
Multihop Routing Simulation of TinyOS-Based
Wireless Sensor Networks in Viptos

Heather Taylor
Electrical Computer Engineering

University of Vermont
hltaylor@uvm.edu

Graduate Mentor: ElaineCheong
Research Supervisor:Dr. Jonathan Sprinkle
Faculty Mentor:Prof. S. Shankar Sastry

August 4, 2006

Summer Undergraduate Program in
Engineering Research at Berkeley (SUPERB) 2006

Department of Electrical Engineering andComputer Sciences

College of Engineering
University of California, Berkeley

file:hltaylor@uvm.edu


Multihop Routing Simulation of TinyOS-Based
Wireless Sensor Networks in Viptos

Heather Taylor

Abstract

Wireless SensorNetworks are aburgeoningareaof researchandapplications in embedded systems. Thepurpose of this project
is tounderstandand further developViptos (VisualPtolemyandTinyOS), an integrated graphical development and simulation
environment for TinyOS-basedwireless sensor networks. TinyOS is the operating system for the BerkeleyMotes, which are small
embedded systems capable of collecting audio, temperature and other kinds of sensor data and transmitting it via a radio. A
TinyOS simulator called TOSSIM is used, a key piece of which is the ability to simulate a network topology once it is functioning.
Viptos extends the capabilities of the TinyOS simulator to allow simulation of heterogeneous networks. The final goal of this
research is to createa graphical representationof the communicationbetweenmotes inamultihopnetwork simulation inViptos.
Thiswill be done by adding an entity toViptoswhichwill collect transmitted information and display a graphical representation
of that communication between nodes.

1 Background

1.1 Wireless SensorNetworks

Wireless SensorNetworks (WSNs) are a growingfield in embedded systems applications and research. Wireless
motes are circuitswhich are capable of collecting data from their various sensors. They are able to transmit this
information in the form of a packet via an on board radio transmitter to other motes within the network. This
packet is a collection of information often containing collected data as well as network specific information
such as source and destination nodes, or a timestamp. A multihop network is formed when a packet trans-
mitted by a mote can be received by a neighbor within the network that is not necessarily the base node. This
neighbor then sends the packet to the next closest mote until it reaches the base station. WSNs that are set up
to behave in amultihop fashion aremore dynamic than single hop networks in that they can be dispersed over
larger areas. In a single hop formation, each mote must be located within radio range of the base node because
it must communicate directly, whereas multihop formations allow motes to be more physically separated as
they only need to be in contact with neighbormote, as opposed to the base node.

1.2 Software

1.2.1 TinyOS

TinyOS is an open-source operating system which takes into account the severe memory constraints present
in wireless embedded sensor networks. Its component-based architecture provides a library which allows the
user to easily implement or build his/her own custom application while minimizing code size. TinyOS also



allows fine-grained power management as part of its event-driven execution model, as well as the scheduling
flexibility necessary for the unpredictability of wireless communication in the physical environment. [2]

1.2.2 Ptolemy II

Ptolemy II is a Java-based component assembly software framework created as part of the Ptolemy Project. It
includes a graphical user interface (GUI) called Vergil, which allows users to interact with the simulation on a
graphical level. The Ptolemy Project studies modeling, simulation and design of concurrent, real-time, embed-
ded systems. It focuses on the assembly of concurrent components,with an emphasis on theuse ofwell-defined
models of computation. These models control the interaction between components, which allows users to ad-
dress the problem of heterogeneousmixtures of models of computation.
Ptolemy II contains a growing library of domains, where each domain realizes a different model of computa-

tion. The components within the library are mostly domain polymorphic, in that they can operate in several
domains. In additionmany components are data polymorphic, and are able to operate on several data types. [1]

1.2.3 TOSSIM

TOSSIM is an interrupt-level simulator for TinyOS wireless sensor networks. It replicates the behavior of a
WSNwith fine-grained accuracy for thousands of nodes by using a probabilistic bit error model. It runs actual
TinyOS code, using software replacements for the hardware and models the network interaction. TOSSIM is
simple and efficient, yet can capture a wide range of interactions within a simulated network.
TOSSIM is often used in conjunction with a GUI called TinyViz which allows the user to view and interact

with a graphical interpretation of the simulation. TinyViz includes different tools which the user can utilize
to view different aspects of the simulation such as debugmessages, packets sent, and radio links amongmotes
(see Fig. 5).[6]

