separation of concerns. The basic idea is to decouple control
and embedded software design. Representative approaches include
the synchronous programming languages [7], and the Logical Exe-
cution Time approach (LET) of Giotto [24] and its successors [29,
23]. This research also includes robust control design, which guar-
antees robust performance despite bounded timing variations. This
enables partial decoupling as shown in [37, 22].

Optimization and synthesis of timing parameters. In this popular
research strand a cost function is defined to, for example, optimize
the control system performance by adequate choice of controller
periods under given resource limitations. Optimization often refers
to the choice of periods for controllers and processor utilization and
typically only one parameter is considered. One exception is [§]
which considers both periods and delays. Recent efforts in task
and message scheduling in a distributed system setting include for
example [15, 27, 30].

Run-time adaptation. This is another popular research direction
encompassing the provisioning of online compensation as well as
online optimization. While many (often legacy) computer systems
cannot provide an easily characterized timing behavior, it might
still be possible to provide run-time measurements of the actual
timing behavior which can then be used in control system design
to compensate for the imperfect timing. The topic has been stud-
ied both for wired and for wireless networks. Common approaches
use extended estimators that address time-varying delays and data-
loss [32, 4]. Online optimization takes online measurements/esti-
mations of actual control system performance and/or computer sys-
tem performance to adjust task attributes (e.g. periods) or schedules
with the goal of optimizing control performance, see e.g. [19].

A common extension of the first two categories also considers

Zhttp://www.artist-embedded.org/artist/
—Roadmaps—.html
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modes of operation. For each mode, a different configuration of the
system (including periods and schedules) is derived during design.

A range of computational models has been proposed for all three
directions, including different schemes for how to map control func-
tionalities to task and execution strategies [2].

A complementary and more recent strand, which has been gain-
ing interest in the past years, is the study of a theory for event-
triggered feedback control. Promising initial results indicate that
event-triggered control allows for a reduction of the required com-
putations and actuations without reducing the performance of a reg-
ulator control system [12]. Event-triggered control clearly poses
challenges for scheduling, motivating the need for further work on
codesign.

Regardless of the design approach, explicit timing assumptions
are useful, and design contracts can help with that. For instance,
the use of an optimization approach will, in itself, make some as-
sumptions about the control design and the embedded software de-
sign, and will generate a timing behavior that can be captured as
a contract. In the case of run-time approaches, constraints and
boundaries for adaptation will be assumed or provided as part of
the design, and can thus be made explicit.

2.2 Research Related to Design Contracts

Various research ideas relate to our concept of design contract
either by similarity in principle, or by similarity of name.

Contracts are an essential aspect of component-based design and
interface theories [16]. In these frameworks, components are cap-
tured by their interfaces, which can be seen as abstractions that
maintain the relevant information while hiding irrelevant details.
Interfaces can also be seen as a contract between the component
and its environment: the contract specifies assumptions on the be-
havior of the environment (e.g., that a certain input will never ex-
ceed a certain value) as well as the guarantees on the behavior of
the component (e.g., that a certain output will never exceed a cer-
tain value).

Abstracting components in a mathematical framework that offers
stepwise refinement and compositionality goes back to the work of
Floyd and Hoare on proving program correctness using pre- and
post-conditions [21, 25]. A pair of pre- and post-conditions can
be seen as a contract for a piece of sequential code. These ideas
were further developed in a number of works, including the design-
by-contract paradigm implemented in the Eiffel programming lan-
guage [28]. Although related, the term ‘design contract’ is not to
be confused with ‘design by contract’.

The above works focus mainly on standard software systems and
as such use mainly discrete models. Nevertheless, contract-based
design methods have also been studied in the context of CPS, and
formalisms have been developed to deal with real-time and contin-
uous dynamics [17, 33]. Particularly relevant to our study is the
work on scheduling interfaces [1], which specify the set of all ad-
missible schedules of a control component. Scheduling interfaces
assume a time-driven scheduling context, where time slots are de-
fined and allocated to control tasks.

All the above works are compatible with the design contract
framework. In particular, some of the aforementioned formalisms
could be used as concrete mechanisms for describing contracts.
Nevertheless, the focus of our design contract framework is how
to use contracts to solve the broader-in-scope problem of design-
ing both the control and embedded software of a CPS. In that re-
spect, the goals here are very much aligned with the ones presented
in [31]. In particular, design contracts could be used as ‘vertical
contracts’, using the terminology of [31]. Whereas ‘horizontal con-
tracts’ that focus on the relationships of different components at the
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Figure 2: Timing variables in periodic control systems

same level of abstraction are primarily used for composition, verti-
cal contracts focus on the relationships between components at dif-
ferent layers, in particular, between specifications and implemen-
tations, or between high-level design requirements and execution
platform constraints.

