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Abstract

Many safety critical systems like air traffic control involve modeling their behavior as hybrid systems. The effect of uncertain
systemdynamics and external inputs canbe incorporatedbymodeling the systemasa controlled stochastic hybrid system(SHS).
Design of controllers for SHS that guarantees a certain safety criterion can be posed as a quantitative verification problem. The
goal of this project is to develop a computational tool for stochastic reachability analysis of a benchmark SHS.

1 Introduction

Hybrid systems can be found in many systems: air traffic control, epidemiology, biological networks, popu-
lation dynamics. Hybrid dynamical models(systems having both continuous and discrete dynamics) can de-
scribe these systems efficiently. But there can be incidents when the system dynamics are not deterministic
and that will lead us to their stochastic nature. Reachability analysis and safety verification are two crucial
problems in hybrid system theory. Reachability analysis is finding out if for a specific initial condition, a given
system will reach a set or not and safety verification is estimating the probability of reaching or not reaching
that set. More research on this topic can be found in [2],[3],[5],[6]. This project deals with discrete time sto-
chastic hybrid system(DTSHS)[2], that has a control input.The system consists of two room and one heater.
Dynamic programming has been used to calculate the probability of its remaining in a safe set. Following to
subsections will give the readers a clear idea of hybrid systems.

1.1 Hybrid System : A non-deterministic example

To understand hybrid systems first we need to know about dynamical system. Briefly dynamical system de-
scribes how states changes in the course of time. So we can think of two kind of dynamical systems: Con-
tinuous(when states take real values in the Euclidean Space) and Discrete(when state takes integers). But
we can think of another phenomenon where both continuous and discrete systems are related. That is how
the concept of hybrid system comes. So dynamical system involving continuous time dynamics and discrete
time dynamics is hybrid dynamics. In other words it can be said as discrete program in an analog environ-
ment. Though it can be a combination of other dynamics, wewill deal with only this combination. Wewill use
discrete “jumps" to specify changes in the discrete states and differential equations to express the changes in
continuous states. Continuous states can change through jumps too. Hybrid system can be deterministic and
stochastic. Wewill concentrate in stochastic hybrid system(SHS) in this report.
A good starting example of non-deterministic hybrid system is the thermostat example. Wewant to control

the temperature of a room using a controller. The controller consists of a radiator which is controlled by a
thermostat. So when the thermostat is OFF the temperature goes exponentially toward zero:



ẋ = −rx, where r > 0 (1)

When the thermostat is ON the temperature of the room increases according to another differential equa-
tion:

ẋ = −r(x− T ), T = any temperature (2)

We can try to make a controller that will keep the temperature of the room around 50 degree. So if the tem-
perature rises above 51 degree the heater will turn off and if it goes below 49 degree the heater will turn on.
We can add some uncertainty saying in both case the heater can remain unchanged till 52 degree and 48 degree
respectively.
It is noticeable that the system has both continuous and discrete state. The temperature of the room is the

continuous part, x ∈ R and q ∈ {ON,OFF} is the discrete state.

1.2 Hybrid system : A stochastic example

Stochastic hybrid systems are affected by uncertainty. So the new thing we will add here is the concept of
probability. sowewill use StochasticDifferential Equation for continuous dynamics andMarkovChain for discrete
dynamics. Stochastic analysis helps us to improve the performance of embedded system with uncertainty.
Safety require performance of an embedded systemalso needs analysis of stochastic hybrid systems. We canuse
our thermostat example to explain Stochastic Hybrid System. In this case the switchwill follow the command
according to some probability. If the discrete transition isTq we canmake the following twomodels:

Tq(q
′|(q, x), 0) =

{
1, q′ = q
0, q′ 6= q

Tq(q
′|(q, x), 1) =


a, q′ = OFF, q = ON

1− a, q′ = q = ON
b, q′ = ON, q = OFF

1− b, q′ = q = OFF

Here, a ∈ [0, 1] is the probability of switching from the ONmode to OFFmode in one time step. Similarly,
b ∈ [0, 1]. We assume that there is a time step between the actual switching of the heater. During this time
step the temperature keeps evolving according to the dynamics referring to the starting condition.

1.3 Outline of the report

Section 2 introduces wiener process to explain the noise we have used in the model. Section 3 will introduce
Euler-Maruyama method of discretization. Section 4 will explain the model of controlling temperature of two
rooms using one heater. Section 5 will be the conclusions and future work.
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2 Wiener Process:

Wiener process or brownian motion is continuous time dependent random variable. Stochastic differential equa-
tions aremodeled using this concept. Wewill denote it asW(t). It has the following properties:

• W(t) has basic infinitesimal moments

E[dW (t)] = 0 and Var[dW (t)] = dt

with initial conditionW (0+) = 0with probability one.

