
Autopilot for an Ultra-Light, FlyingWing

NashlieH. Sephus
Computer Engineering
Mississippi State University
nhs7@msstate.edu

Graduate Mentor: ToddTempleton
Research Supervisor:Dr. Jonathan Sprinkle
Faculty Mentor:Prof. S. Shankar Sastry

August 4, 2006

Summer Undergraduate Program in
Engineering Research at Berkeley (SUPERB) 2006

Department of Electrical Engineering andComputer Sciences

College of Engineering
University of California, Berkeley

file:nhs7@msstate.edu


Autopilot for an Ultra-Light, FlyingWing

Nashlie H. Sephus

Abstract

Thepurposeof thisproject is todevelopanauto-pilot fora small, lightfixed-wingaircraftnamedtheZagi. Thisaircraft is interest-
ing because it is inexpensive, simple and fast to deploy, and is virtually indestructible since it is made of expanded polypropylene
(EPP) foam. This aircraft is also challenging from a control perspective because it is vulnerable to wind and can only carry a
minimal payload. First, we develop optimal local trajectories given current wind conditions. These local trajectories are used to
determine the path that the vehicle should try tomaintain betweenwidely-spacedwaypoints, and trade off between overshooting
cornersandmaintaining thedesired trajectory. The testingandresults of this portionareperformed inMATLAB.We then imple-
ment these local trajectories in theZagi autopilot (written inC) to enable it to followan incrementally-specifiedglobal trajectory
with future planning. Initial tests are performed using the CRRCsim simulator interfaced to the Zagi hardware. Results from
these tests show that the planning autopilot is better than the existing autopilot which verifies our invitation that planning with
three points at a time is superior to planning with only one point. Our results show that this higher level planner can be imple-
mented in a greedy fashion with little difference in the path planning result (and large improvements in runtime). Future work
involves final testing on a real Zagi atRichmondField Station.

1 Introduction

Autopilots are useful in systems such as formationflight, automated air-traffic control systems, and satellite
constellations. These systems are comprised of many similar units that interact directly with their neighbors
and that have sensing and actuating capabilities at everyunit. In this researchproject,we restrict our attention
to theZagi[5],which is a small, fixed-wing aircraft (see Fig. 1). Weuse theZagi because it is light, easy to deploy,
and virtually indestructible since it is made of strong, expanded polypropylene (EPP) foam; it is interesting
from a control perspective because it is vulnerable to wind and can only carry aminimal payload.
The existing Zagi autopilot[4] from Crossbow plans for a single waypoint and a given nominal speed. We
want to use this autopilot to follow higher level three-point trajectories, where the first and third points de-
fine vector approach and departure, respectively, from the second point. Planning for three points at a time is
intuitively better because the three points represent the essential local information required for planning an
entire desired trajectory. The planner would not gain much if more than three points were used because the
three-point planner can choose new sets of points at any time. For example, the given three points x1, x2, x3 can
be changed sometime between x2 and x3, or possibly before x2 if the high-level planner changes its mind. This
higher level controller is implemented on the same microprocessor as the low-level controller in C. The entire
system consists of the modified Crossbow autopilot and sensor pack, which is attached to the Zagi and con-
trolled by a radio controller (RC), the Crossbow ground station[3], which is where the waypoints are given,
and the CRRCsim[1] Zagi simulator for the hardware-in-the-loop (HWIL) testing (see Fig. 1).



Figure 1. Project outline demonstration.

2 Formulation of the Problem

Specifically, the first step is to develop local optimal trajectories given three points at a time. These trajecto-
ries are used to determine the path that the vehicle should try to maintain between widely-spaced waypoints
by trading off between overshooting corners and staying on the desired lines as long as possible (see Fig. 2).
The planner first creates an initial (greedy) trajectory that satisfies the speed, velocity, acceleration, and turn-
ing rate constraints based on the initial point, initial velocity, and threewaypoints given. This initial trajectory
is then submitted for local optimization.

Figure 2. Comparing autopilot trajectory paths.

2



2.1 Creating Initial Trajectory

The initial trajectory must account for speed, velocity, acceleration, and turning rates. Given initial point
p0, three waypoints p1,p2,p3, and initial velocity, v0, where l12 and l23 represent the lines between points p1, p2
and points p2,p3, respectfully (see Fig. 3):
While current point p in trajectory is not within close range to p3,

Check distances from p to l23.

If p is closer to l12, check distance from p to p2.

If p is within close range to p2, new point p approaches l23.

Else, p is not close to p2. Find closest point pc on l2 to p and approach pc.

Else, p is closer to l23. Find closest point pc on l23 to p and approaches pc.

Check orientation (roll, pitch, yaw)[2] to ensure constraints are not violated.

Maintainmaximum turning rates (angular velocity) if possible, else increase asmuch as allowed.

Check speed to ensure constraints are not violated.

Maintainmaximum speed if possible, else increase or decrease towardmaximum speed asmuch as
themaximum accelerationwill allow.

Update initial trajectory to add the new point p.

Check distance from p to p3, which determines whether or not to loop again.
end loop

Figure 3. Three givenwaypoints and initial point of aircraft.