Finally, this work has been greatly inspired by the presentation of
the evolution of real-time programming given in [26]. Part of our
terminology, such as the terms ZET and BET, is borrowed from
there.

3. DESIGN CONTRACTS

We now formulate some popular design approaches as design
contracts. Our goal is by no means to be exhaustive, but to illus-
trate the concept of a design contract concretely. The design con-
tracts presented here focus on functional and timing aspects. Some
preliminary concepts are discussed first.

We use state machines of type Mealy extended with I/O interface
functions to specify the functional part of a design contract. Such a
machine M is characterized by: a set of input variables (inputs), a
set of output variables (outputs), a set of state variables (state), an
initialization function that initializes the state, a sampling function
that reads the sensors and assigns values to the inputs, an actuation
function that writes the outputs to the actuators, an output function
that computes the outputs from current inputs and state, and an
update function that computes a new state from current inputs and
state. The sampling and actuation functions are the I/O interface
functions of the machines.

Figure 2 presents relevant timing variables and corresponding
notation. #} and #{ refer to the k-th sampling and actuation instants,
respectively, for k = 0,1,2,.... The sampling-to-actuation (StA)
delay is 7, = i — ;. In periodically-sampled control systems, the
nominal sampling period is / and in principle #; = k- h. In practice,
however, the k-th sampling occurs at instant #; = k- h+ Ji, where
J} refers to the sampling instant jitter. We assume k-h < <t <
(k+1)-h. Note that 7, and J; in general are non-zero and vary
each period (as a convention, a symbol without subscript & refers to
a constant). Finally, & denotes the ‘effective’ period, i.e., the delay
between the k-th and (k + 1)-th sampling instants: iy =} | — 1} =
h+Ji . — i

We use the term ’contracts’ instead of ’specifications’ since the
latter are usually viewed as being unidirectional, e.g., in the sense
of being "thrown at" a team (e.g., the software engineers) by an-
other team (e.g., the control engineers). Design contracts empha-
size the importance of interaction and negotiation between the teams,
and are as such bidirectional. Contracts typically include condi-
tional, assume, or guarantee statements, separating the rights and
obligations of each party involved in the contract. In the examples
of contracts that we provide below, some of these obligations are
left implicit. In particular, the obligations of the software engineers
include meeting the timing requirements of the contract. The main
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Figure 3: ZET model of DC motor control in Simulink

obligation of the control engineers is to ensure the correct behav-
ior of the closed-loop system, provided the timing requirements are
met.

3.1 The ZET (Zero Execution Time) Contract

3.1.1 ZET: single-period version

In the simple case, which we call the ’single-period version’ the
Zero Execution Time (ZET) contract is as follows:

ZET: A ZET contract is specified as a tuple (M, h)
where M is a state machine and 4 is a period of time.
The contract states that, at every time t,ﬁ =k-h, fork=
0,1,2,..., the inputs to M are sampled, the outputs are
computed and written (a-priori instantaneously, i.e.,
7, = J; = 0), and the state machine performs a state
update.

How control engineers can derive a ZET contract: A typical con-
trol design process naturally results in a ZET contract. Standard
results from control theory can be used that assume inputs are sam-
pled periodically and outputs are computed and written instanta-
neously at the beginning of each period [5].

Figure 3 shows a Simulink® model of a simple CPS consisting
of a plant (a DC motor) and a controller. The controller computes
a requested torque (abbreviated as torque in the Figure) from the
measured motor angle and angular velocity. This controller model
captures a ZET contract, as it computes and writes outputs in zero
time.

How software engineers can implement a ZET contract: For a
control engineer, ZET is perhaps the easiest contract to produce.
The opposite is true for a software engineer: it is impossible to im-
plement a ZET contract in the strict sense. Computation always
takes time, therefore, the outputs cannot be written at exactly the
same time at which the inputs are read.* Moreover, some delays
may be associated with the sampling, communication and actua-
tion. Instead of trying to meet an impossible specification, software
engineers typically do the next best thing: implement the function-
ality of the state machine M, perform worst-case execution time
(WCET) analysis of the program, and make sure that the WCET
obtained is at most /. In order to further minimize the StA delay,

3http://www.mathworks.com/products/simulink/
4 This is true in the general case, where outputs instantaneously
depend on the inputs, as in Figure 3. If M is a machine of type
Moore rather than Mealy, then outputs only depend on the state of
the machine. In that case, a ZET contract is implementable.

state updates and related computations can be executed after the
outputs are computed and written. This practice is, however, not
made part of an explicit contract.