• W(t) has independent increments.

• It is a stationary process, as the distribution of the increment is independent of t.

• W(t) is aMarkov Process. Since the value of W(t) for any t ≥ 0 depends only on the present state.

• For 0 ≤ s ≤ t ≤ T the incrementW (t)−W (s) is a normally distributed random variable. So we can
writeW (t) − W (s) ∼

√
t− sN(0, 1), where N(0,1) is a normally distributed random variable with

zeromean and unit variance.
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Figure 1. Four diffusion sample paths
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Figure 2. Wiener diffusion sample
path using different time steps

In Fig: 1 four randomwiener paths forN = 1000 and T = 1 has been shown. In Fig: 2 the diffusion paths
for different N and∆t has been plotted.
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3 Euler-Maruyama (EM)Method:

The Euler-Maruyammethod is a numerical method for finding the solutions of a stochastic diffusion equation
according to its definition of the Ito stochastic integral. If we have a scalar, automonous stochastic diffusion
equation of the following form

X(t) = X0 +

∫ t

0

f(X(s))ds +

∫ t

0

g(X(s)dW (s)), 0 ≤ t ≤ T (3)

Here, f and g are scalar functions andX0 is a random variable that gives the initial condition. Now we can
write the above equation in differential form as

dX(t) = f(X(t))dt + g(X(t))dW (t), X(0) = x0, 0 ≤ t ≤ T (4)

To apply EM method we need the discretization interval,∆t = T/L. Here, L is a positive integer, and τj =
j∆t. Now the EMmethod takes the following form

Xj = X(j − 1) + f(X(j − 1))δt + g(X(j − 1))(W (τj)−W (τj−1)), j = 1, 2, ....., L. (5)

Each term in the right hand side of this equation is approximations of the corresponding term on the right
hand side of equation 4. For more information about EMmethod please see [1].

4 Multi roomThermostat Example:

Now we are going to consider the case where we have two rooms but only one heater to control their temper-
atures. Our goal is to keep both the room temperature in desired intervals. In this case we have three discrete
modes:

1. The heater is ON and it is facing room 1.(Will be denoted later as ON1)

2. The heater is ON and it is facing room 2.(Will be denoted later as ON2)

3. The heater is OFF.

And two continuous states:

1. Safe set for room 1 is from 20 degree to 25 degree.

2. Safe set for room 2 is from 20 degree to 25 degree.

In this case, mode switches are defined by controlled Markov chain with seven discrete actions. Those are
shown in Fig: 3. Each action has its distinct transition matrix. Action 1 (which is no action) means we will
stay in the statewherewewere. Action 1 is considering the casewherewewant to jump toON1 fromOFFwith
some probability(which is 0.8 in this case). So if the heater is OFF and the temperature of room one goes below
20 then the heater will start and turn to room one. With 0.1 probability it can stay in OFF mode or with 0.1
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Controlled Markov Chain
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Figure 3. The controlled markov chain of the two room example

probability it can face room two. But if it is in ON1 or ON2 it will stay there. The other actions work in the
sameway.
Now the average temperatures of the rooms can develop according to the following stochastic differential

equation:
Heater is ON facingROOM 1

dx1
t = {α1(xa − x1

t ) + αc(x
2
t − x1

t ) + K1}dt + γ1dw1
t (6)

dx2
t = {α2(xa − x2

t ) + αc(x
1
t − x2

t )}dt + γ2dw2
t (7)

Heater is ON facingROOM2

dx1
t = {α1(xa − x1

t ) + αc(x
2
t − x1

t )}dt + γ1dw1
t (8)

dx2
t = {α2(xa − x2

t ) + αc(x
1
t − x2

t ) + K2}dt + γ2dw2
t (9)

Heater is OFF

dx1
t = {α1(xa − x1

t ) + αc(x
2
t − x1

t )}dt + γ1dw1
t (10)

dx2
t = {α1(xa − x2

t ) + αc(x
1
t − x2

t )}dt + γ2dw2
t (11)
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Here, xa is the ambient temperature. α1 and α2 are average heat loss rates and K1 and K2 are the rates of
heat gain of room one and room two respectively. αc is the coupling constant for both of the rooms. w(t)s are
standardWiener processmodel which represents the noise affecting the temperature evolution.γ is a constant
related to the variance of the noise.
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(b) Randomly generated temperatures for room 1 and room 2