1.2.4 Viptos

Viptos (Visual Ptolemy and TinyOS) is an integrated graphical development and simulation environment for
TinyOS-basedWSNs. TheViptosdevelopment environment allowsusers to createTinyOSprograms fromblock
and arrow diagrams of nesC/TinyOS components (see Fig. 1). This diagram can then be converted to a nesC
program and compiled and downloaded onto TinyOS-supported hardware fromwithin Viptos.[4] Viptos also
contains the capabilities of VisualSense, allowing it to model communication channels, networks and non-
TinyOS hardware.
Viptos bridges the gap of VisualSense and TOSSIM by providing interrupt-level simulation of real TinyOS

programs, including packet-level simulation of a network, while at the same time granting the use of mod-
els of computation only available in Ptolemy II, allowing users to model various parts of a system. TOSSIM
itself only allows the simulation of homogeneous networks, whereas Viptos can simulate non-TinyOS, hetero-
geneous networks. It also allows users to switch channel models and easily change other parts of the environ-
ment.
The actor-oriented modeling environment of Viptos is inherited from Ptolemy II, and it allows the different

models of computation at each level of simulation to be used by developers. At its lowest level, the discrete-
event scheduler of TOSSIM is used by Viptos to model the interaction between a simulated mote CPU and
the TinyOS code. At the level above this, the discrete-event scheduler of Ptolemy II is used to model inputs
to mote hardware, or the mote-hardware interface. This is then embedded in VisualSense so that the user can

2



Figure 1. Different levels of Viptos

3



Figure 2. Mica2 Mote

model wireless channels which will allow simulation of elements inherent in wireless communications such
as packet loss, corruption, anddelay aswell as other aspects of the physical environment such as those detected
by themote’s sensors.
As Viptos is based upon Ptolemy’s models of computation it includes many of the same entities including

actors, and directors. From VisualSense it inherits a library of channels for communication and a wireless direc-
tor. Actors are entities which perform a defined operation. Examples of actors include general-use objects like
clocks and ramps, as well as more complex objects such asMicaCompositeActor which is used to represent the
Mica21mote(see Fig. 2). Directors are software components which act as schedulers for the simulation. In the
case of ofwireless communications all information that is passedwithout a direct connection fromone actor to
another is passed through a channel. The passing of this information varies for different channels. For example
the LimitedRangeChannel only passes on packets to actors that are calculated to be within a certain range of the
transmittingmote, and AtomicWirelessChannel passes on all packets regardless of distance.[3]
The ability to test routing algorithms is essential in the research and development of WSNs. Prior to the

completion of this project, Viptos did not offer the option of viewing communication between wireless actors
in any way other than reading the debug messages. The purpose of the additions made was to alleviate this
discrepancy by providing a tool to developers thatwould allow the visualization of communication in a easy to
interpret and graphical manner.

2 Process

Several approaches were used in the creation of this simulation. Existing software was analyzed for hints to
produce the desired results in Viptos. Creating this code also required analysis of similar existing objects
within the Viptos code base. Discussed below are the analyzed software and the changesmade.

1Mica2 motes are wireless sensors developed at University of California, Berkeley andmanufactured by Crossbow. These are the
type of motes used in the live demos.

4



2.1 Surge: A SensorNetworkApplication

A program called Surge was a focus during this research, as it was a TinyOS program created for multihop
networks. Surge itself is a simple program that is used to perform simple operations such as collecting photo-
sensor data and sending it back to a base station. The program allows motes to organize themselves within
the network by maintaining a parent node and their own depth in the tree. Initially, a mote is assigned an ID
number, with the base station being 0, and then picks its parent by listening tomessages sent by its neighbors
and selecting the one with the smallest depth. After this setup, motes transmit their depth as part of their
packet, and the base station periodically broadcasts a depth of 0. This information allows motes to change
their selected parent node to a neighbor, if the link quality falls below a set value, on the basis of link quality
and depth. This ability to automatically change routing paths in a wireless network is especially important in
deployments where power is limited, and there is little to no human interaction [5].
The packet that is transmitted through the network is defined in Surge. Every packet, known as TOS_Msg

takes the form of:

• address: 2 bytes

• type: 1 byte

• group: 1 byte

• length: 1 byte

• data: 29 - 1 byte each

Thepacket also contains several other fieldswhichweremostly disregarded for this research. The addressfield
is used to store the address of the receiving mote in the network. The data field is different based on the type
of message being sent. The two main message styles are: MultiHopMsg and SurgeMsg. MultiHopMsg contains in-
formation on packet source and origin node addresses as well as packet sequence and node hop count values,
which is primarily used to setup the network, and is periodically sent out so motes can reevaluate their con-
nections within the network. SurgeMsg is used much more often for regular packets within the network. The
message style that is beingused is stored in TOS_Msg’s typefieldwith each formathaving aunique type ID. The
groupfield contains an ID for the group,which can be used to exclude communicationwithmotes that are not
part of the group. The length field defines how much relevant data is being stored in the data portion of the
packet. When the SurgeMsg is used, the first byte of the data field contains the source address of the packet.