Following the above approach, the implementation of a ZET
contract results in a sequence of actions as shown here in pseudo
code:

initialize state;
set periodic event H;
while (true) {
await event H;
sample inputs;
compute and write outputs;
compute and update state;

3.1.2 ZET — multi-periodic version

A generalization of the single-period ZET contract is a multi-
periodic ZET contract, where the control engineer designs a set of
machines M;, for i = 1,...,n. Each machine M; generally needs
to execute at a different period /; and machines generally need to
communicate. Block-diagram formalisms such as Simulink (c.f.,
Figure 3) or synchronous languages such as Lustre [9] can be used
to specify the communication semantics.

Control engineers can design multi-periodic ZET contracts based
on sampled data theory [5]. A common approach is to identify a
basic sampling period 4% such that all other rates are multiples of
it and assume that all samplings are synchronized. The complete
system is then resampled with period /0.

Multi-periodic ZET contracts are, again, impossible to imple-
ment if taken literally. Moreover, the fact that there are multiple
state machines to be executed instead of just one, and the fact that
these machines communicate with each other, add complexity to
the implementation problem. Some execution-platform specific
approaches have been developed to deal with this complexity. A
method for the single-processor platform case is described as fol-
lows. First, each state machine M; is implemented as a separate
task; i.e. a sequential program. Scheduling theory can be used to
order task executions using WCET information. Although naive
inter-task communication schemes do not work (i.e. do not pre-
serve the functional ZET semantics), semantics-preserving proto-
cols that address this problem exist [10].

3.1.3 ZET — event-triggered version

A further generalization of the ZET contract allows machines to
be triggered sporadically by external triggers (i.e., events coming
from the environment) or internal triggers (i.e., events sent by other
machines). Assumptions on the timing of external events (e.g., how
frequently they may occur) can be captured explicitly as part of the
contract. Real-time scheduling theory and semantics-preserving
implementation techniques can implement this type of ZET con-
tract and in implementations constraints can be approximated.

3.2 The BET and DET (Bounded Execution
Time) Contracts

The Bounded Execution Time (BET) contract weakens the re-
quirement of the ZET contract that outputs must be produced at the
same time as inputs are sampled. Instead, outputs can be produced
at any time until the end of the period. In its single-period version,
the BET contract can be stated as follows:

BET: A BET contract is specified by a tuple (M, h)
where M and h are as in a ZET contract. The contract
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states that the inputs are sampled at times #; = k- h, that
the outputs are computed and are written at some point
t{ in the interyal [tg,tiﬂ), ie,Ji=0and 7 <h, apd
that the machine performs a state update at some point
before i ;.

How control engineers can derive a BET contract: BET contracts
are harder to derive for control engineers, because the promises
made by the software engineers are weaker. In particular, the tim-
ing of the outputs is non-deterministic: the output can be written at
any time within the period. This results in a time-varying control
system, whereas standard control design is based upon the assump-
tion of time-invariance. Control engineers must take this into ac-
count to make sure that the controllers they design work under all
possible scenarios. Simulations, tests and analytical methods can
support such reasoning [14, 22, 4, 11, 6]. For example, the Jitter-
Margin approach can be used to assess the stability of a feedback
control system with time-varying delays [14].

If the control performance degradation is deemed insignificant,
control design can proceed using standard techniques. Otherwise,
the contract must be modified or delay compensation and robust-
ness mechanisms must be introduced. This may also involve changes
of the sampling periods. Delay compensation can utilize an average
delay estimations, or online estimation assuming more knowledge
will be available at run-time. The final options are to renegotiate
the setting for the control design, e.g. by reducing the controller
bandwidth.

How software engineers can implement a BET contract: Strictly
speaking, BET contracts are still impossible to implement, since it
is impossible to sample inputs precisely at the beginning of each
period. In practice, however, this is not a big concern since the
sampling period is chosen with respect to the system dynamics. As
long as the variations in the sampling period are small, deviations
from the true values are minimal. Moreover, BET contracts are
an improvement over ZET contracts from the software engineer’s
perspective, since the outputs have a non-zero deadline. Software
engineers can use the same techniques as described above for ap-
proximating ZET contracts. BET contracts closely correspond to
a scheduling scheme where a high priority task provides close to
jitter-free sampling, and the scheduling guarantees that tasks com-
plete by the end of the period.