Figure 4. Randomly generated information

Using Euler-Maruyama discretization rule to the SDEs mentioned in section 3we get the stochastic differ-
ence equations. Here, the time step is∆t
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Heater is ON facingROOM 1

x1(k + 1) = x1(k) + {α1(xa − x1(k)) + αc(x2(k)− x1(k)) + K1}∆t + n1(k) (12)

x2(k + 1) = x2(k) + {α2(xa − x2(k)) + αc(x1(k)− x2(k))}∆t + n2(k) (13)

Heater is ON facingROOM2

x1(k + 1) = x1(k) + {α1(xa − x1(k)) + αc(x2(k)− x1(k))}∆t + n1(k) (14)

x2(k + 1) = x2(k) + {α2(xa − x2(k)) + αc(x1(k)− x2(k)) + K2}∆t + n2(k) (15)

OFF

x1(k + 1) = x1(k) + {α1(xa − x1(k)) + αc(x2(k)− x1(k))}∆t + n1(k) (16)

x2(k + 1) = x2(k) + {α2(xa − x2(k)) + αc(x1(k)− x2(k))}∆t + n2(k) (17)

where, n1(k) and n2(k) is a sequence of i.i.d. Gaussian random variables with zero mean and variance σ =
1
γ2 ∆t.

In Fig: 4(a) I have plotted some randomly generated actions for time k ∈ [0, 150]. we can see that the heater
is taking different action and switching from one mode to other almost each step. And Fig: 4(b) shows the
teperatures in the rooms based on these actions. it can be seen that the temperature of room 1 is outside of the
desired set from the very beginning and temperature of room 2 outside of the safe set almost in the beginning.
These are not desirable. Wewant our temperature to be in 20-25 in both the rooms.
Now we have applied some switching conditions in our system. So that if the temperature of any of the

rooms started going out of the defined boundary the heaterwill take step so that it doesn’t go out. This control
is not the optimal control. It just orders the heater where to move if some specific conditions occur. Fig: 5(a)
gives the actions and states for this switching system. We can say that we are staying in action 1 which is no
action mode for most of our time, which is one of the goals. So the heater is stable. And from Fig: 5(b) we can
say that the temperatures are in the requested interval. For some timewindow they are touching the boundary
and for room 2 it was outside of the boundary for a little while. So our next aim is to find out the probability of
their remaining in the boundaries andmaximize it, which can be stated as reachability analysis andmaximum
safe set verification.

4.1 Stochastic Reachability

Probabilistic reachability problem:

1. What is the probabilitywithwhich the system can reach a set during some finite time horizon? If the set
is an unsafe set, then the problem becomes a safety verification problem.

2. (If possible), select control inputs to ensure that the system remains outside the set with sufficiently
high probability.

Let A be the unsafe set for a system. Then the probability of entering the unsafe set can bewritten as follow-
ing: Pµπ(A) := Pµπ(s(k) ∈ A for some k ∈ [0, N ]). Here, µ ∈Mm is a Markov policy and π is the initial state
distribution.
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(a) After applying a control unit the actions and states

(b) After applying a control unit the temperatures for room 1 and room 2

Figure 5. After applying a control unit generated information

Now let assume the system has a probability of ε ∈ (0, 1) of entering A, so the safety probability is 1− ε.
The probabilistic safe setwith safety level 1− ε can be expressed as the followingway
Sµ(ε) = {s ∈S : Pµπ(A) ≤ ε}

We have tomaximize this probabilistic safe set.We can define Pµπ(A) as Pµπ(A) = 1− pµ
π(A), whereA denotes

the complement of A in S. Nowwe canwrite the following equation:
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pµ
π(A) = P µ

π (
N∏

k=0

1A(s(k)) = 1) = Eµ
π (

N∏
k=0

1A(s(k))) (18)

Here, 1A(s) is an indicator function and 1A(s) = 1 if s ∈ A and 0 otherwise. In this project pµ
π(A) has been

calculated using backward recursion. The probability of remaining outside of the unsafe set A during time
interval [k, N ], with initial state s can be defined as:

V µ
k (s) = 1A

∫
S
V µ

k+1(sk+1)Ts(dsk+1|s, µk(s)) (19)

Andwe have defined pµ
π(A) = V µ

0 (s). As all the equations are taken from [2], interested readers are requested
to see it for themathematical proofs.

(a) k = 1 (b) k = 25 (c) k = 50 (d) k = 100

(e) k = 135 (f) k = 140 (g) k = 145 (h) k = 149

Figure 6. Some optimal actions taken by the heater for mode OFF. Here, black stands for action 1, gray
is action 2 and white is action 3.In all the figures x-axis is the 21 discrete levels of the temperature of
room 1 and y-axis is the 21 discrete levels of the temperature of room 2.