2.2 Analysis of Existing LiveDemos

Mica2 motes (or any TinyOS based mote) can be programmed to run Surge by assigning a mote ID number
to each, with the base node being set to zero. After the motes have been programmed, the base mote is con-
nected to the computer via the programming board (see Fig. 4) which is then connected to the serial port. A
serial forwarder program includedwith TinyOS, reads packet data from the serial port and forwards it to a Java
tool to be displayed on a Java interface (see Fig. 3). The concept of connecting communicating motes with a
graphical link is a common theme among wireless networks as it aids in their development by showing their
interconnectivity in an easy to interpret format.

5



Figure 3. Live Surge Demo Screen Shot

Figure 4. Mica2 Programming Board

6



Figure 5. Simulation of Surge in TinyViz

2.3 Analysis of Existing Simulations

Since the goal of this research was to develop a tool in a simulation package another existing simulation was
explored. A simulation provided by a combination of TOSSIM&TinyViz allows users to view the connections
between motes as the network is simulated. To run the example simulation TOSSIM is started, and the num-
ber of nodes to be simulated is specified. After TOSSIM has started, TinyViz, a simulation GUI, is invoked to
display the network as the simulation runs. Plugins which display radio links within the network, as well as
sent packets, are several of many options within TinyViz to allow the user to manipulate the network. The ra-
dio links allowusers to seewhat path a packet took to reach the base node of the network, and the sent packets
plugin allows the viewing of packet data broken down into the specified fields. The focal point of this simu-
lation is the depiction of communication with lines connecting the nodes. The TOSSIM/TinyViz simulation is
similar to the capabilities of Viptos, however, Viptos itself is capable of simulating heterogeneous networks,
which the example combination is not capable of.

2.4 Editing&Adding to ViptosCode

2.4.1 Creating LinkVisualizer

LinkVisualizerwas created as part of this research and is based on the ptolemy.domains.wireless.lib.TerrainProperty
entity already in use in the Viptos environment. TerrainProperty is an object which, when used in conjunction
with TerrainChannel, prevents the sending of packets between motes that will cross the entity’s icon in the
simulation. LinkVisualizer is similar in this aspect, except it simply uses the received information to determine
the location of the twomotes. Once this information is attained, a line element created for just this purpose is
used to connect the communicatingobjects (seeFig. 6). TheLinkVisualizer entity is currently only implemented
for usewithAtomicWirelessChannel, however it could easily be included in otherwireless channels. LinkVisualizer
uses TokenProcessor, which is an interface that registers token processors with the channel in use so that it can

7



Figure 6. LinkVisualizer

inspect the packets as they are transmitted.

public void processTokens(RecordToken properties,
Token token, WirelessIOPort sender, WirelessIOPort destination)
throws IllegalActionException {

if(_isOff) {
Location senderLocation = (Location)sender.getContainer().getAttribute("_location");
Location destinationLocation = (Location)destination.getContainer().getAttribute("_location");
double x = (destinationLocation.getLocation())[0] - (senderLocation.getLocation())[0];
double y = (destinationLocation.getLocation())[1] - (senderLocation.getLocation())[1];
String moml = "<property name=\"_senderDestLine\" class=\"ptolemy.vergil.kernel.attributes.LineAttribute\">"

+ senderLocation.exportMoML()
+ "<property name=\"x\" value=\""
+ x
+ "\"/>"
+ "<property name=\"y\" value=\""
+ y
+ "\"/>"
+ "</property>";

ChangeRequest request = new MoMLChangeRequest(this, getContainer(), moml) {
protected void _execute() throws Exception {

super._execute();
LineAttribute line = (LineAttribute)getContainer().getAttribute("_senderDestLine");
line.moveToFirst();
line.setPersistent(false);

}
};
requestChange(request);
_isOff = false;

} else {
if (getContainer().getAttribute("_senderDestLine") != null) {

String moml = "<deleteProperty name=\"_senderDestLine\"/>";
ChangeRequest request = new MoMLChangeRequest(this, getContainer(), moml);
requestChange(request);
_isOff = true;

}
}

}

Figure 7. ProcessTokenmethod in LinkVisualizer

LinkVisualizer required the writing of the method processTokens(. . .) to find the location of the container, an
entity which contains different actors, and which the sender’s WirelessIOPort resides within the simulation
GUI.LinkVisualizer thenuses the containers location in combinationwith the location of thedestinationmote’s
to calculate the distance in terms of rise and run between the two motes(see Fig. 7). A MoMLChangeRequest
method is then called to create a line in the simulation between the two actors. The decision was made to
remove the line shortly after it ismade so as not to constantly depict communication, just that communication
has recently occurred.