DET - a generalization of BET with smaller deadlines

The Deadline Execution Time (DET) contract is a generalization of
BET where the deadline can be smaller than the period:

DET: A DET contract is specified by a tuple (M, h,d)
where M and h are as in a BET contract and d is a
deadline measured in the same time unit as the pe-
riod &, such that d < h. The contract states that the
inputs are sampled at times #; = k - &, that the outputs
are computed and written at some point #{ in the in-
terval [r}, 7] +d], i.e., J} = 0 and 7, < d, and that the
machine performs a state update at some point before

)
letr-
Deriving and implementing a DET contract raises similar issues as

in the case of BET. DET allows for improved control performance
by reducing the delay in the control loop.

3.3 The LET (Logical Execution Time) Con-

tract

ZET gives guarantees to the control engineer but is impossible
to implement in the strict sense. BET is implementable but only
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Figure 4: The LET version of the model of Figure 3

provides non-deterministic guarantees, which make control design
more difficult. The Logical Execution Time (LET) approach tries to
reconcile both worlds. In this contract, outputs are written precisely
at the end of a period. In the simple, single-period case, the LET
contract can be stated as follows:

LET: A LET contract is specified by a tuple (M, h)
where M and h are as in a ZET contract. The LET
contract states that the inputs are sampled at times f; =
k - h, that the outputs are computed and the machine
performs a state update at some point in the interval
[t}:1i, 1), and that the outputs are written at #f =1} | =
ti+h,ie,Ji=0and 5 = h.

How control engineers can derive a LET contract: LET makes de-
terministic guarantees about the I/O timing and thus conforms to
standard control theory. It is easier to use for control design than
BET. However, LET introduces a one period delay which degrades
the performance of the control system. This performance degrada-
tion can be partly compensated for [5].

Figure 4 shows the LET version of the Simulink model of Fig-
ure 3. The unit-delay block added between the controller and the
plant provides a delay of one sampling period, causing the model
to exhibit LET behavior.

How software engineers can implement a LET contract: Imple-
mentation of LET contracts is similar to the BET case. Using the
techniques for BET, the software engineer can guarantee that out-
put deadlines are met. It is (conceptually) easy to delay an early
output until the end of the period.

3.4 The TOL (Timing Tolerances) Contract

Building upon the inherent robustness of feedback control sys-
tems, it is natural to introduce a relaxation of the tolerances as-
sociated with periods and delays. The Timing Tolerances (TOL)
contract captures such relaxations. TOL can be seen as a general-
ization of LET with the differences that the StA delay is constant
but smaller than the period, and that tolerances for allowable devi-
ations from nominal specifications of the period and StA delay are
specified:

TOL: A TOL contract is specified by a tuple (M, h, ,J",J%)
where M is a state machine, 4 and 7 are the nominal
period and StA delay, and J" and J7 are bounds on
admissible variations of period and StA delay. All pa-
rameters are assumed to be non-negative and to sat-

isfy the constraints J* < 7 and J" + 7+ J% < h. The
contract states that £{ € [k-h,k-h+J", 10 € [tf + T —
J®,t} + 1 +J%], and that the k-th state update happens
before i, for all k.

Figure 5 illustrates the time variables and two possible sensing and
actuation times. Note that #! € [t} +7—J%,#] +7+J"] is equivalent
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Figure 5: Timing variables of TOL contract

to |7 — 7| < J*. However, 1} € [k-h,k- h+J"] implies, but is not
equal to, |h —h| < J" (this allows unbounded drift).

How control engineers can derive a TOL contract: From the
viewpoint of control theory, TOL is similar to DET and BET in
that it allows variations in the StA delay. In addition, TOL allows
variations in the sampling period. Therefore, additional work is re-
quired to derive the tolerance parameters J” and J¥. This can be
supported by methods such as [11, 6]. It is well-known that small
variations in the sampling period and StA delay normally pose only
small degradation in the control performance [37, 3]. A main in-
tention with the TOL contract is to explicitly capture this inherent
robustness. By including some type of compensation (off- or on-
line) control engineers can tailor the robustness provided according
to contract negotiations. small variations in the feedback delay can
be seen to correspond to small disturbances or plant uncertainties.