4.2 Results

After applying the dynamic programming recursion mentioned above we got the maximally safe policies and
maximal probabilistic safe sets. MATLAB has been used to do the implementations. The temperatures are
discretized in 21 equally spaced values within the safe sets [(20, 25)oF ] for both of the rooms. Time instances
k ∈ [0, 150], xa = 6,α1 = 0.25,α2 = 0.25,K1 = 12, k2 = 14,αc = 0.33, variance parameter of the noise,
σ = 0.9. Some of these values are based on [4]. Following figures are the optimal actions taken by the heater
in time steps k ∈ [0, 150]. The color in each box indicates the action takenwhich has been defined in Fig: 3.
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(a) k = 1 (b) k = 25 (c) k = 50 (d) k = 100

(e) k = 135 (f) k = 140 (g) k = 145 (h) k = 149

Figure 7. Some optimal actions taken by the heater for mode ON1. Here, black stands for action
1, gray is action 4 and white is action 5. In all the figures x-axis is the 21 discrete levels of the
temperature of room 1 and y-axis is the 21 discrete levels of the temperature of room 2

(a) k = 1 (b) k = 25 (c) k = 50 (d) k = 100

(e) k = 135 (f) k = 140 (g) k = 145 (h) k = 149

Figure 8. optimal actions taken by the heater for mode ON2. Here, black stands for action 1, gray is
action 6 and white is action 7. In all the figures x-axis is the 21 discrete levels of the temperature of
room 1 and y-axis is the 21 discrete levels of the temperature of room 2

From the figurewe can see that the heater is taking the same actions for different timewhichmeans that the
heater is not switching toomuch from onemode to another.
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(a) Maximally safe policy for mode 1 (b) Maximally safe policy for mode 2
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Figure 9. Optimal probabilistic safe sets

Figure 10(a) show the plots of the temperatures of the two rooms using the corresponding maximally safe
policy. The initial operating mode has been chosen at random between the equiprobable OFF, ON1 and ON2
values. Figure 10(b) are the correspondingmodes taken by the heater during the execution.
Themaximal probabilistic safe sets are also calculated and shown in Fig: 9. There are three graphs formodes

1, 2 and 3. Each graph gives the probability of the temperatures in the rooms to be in the safe set for a specific
initial condition. Any initial condition can be picked from the values of x-axis and y-axis and that point in the
graph gives themaximal probability of being in the safe set.

5 Conclusions and futureworks

In thisprojectwe implemented stochasticDPalgorithmwithmultiplicative cost function for computingprob-
abilistic maximal safe sets and optimal feedback policy for probabilistic safety verification of a two-room ther-
mostat modeled as a controlled discrete time SHS. Future work will include efficient implementation of sto-
chastic DP for multi-room, multi-heater case to address computational issues. Application of this model to
other applications such as air traffic control.
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(a) Sample paths of the temperatures for the execution corresponding to
maximally safe policy

(b) Actions taken by the heater

Figure 10. Optimal probabilistic safe sets

Acknowledgments

My special gratitude tomymentors SaurabhAmin andAlessandro Abate, without them it cannot be done. I am
gratefull to Professor Shankar Sastry to giveme a clear viewofCHESS andTRUSTgroup. Thanks to the SUPERB
and CHESS programs to select me for this research opportunity. Thanks to NSF for funding. I am thankful
to my lab mates: Dominique Duncan(for always teasing me), Nashlie Sephus(for her calm appearance) and
Heather Taylor(for her funny sounds). I had a great time in the lab with them and they helped me a lot in any

12



difficulty. Thanks to all other SUPERB perticipantsmakingmy every day enjoyable in the International House.
Thanks tomy family and friends for all time support. Last but not the least very special thanks to Dr. Jonathan
Sprinkle whowas always present in need.

References

[1] An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review,
43(3), pages 525–546.

[2] S. Amin, J. Lygeros, S. Sastry, M. Prandini, and A. Abate. Reachability analysis for controlled discrete time
stochastic hybrid systems. In J. Hespanha and A. Tiwari, editors, Hybrid Systems: Computation and Control,
Lecture notes in Computer Science 3927, pages 49–63. Springer Verlag, 2006.

[3] J. Bect, Y. Phulpin, H. Baili, and G. Fleury. On the fokker-planck equation for stochastic hybrid systems:
Application to a wind turbinemodel. PMAPS, 2006.

[4] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. Hybrid Systems Computation and
Control, 2004.

[5] R. Malhame and C.-Y. Chong. Electric load model synthesis by diffusion approximation of a high-order
hybrid-state stochastic system. IEEETransactions onAutomaticControl AC-30(9), pages 854–860, 1985.

[6] C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game theoretic approach to controller design for hybrid systems.
Proceedings of the IEEE, pages 949–970, July 2000.

13