2.4.2 Adding to ExistingCode

Outside of the creation of the LinkVisualizer class, changes were made to theWirelessChannel class to extend To-
kenProcessorwhich is the interface for the processTokens(. . .)method. TokenProcessor registers with a channel so

8



that it may receive packet information as the simulation is running. Changes were also made to AtomicWire-
lessChannel to track instances of TokenProcessors and call processTokens(. . .) when transmitting a packet. These
changes included:

• adding registerTokenProcessor(. . .) to register a token processor for transmissions from specified ports.

• adding a processTokens(. . .)method to the channel to call the processTokens(. . .)method in the visualizer
for each instance of a TokenProcessor.

• addingunregisterTokenProcessor(. . .) tounregister a tokenprocessor for transmissions fromspecifiedports.

• changing the private transmitTo(. . .)method to call the processTokens(. . .)methodwithin AtomicWireless-
Channel

• creating a private set tokenProcessors to contain the token processors without a specified port

• creating a private HashMap tokenProcessorsByPort to contain token processors with a specified port

2.5 Creation of SurgeDemo in Viptos

To create a demo which utilized the capability of viewing graphical links between motes during a simulation,
an automatically generated model of the existing TinyOS software for Surgewas modified. Multiple versions
weremade ofmotes running theSurge software. Eachmotewas then given a uniquenodeIDwith a base node
being set to 0. When run, this demo produces displays of the contents of their in- and out-ports. This result
can be seen in Fig. 8. In addition to this setup the SurgeVisualizer class was created to extend LinkVisualizer so
that it only creates links between motes when they meet set conditions. When a packet is sent through the
network, SurgeVisualizer intercepts it, and examines the packet’s type and address fields. First the packet type
is checked for the SurgeMsg type. This is done to ensure visual links are not created for beacon messages from
the base node. In addition the address field is compared to the destination nodeID in the simulation. If both
the type and address conditions aremet, a line is drawn between the sender and destinationmotes.

3 Contributions

3.1 Tool for Visualization

With the additionofLinkVisualizer and SurgeVisualizer entities, users ofViptos cannowviewthe communication
that transpires between wireless actors within a demo (see Fig. 6). Previously, only users of other simulation
programs such as TOSSIM & TinyViz could utilize the ability to view communication in terms of a graphical
link. Now this viewing capability has been extended to Viptos, where users can benefit from the ability to
simulate heterogeneous networks.
Whenusers create aViptos simulation they can simplydrag theLinkVisualizer entity froma componentmenu
into their simulation and together with the AtomicWirelessChannel, the method to create and remove the line
will be called automatically. Also the SurgeVisualizer can be used in conjunction with AtomicWirelessChannel to
observe the routing tree used in amultihop network that uses the TinyOS Surge routing protocol.

9



Figure 8. Contents of eachmote’s ports

10



3.2 SurgeDemo in Viptos

The creation of a demo in Viptos that utilizes the TinyOS software for Surge in conjunction with SurgeVisual-
izerwill allow users to view and explore the use of a visualization tool within an existing simulation. This new
Surge simulation expands on existing simulations by allowing users to use the Viptos environment, which
includes functionality previously unavailable in the TinyViz simulation software used.

4 Conclusion

Viptos is a growing development tool, with uses in development and research. As WSNs are being further ex-
plored, the tools available in the Viptos environment will allow developers to better create and interpret the
functionality of software used. The development of these easily usable tools will enhance the level to which
these improvements can be made as analysis of routing algorithms within a network can be used to further
refine software to a more efficient level. As WSNs are being deployed in more environments, this efficiency be-
comesmore important.

Acknowledgments

Thank you to SUPERB for allowing me this opportunity. Thank you to my graduate student mentor Elaine
Cheong for helping me through my project and keeping me on track. Thank you to Dr. Jonathan Sprinkle for
serving as a research supervisor and keeping us all on our toes while helping solve various technical problems.
Thank you to Prof. S. Shankar Sastry for acting as my faculty mentor and enlightening us all on the topics of
CHESS&TRUST. Thank you to Prof. E. A. Lee for his help inwriting the code needed to create a line.

References

[1] Ptolemy ii website. http://ptolemy.berkeley.edu/ptolemyII/, UC Berkeley.

[2] Tinyos community forum. http://www.tinyos.net/.

[3] Viptos website. http://ptolemy.berkeley.edu/viptos/, UC Berkeley.

[4] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: A graphical development and simulation environment for tinyos-
based wireless sensor networks. Technical Report UCB/EECS-2006-15, University of California, Berkeley,
Feb. 2006.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language: A holistic approach
to networked embedded systems. InACMSIGPLANConference onProgrammingLanguageDesignand Implemen-
tation, 2003.

[6] In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOSApplications. SenSys, 2003.

11