How software engineers can implement a TOL contract and de-
rive TOL parameters: Relaxed time constraints on input and output
events make it easier to provide a correct schedule, e.g., taking into
account blocking and interrupt disabling that could cause jitter in
otherwise precisely timed interrupts. The actual scheduling is sim-
ilar to approaches above.

Software engineers can contribute to the derivation of TOL pa-
rameters, such as 7 or J?. For instance, a best case response time
of the output function can be interpreted as 7 —J7.

4. SUPPORT FOR CONTRACT BASED DE-
SIGN

This section discusses methodological guidance for using the de-
sign contract framework. We acknowledge the individual activities
of control and software designers but also the need for them to com-
municate, make trade-offs and agree on one or more well-defined
design contracts.

4.1 A Process for Deriving Design Contracts

Figure 6 outlines the overall methodology. Compared to Fig-
ure 1, an explicit negotiation phase is added. We assume that the
system-level specifications have been developed prior to the prepara-
tory design phase. Such specifications should provide metrics and
criteria for the desired system qualities such as cost, extensibility,
performance, robustness and safety. The criteria can be in form of
constraints (e.g. limits on utilization and closed-loop system band-
width) or of design goals (e.g. desire to optimize certain proper-
ties).

The design phases as outlined in Figure 6 are as follows:

Preparatory design phase: Control and software engineers an-
alyze the problem and propose overall strategies for their designs.
Control engineers select a control design approach (e.g. PID, state
feedback, cascaded control etc.), derive feasible sampling periods
and investigate the delay sensitivity of the closed-loop system. From
the software engineering side this includes investigating platform
constraints, preparing I/O and communication functions and inves-

Application/system level requirements

Preparatory
control design
Negotiation phase: Contracts
Control design Software design

Figure 6: A process for deriving design contracts

Preparatory
software design

Plant

constraints constraints

tigating possible software architectures as well as the scheduling
approach.

Negotiation phase: Control and software engineers meet to in-
vestigate, propose and decide on the contracts. The considerations
and trade-offs are supported by heuristics/design expertise, simula-
tion, analytic and optimization techniques. This will, for example,
help to determine optimal periods. In some cases control engineers
may be able to explicitly design, or redesign, a controller to be-
come more robust to time-variations (e.g. including delay com-
pensation). Similarly, software engineers may be able to design
or change the task scheduling. Such measures are part of the ne-
gotiation stage. There may be degrees of freedom in choosing the
task and scheduling model including triggering. Options for alloca-
tion of control functionalities to tasks and computing nodes may be
other design options. However, it is important to realize that such
choices may impact other system-level properties, such as separa-
tion of functions of different criticality. Trade-offs are likely to be
involved. The negotiation phase may obviously need several itera-
tions. Trade-offs and optimizations may also require iterations back
to the system-level requirements. The negotiation phase ends with
a selection of one or more contracts with fixed contract parameters
(e.g., M,h,d for DET).

Detailed disciplinary design phase: Having established the con-
tracts enables the control and software engineers to proceed indi-
vidually with the detailed design of the control and embedded soft-
ware design. This also facilitates the function, subsystem and sys-
tem verification, since the contracts focus the work and can be used
to, for instance, generate invariants and test cases. The outputs of
this phase are fed into the subsequent phases of system integration
and testing which are not shown in Figure 6 for simplicity reasons.

4.2 Choosing a Design Contract

Application-specific requirements are important in determining
the actual contract. A number of desired properties influence the
choice, including control performance, control robustness, system
extensibility, ease of control design, ease of software design, level
of determinism and resource utilization. Many of these properties
have inherent conflicts, for example control performance vs. level
of determinism. Contracts which eliminate time-variations, such
as LET, maximize the temporal determinism, facilitating verifica-
tion and making LET contracts attractive for safety-critical applica-
tions. However, a LET contract is only applicable if the closed-loop
system can tolerate the introduced delays, which generally deterio-
rate control performance and may even lead to instability. Standard
control theory provides methods to partly compensate for known
constant delays [5]. However, the inherent response delay cannot
be removed and will result in inferior responses to disturbances and
unsynchronized set-point changes. Using more expensive hardware
to reduce the delays is one option to pave way for a LET contract.
Because a LET contract is impossible to implement in the strict



