Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model
Data-flow networks

• A bit of history
• Syntax and semantics
 – actors, tokens and firings
• Scheduling of Static Data-flow
 – static scheduling
 – code generation
 – buffer sizing
• Other Data-flow models
 – Boolean Data-flow
 – Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

for Digital Signal Processors (HW and SW)
A bit of history

• Karp computation graphs (‘66): seminal work
• Kahn process networks (‘58): formal model
• Dennis Data-flow networks (‘75): programming language for MIT DF machine
• Several recent implementations
 – graphical:
 – Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 – SPW (Cadence), COSSAP (Synopsys)
 – textual:
 – Silage (UCB, Mentor)
 – Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of **functional nodes** which are connected and communicate over **unbounded FIFO queues**
- Nodes are commonly called **actors**
- The bits of information that are communicated over the queues are commonly called **tokens**
Intuitive semantics

• (Often stateless) actors perform computation
• Unbounded FIFOs perform communication via sequences of tokens carrying values
 – integer, float, fixed point
 – matrix of integer, float, fixed point
 – image of pixels
• State implemented as self-loop
• Determinacy:
 – unique output sequences given unique input sequences
 – Sufficient condition: blocking read
 – (process cannot test input queues for emptiness)
Intuitive semantics

- At each time, one actor is fired
- When firing, actors consume input tokens and produce output tokens
- Actors can be fired only if there are enough tokens in the input queues
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence \(i(n) \)
 – single output sequence \(o(n) \)
 – \(o(n) = c_1 \, i(n) + c_2 \, i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence \(i(n) \)
 – single output sequence \(o(n) \)
 – \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence \(i(n) \)
 – single output sequence \(o(n) \)
 – \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

• Example: FIR filter
 – single input sequence i(n)
 – single output sequence o(n)
 – o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Questions

• Does the order in which actors are fired affect the final result?
• Does it affect the “operation” of the network in any way?
• Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens.
- Let tokens be noted by x_1, x_2, x_3, etc…
- A sequence of tokens is defined as $X = [x_1, x_2, x_3, \ldots]$
- Over the execution of the network, each queue will grow a particular sequence of tokens.
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens).
Ordering of sequences

- Let X_1 and X_2 be two sequences of tokens.
- We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2.
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive).
- This is also called the prefix order.
- Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$.
- Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable.
Chains of sequences

• Consider the set S of all finite and infinite sequences of tokens
• This set is partially ordered by the prefix order
• A subset C of S is called a chain iff all pairs of elements of C are comparable
• If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
• Example: \{ [x_1], [x_1, x_2], [x_1, x_2, x_3], ... \} is a chain
• Example: \{ [x_1], [x_1, x_2], [x_1, x_3], ... \} is not a chain
(Least) Upper Bound

• Given a subset \(Y \) of \(S \), an \textit{upper bound} of \(Y \) is an element \(z \) of \(S \) such that \(z \) is \textit{larger} than all elements of \(Y \).

• Consider now the set \(Z \) (subset of \(S \)) of all the upper bounds of \(Y \).

• If \(Z \) has a least element \(u \), then \(u \) is called the \textit{least upper bound} (lub) of \(Y \).

• The least upper bound, if it exists, is unique.

• Note: \(u \) might not be in \(Y \) (if it is, then it is the largest value of \(Y \)).
Complete Partial Order

• Every chain in S has a least upper bound
• Because of this property, S is called a Complete Partial Order
• Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
• Note: the least upper bound may be thought of as the limit of the chain
Processes

• Process: function from a p-tuple of sequences to a q-tuple of sequences

\[F : S^p \rightarrow S^q \]

• Tuples have the induced point-wise order:

\[Y = (y_1, \ldots, y_p), \ Y' = (y'_1, \ldots, y'_p) \text{ in } S^p : Y \leq Y' \iff y_i \leq y'_i \]

for all \(1 \leq i \leq p \)

• Given a chain \(C \) in \(S^p \), \(F(C) \) may or may not be a chain in \(S^q \)

• We are interested in conditions that make that true
Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains C, $\text{lub}(F(C))$ exists and
 \[F(\text{lub}(C)) = \text{lub}(F(C)) \]

- Similar to continuity in analysis using limits

- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'
 \[X \leq X' \implies F(X) \leq F(X') \]

- Continuity implies monotonicity
 - intuitively, outputs cannot be “withdrawn” once they have been produced
 - timeless causality. F transforms chains into chains
• Let X be the set of all sequences
• A network is a mapping F from the sequences to the sequences

$$X = F(X, I)$$

• The behavior of the network is defined as the unique least fixed point of the equation
• If F is continuous then the least fixed point exists \(\text{LFP} = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \}) \)
From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
 - firing rule
 (number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)
- Formally shown to be equivalent, but actors with firing are more intuitive
- *Mutually exclusive* firing rules imply monotonicity
- Generally simplified to *blocking read*
Examples of Data Flow actors

• **SDF:** Synchronous (or, better, Static) Data Flow
 – fixed input and output tokens

• **BDF:** Boolean Data Flow
 – control token determines consumed and produced tokens
Static scheduling of DF

• Key property of DF networks: output sequences do not depend on time of firing of actors

• SDF networks can be statically scheduled at compile-time
 – execute an actor when it is known to be fireable
 – no overhead due to sequencing of concurrency
 – static buffer sizing