2.2 Algorithm for Local Optimality

Local optimization is based on the following optimality criterion, where t and l(t) represent the point and
line, respectfully at time t, l12 and l23 represent the lines betweenpoints p1, p2 andpoints p2,p3, respectfully, and
gamma is a positive constant:

min
tmax−1∑

0

{min [dist (p (t) , l12 (t)) , dist (p (t) , l23 (t))] + γ × dist (p (t) , p3)} (1)

Our cost function does the following:

3



Check constraints on all speeds in the current trajectory.

If any speed is greater thanmaximum speed, return large error.

Check constraints on all acceleration in the current trajectory.

If any acceleration is greater thanmaximum acceleration, return large error.

Check constraints on all turning rates in the current trajectory.

If any element of angular velocity (differences in pitch and yaw) is greater thanmaximum angular
velocity, return large error.

Evaluate equation (1) and return resulting cost.

3 ImplementationAndTesting

3.1 Implementation in MATLAB

Our first prototype is implemented in MATLAB. We wrote a custom plotting function which allowed us to
view the trajectories at each iteration and createdmovies of the optimization as it progressed. For the local op-
timization function, we usedMATLAB’s fminsearch function. fminsearch finds theminimum of a scalar function
of several variables, starting at an initial estimate (unconstrained nonlinear optimization). For example, x =
fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of the function fun.

3.2 Simulation Results

During the final testing, runtime was always less than one minute for approximately 10 to 100 points on
the trajectory. Test cases include both large and small distances between waypoints, obtuse and acute angles
between waypoints, various positions of the initial point (see Fig. 5 and Fig. 6), and different initial velocity
directions (see Fig. 4). The physical constraints had to satisfy the vehicle and operate efficiently with all
test cases. The best values for constraints and other variables that were sensible for all test cases, as well as
physically realistic for the vehicle, were the following:

maximum angular velocity (pitch and yaw) = 30 degrees/sec in each direction
maximum acceleration = 1m/s^{2}
maximum speed = 5m/s
gamma constant = 10
initial velocity = (4m/s to 5m/s)

As shown in the resulting figures, both the initial and the local optimal trajectories are identical for almost all
test cases. Therefore, our greedy function for creating an initial trajectory is sufficient, and the localminimizing
functionality is not necessary.

4



Figure 4. Same test case with varying initial velocities.

Figure 5. Test cases 1 - 6, small distances betweenwaypoints (5m-16m).

5



3.3 Integration And Testing With Existing Autopilot

Since the existing autopilotwaswritten inC, theMATLAB codewasmanually ported toC. This processwas
greatly simplifiedby the observation thatwedonotneed toperformthe localminimization. Fewchanges to the
existing autopilot were necessary to integrate the code. Initial testing is performed using the CRRCsim sim-
ulator interfaced to the Zagi’s autopilot hardware, which is connected to the RC. The RC switches are toggled
to activate the autopilot and the three-point planner. The CRRCsim simulator displays the Zagi’s movement
in 3D, which operates on a Linux OS laptop, while the waypoints are inputed from the ground station, which
operates on aWindowsOS laptop. Also, the ground stationdisplays the vehicle’smovement froman aerial view
(refer to Fig. 1). The combined systemwas demonstrated at the SUPERB final poster session1. Final testing of
the full autopilot will be performed on a real Zagi at Richmond Field Station (RFS).

4 Conclusion

The new high level planner for this autopilot accepts an initial point, three waypoints, and an initial veloc-
ity, which allows planning to create a better trajectory than a system that only considers one point at a time.
Also, physical constraints of the aircraft such as maximum values of velocity, acceleration, and orientation are
enforced for more realistic planning. The planner was originally developed to create an initial trajectory that
would be submitted to a local optimizing function thatwouldminimize the cost between the initial trajectory
and the desired waypoint trajectory. However, we demonstrated that the initial and local optimal trajectories
are nearly identical, so the greedy algorithm for creating the initial trajectory is sufficient by itself. Therefore,
the final implementation has less complicated code and shorter runtime (without the cost of optimization).
Futurework for this project includes further testingwith the simulator, testingwith a real Zagi, and including
wind compensation.

Acknowledgements

Special thanks toToddTempleton forhis guidance,motivation, andpatience throughout the summer. Thanks
to Dr. Jonathan Sprinkle and Professor Shankar Sastry for their consideration and helpfulness. Also, I appre-
ciate NSF and Intel for funding me this summer. I thank all of CHESS and SUPERB for this great summer
experience. Last, but not least, I especially appreciate the love and support frommy family and friends.

References

[1] Crrcsim simulator. http://crrcsim.sourceforge.net/.

[2] Euler zyx (roll, pitch, yaw). http://web.mit.edu/2.05/www/Handout/HO2.PDF.

[3] Ground station on xbowwebsite. http://www.xbow.com/Products/productsdetails.aspx?sid=133.

[4] Zagi autopilot code. http://sourceforge.net/projects/micronav.

[5] Zagi website. http://www.zagi.com.

1August 4, 2006 atWozniak Lounge in Cory Hall, UC Berkeley

6



Figure 6. Test cases 7 - 12, larger distances betweenwaypoints (55m-105m).

7