Activity Techniques and Tools

Simulation | Simulink, Ptolemy, Truetime, SystemC, ...
Static Stability and performance analysis (e.g. Matlab

analysis toolboxes, Jitterbug); Schedulability/timing analysis
(e.g. SymtaVision, MAST); Hybrid systems analy-
sis (e.g. Hytech, d/dt, SpaceEx)

Synthesis | Code generation (e.g. Targetlink); Scheduler syn-
thesis (e.g., TTA, Giotto, Rubus)

Testing Rapid control prototyping; SW development envi-

ronments; SIL and HIL (sw/hw in the loop)

Table 2: Support for control and embedded system design
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Figure 7: Control performance of contracts on the DC motor
example

sense, it is reasonable to extend it to a TOL contract which is ex-
plicit about admissible time-variations.

The sensitivity of a feedback control system to (time-varying)
delays can vary substantially. Among other things, it depends on
the bandwidth of the controlled system, the type of variation and
average delay to sampling period ratio. However, control perfor-
mance generally gains from reducing the delays, and even varying
delays are normally better compared to longer constant delays (see
for example [13]). Performance-critical applications generally ben-
efit from DET or BET contracts.

Table 2 lists techniques and tools that support the investigation
and negotiation of contracts. Industrial techniques are mainly cen-
tered on testing and simulation.

Figure 7 illustrates the behavior of a closed-loop system with
controllers obeying different design contracts. The results have
been obtained from a Simulink model, with the controllers modeled
as described in Section 4.3. The same value for the period parame-
ter is used in all the controllers: 7 = 0.1. The plant is the simplified
DC motor model shown in Figure 3 with requested torque as input
and angular velocity and angle as outputs.> We observe the follow-
ing:

ZET: The ZET controller provides a good response to the set
point change due to zero delay and sampling jitter.

BET and DET: In both cases there is a time-varying StA delay
which is uniformly distributed in [0,4) for BET and in [0,4/2] for
DET. The average delay thus is //2 for BET and //4 for DET re-

5 The plant transfer function, from requested torque to angular ve-
locity, is given by G(s) = 11.8/(s+ 1.2). The control design is
based on optimal controller design (resulting in a controller us-
ing state feedback) and a discretized plant model. The controllers
use gains [2.2,0.5] and[1.6,0.46,0.06]. (the latter for the controller
with delay compensation.)
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Figure 8: Performance of the DC motor example under various
contracts, including illustration of contract violation

sulting in a worse response compared to the ZET controller. Given
the smaller average delay, the response for DET is slightly better
than that for BET.

LET with and without delay compensation: The LET controller
has a StA delay of 4. In the given example, this results in large
oscillations and unsatisfactory performance. The LET controller
can be redesigned to include compensation for the (known) con-
stant delay. In that case, oscillations are cancelled but the inherent
response delay is not removed. The response with such a controller
is also shown in Figure 7.

TOL without delay compensation: the StA delay and tolerance
parameters are set as follows: 7= /2, J* = 0.1h and J* = 0.41.
In this case, the periods and delays are defined to vary randomly
with a uniform distribution, although other variations may also be
relevant to investigate (further discussed below). It can be seen that
the behavior is similar to that of the BET and DET simulations.

In contracts such as DET and TOL, time-variations must be in-
vestigated as a basis for choosing the contract. The actual varia-
tions could be based on knowledge of the actual scheduling scheme
and/or reasoning about relevant variations. The evaluations should
consider average (e.g. uniform distribution) and assumed worst-
case scenarios (e.g. StA delays and sampling periods alternating
between max and min values).

Figure 8 studies the effects of constant delay compensation in
TOL, using a ZET system as a reference. For all plots J* = J" =0,
h=0.1and 7=0.07 (nominal StA delay for TOL in this case). The
plot illustrates that StA delay compensation is necessary since the
closed loop system is close to instability. The plot also illustrates
a controller based on TOL, with compensation for T = 0.07, but
where the actual delay is much smaller (actually set to zero). In that
case, the system becomes unstable, emphasizing the importance
of establishing contracts (e.g. for reuse) and in complying with
agreed contracts. Even small delays can thus cause problems if
they deviate from what has been assumed.

4.3 Modeling and Simulation Support

Modeling and simulation are important tools in designing CPS
and we expect these tools to play an essential role in the design
contracts framework. As a proof of concept, we experimented with
two modeling and simulation environments: Simulink (and associ-
ated toolboxes) by the Mathworks, and Ptolemy [20]. We investi-
gate how easy it is to model various design contracts in these tools.
In particular we focus on TOL, which is the most general among
the concrete contracts described in Section 3. ZET, LET, etc., can
be modeled as special cases of TOL.

A possible conceptual model of a control system that uses the
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Figure 9: Control system model with TOL contract

TOL contract is shown in Figure 9. The model includes a Plant
which operates on a continuous-time (CT) domain, taking CT sig-
nals as inputs and producing CT signals as outputs. The remaining
components in the model aim to capture the TOL contract. The
Controller contains the functionality, i.e., the state machine M: it
can be modeled in a logical time (LT) domain, where input and out-
put signals are ordered sequences of values, without a quantitative
notion of time. A ‘wrapper’ converts the Controller into a compo-
nent operating on discrete event (DE) signals, which are sequences
of time-stamped events. The Delay component operates on the DE
domain while Sample and Hold interface between CT and DE. Ac-
tuation values from Controller to Plant are converted from DE to
CT signals via the Hold block which keeps the value constant until
it receives a new event. The Sample and Delay components govern
the variables #} and ¢! which can vary according to the TOL con-
tract. The Sample, Delay and Hold components may also model
parts of the sampling and actuation functions of M. For instance,
quantization effects during sensing can be captured in the Sample
block, which may convert floating point values to fixed point val-
ues.

Figure 9 illustrates a modular style of modeling where the rel-
ative delays caused by both delay blocks can be added without
changing the control system behavior. This style might be advan-
tageous because the delays represent different phenomena, such as
communication vs. processor scheduling.

Capturing a conceptual model such as the one of Figure 9 in a
concrete tool raises the following concerns:

Heterogeneity: being able to seamlessly compose models with
different syntactic or semantic domains, e.g., CT, DE and LT mod-
els. Ptolemy supports many domains and achieves interoperability
via a notion of ‘abstract semantics’ [20]. In Simulink, all blocks op-
erate in the CT domain. Nevertheless, DE and LT signals can also
be captured as piecewise-constant CT signals. A need for more ex-
plicit support was recognized by the Mathworks and various exten-
sions to Simulink (such as SimEvents for DE) were implemented.

Mechanisms: for capturing plant behavior such as time varia-
tions or data loss. The tool must offer mechanisms for instru-
menting time-variations into simulation models, as illustrated by
the (time-varying) Sample and Delay blocks in Figure 9. In our
experiments we use common components offered by many tools
such as fixed and variable delay blocks as well as random num-
ber generators. In Simulink we also used triggered subsystems and
SimEvents. Care is needed in aligning the mechanisms with the
operation of the simulation environment.

Level of abstraction: at which phenomena such as time delays
are modeled. These can be modeled at one extreme as full-blown
architecture/execution platform models, or at the other extreme as
basic delay blocks with only a couple of parameters. These pa-
rameters could be derived in different ways, e.g. based on worst-
case assumptions, measurements or by simulating the embedded
software and platform at some suitable level of abstraction. The
structure of the conceptual model of Figure 9 allows to tailor the
level of abstraction by making the Delay and other blocks arbi-
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Figure 10: DC motor model with TOL contract in Ptolemy

trarily complex or simple. Both simulation environments also of-
fer rich opportunities for tailoring the level of abstraction, with for
example SimEvents and Truetime [13] for Simulink, and quantity
managers and integration with Metropolis for Ptolemy [18]. We
use worst-case assumptions, random variations and more elaborate
scheduling models captured with the above tools.

In the rest of this section we address the above concerns in ex-
periments using Ptolemy and Simulink.

4.3.1 Modeling and Simulating Design Contracts in
Ptolemy

Figure 10 shows the TOL contract for the DC motor example de-
scribed in Section 4.2 modeled in Ptolemy. Ptolemy allows for hi-
erarchical composition of different models of computation (MoCs)
such as DE, CT, synchronous reactive (SR), dataflow and others [20].
MoCs are specified by directors, which implement the abstract se-
mantics mentioned above. A single MoC is allowed at any given hi-
erarchy level. In particular, the designer must choose the top-level
director (and corresponding MoC). The choice is influenced by var-
ious factors. For instance, with CT as the top level, the solver might
choose a small step size which leads to slow simulation speed.

The top level model of Figure 10 is a DE model. It contains 5 ac-
tors, 4 of which are composite actors, meaning they are refined into
sub-models (potentially described in other MoCs). The composite
actors are: the plant, the controller, a delay between controller and
plant and a sampling trigger block. A constant actor with value 1
is used as the reference value for the controller. The plant is a CT
model. Sampler and Hold actors inside the plant actor (highlighted
by dotted lines) translate between DE and CT signals. In Ptolemy,
these actors have to be inside the CT MoC. Sampling and actuation
functions (AD/DA converters) are not explicitly modeled here.

The controller is implemented as a synchronous reactive (SR)
model which roughly corresponds to the LT domain described above.
The controller is embedded in the DE domain and thus computes
the control output every time one or more events are received on the
inputs. Absence of events is treated as value O which leads to incor-
rect control outputs. Therefore all input sources must be triggered
at the same time which is achieved by the sampling trigger.

The timing described by the TOL contract is implemented in
the Sampling Trigger and the Delay actor. These actors are im-
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Figure 12: Controller with delay compensation in Ptolemy

plemented in the DE domain. The clock in the Sampling Trigger
actor creates a periodic signal with period %, which is delayed by
a random amount of time between 0 and J”, implemented by the
Uniform and the TimeDelay actors. The Delay actor between the
controller and the plant implements the delay of the control signal
for 7£J7 time units (here T = h/2, J* = 0.02).

TOL is a general contract, therefore, being able to model TOL
implies being able to model special cases such as ZET, LET, etc.
This can be done by eliminating some random actors as well as
using zero or fixed instead of variable delays.

4.3.2 Modeling and Simulating Design Contracts in
Simulink

The TOL contract in Simulink is shown in Figure 11. All sig-
nals are CT signals. Discrete-time (DT) signals are modeled as
piecewise constant CT signals. The model of Figure 11 does not
use such special toolboxes such as SimEvents to model events. In-
stead, events are encoded in the rising and/or falling edges of DT
signals and is used here to capture times #; and #;.

In the Simulink example, triggers are defined off-line in the Mat-
lab workspace as vectors and imported in the model by the block
label "From Workspace” which produces signals with rising and
falling edges. By triggering subsystems with these signals time-
varying samplers and StA delays are modeled.

4.3.3 Modeling Delay Compensation in Ptolemy and
Simulink

The TOL contract can be extended to provide delay compensa-
tion. If the StA delay 7 is known, the state machine M can be
modified in order to improve the control performance (the gains
have to be recomputed to accommodate this change). For the DC
motor example, the computed control signal is also an input to the
controller (i.e., the controller now has state).

Figure 12 illustrates a Ptolemy model of the controller presented
above improved with delay compensation.

Modeling delay compensation in Simulink is not as straightfor-
ward. With varying sample times (i.e. the controller is not executed
periodically if J* > 0 or J* > 0, or both), we also need varying sam-
ple times for the controller output. Control signal and values from
plant to controller must be sampled at the same time. An imple-
mentation of the delay compensation is presented in Figure 13. The
output of the controller is memorized and sampled by the sampling
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Figure 13: Modeling delay compensation in Simulink

block.The implementation of the delay compensation in Simulink
involves more than just a change to the model of the controller, and
is therefore less modular than that of Ptolemy. See [35] for details.

S. CONCLUSIONS AND FUTURE WORK

We proposed a framework of design contracts which relies on
explicit negotiation and agreement of functionality and timing as-
sumptions between the control and embedded software engineering
teams. We believe it is essential to establish an explicit seman-
tic mapping between the two domains to avoid potential misun-
derstandings, and this need will continue to grow along with the
increasing scale and impact of CPS.

Future directions are numerous and include the investigation of
further formalisms and languages to concretely capture design con-
tracts. Potential candidates can be found in Section 2, but that list
is by no means exhaustive. The formalization of existing contract
frameworks needs to be further developed into complete contract
‘algebras’, e.g., along the lines of [16, 31]. In particular, composi-
tionality of contracts is a challenging problem. For instance, a com-
positional formal framework for ZET contracts exists albeit with a
restricted form of feedback composition [36], while the composi-
tionality of LET contracts is unclear [26]. Apart from functionality
and timing, contracts must be developed for other aspects, such as
performance, reliability, failures and application modes.

Finally, we barely scratched the surface regarding questions such
as: how to choose a type of contract for a given application? (a
design-space exploration problem); given the type, how to fix the
parameters of the contract? (a synthesis problem); how to verify
the control design given a contract? (a verification problem); how
to derive software implementations from contracts, ideally auto-
matically? (a problem suite involving platform-space exploration,
mapping, model transformations and compiler optimizations).
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