• Different schedules yield different
 – code size
 – buffer size
 – pipeline utilization
Static scheduling of SDF

• Based only on *process graph* (ignores functionality)

• Network state: number of tokens in FIFOs

• Objective: find schedule that is *valid*, i.e.:
 – *admissible*
 (only fires actors when fireable)
 – *periodic*
 (brings network back to initial state firing each actor at least once)

• Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
 - $v_S(A) n_p = v_S(B) n_c$
 - must be satisfied for each edge
Balance equations

- Balance for each edge:
 - $3v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$
Balance equations

- \(M \nu_S = 0 \)
 - iff \(S \) is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule
 - (too many tokens accumulate on A->B or B->C)

\[
M = \begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1 \\
\end{bmatrix}
\]
Balance equations

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of \(q = |1 \ 2 \ 2|^\top \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule

\[
M = \begin{pmatrix}
 2 & -1 & 0 \\
 0 & 1 & -1 \\
 2 & 0 & -1 \\
 2 & 0 & -1 \\
\end{pmatrix}
\]
Static SDF scheduling

- Main SDF scheduling theorem (Lee ‘86):
 - A connected SDF graph with \(n \) actors has a periodic schedule iff its topology matrix \(M \) has rank \(n-1 \)
 - If \(M \) has rank \(n-1 \) then there exists a unique smallest integer solution \(q \) to
 \[
 M \ q = 0
 \]
- Rank must be at least \(n-1 \) because we need at least \(n-1 \) edges (connected-ness), providing each a linearly independent row
- Admissibility is not guaranteed, and depends on initial tokens on cycles
Admissibility of schedules

- No admissible schedule:
 BACBA, then deadlock…

- Adding one token (delay) on A->C makes
 BACBACBA valid

- Making a periodic schedule admissible is always possible, but changes specification…
Admissibility of schedules

- Adding initial token changes FIR order
From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = |1 \ 2 \ 2|^{T} \]

- Can find either ABCBC or ABBCC

- If deadlock before original state, no valid schedule exists (Lee ‘86)
From schedule to implementation

• Static scheduling used for:
 – behavioral simulation of DF (extremely efficient)
 – code generation for DSP
 – HW synthesis (Cathedral by IMEC, Lager by UCB, …)

• Issues in code generation
 – execution speed (pipelining, vectorization)
 – code size minimization
 – data memory size minimization (allocation to FIFOs)
 – processor or functional unit allocation
Compilation optimization

• Assumption: *code stitching*
 (chaining custom code for each actor)
• More efficient than C compiler for DSP
• Comparable to hand-coding in some cases
• Explicit parallelism, no artificial control dependencies
• Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

• Assumptions (based on DSP architecture):
 – subroutine calls expensive
 – fixed iteration loops are cheap
 (“zero-overhead loops”)
• Absolute optimum: *single appearance schedule*
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 – may or may not exist for an SDF graph…
 – buffer minimization relative to single appearance schedules
 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)
Buffer size minimization

- Assumption: no buffer sharing

- Example:

 \[q = \begin{bmatrix} 100 & 100 & 10 & 1 \end{bmatrix} \]

 - Valid SAS: \((100 \ A) \ (100 \ B) \ (10 \ C) \ D\)
 - requires 210 units of buffer area

 - Better (factored) SAS: \((10 \ (10 \ A) \ (10 \ B) \ C) \ D\)
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 - (Parks ‘96: may not terminate, but never fails if feasible)
Example of Boolean DF

- Compute absolute value of average of n samples
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

```plaintext
a = get (A)
b = get (B)
forever {
    if (a > b) {
        put (O, a)
a = get (A)
    } else if (a < b) {
        put (O, b)
b = get (B)
    } else {
        put (O, a)
a = get (A)
b = get (B)
    }
}
```
Summary of DF networks

• Advantages:
 – Easy to use (graphical languages)
 – Powerful algorithms for
 – verification (fast behavioral simulation)
 – synthesis (scheduling and allocation)
 – Explicit concurrency

• Disadvantages:
 – Efficient synthesis only for restricted models
 – (no input or output choice)
 – Cannot describe reactive control (blocking read)
Base-band Processing in Cell Phones

Frame to transmit (stream of bits)

Preprocessing → Add headers etc.

Mapping on a Constellation (QPSK)

Filtering

Modulation

End of Pkt
Payload
Network information
Synch
Base-band Processing: Denotation

Composition of functions = overall base-band specification

\[x[n] = (Map_i(s) * h)[n] \sin(2\pi f_I nT) + (Map_q(s) * h)[n] \cos(2\pi f_I nT) \]

\[i[n] = Map_i(s[n]) \]
\[q[n] = Map_q(s[n]) \]

\[i_f[n] = \sum_{k=1}^{N} h[k - 1] i_f[n - k] \]
\[q_f[n] = \sum_{k=1}^{N} h[k - 1] q_f[n - k] \]

\[x[n] = i_f[n] \sin(2\pi f_I nT) + q_f[n] \cos(2\pi f_I nT) \]
Base-band Processing: Data Flow Model

Mapping on a Constellation (QPSK)

00 → 01 → 10 → 11

Filtering

Modulation
Remarks

• Composition is achieved by input-output connection through communication channels (FIFOs)

• The operational semantics dictates the conditions that must be satisfied to execute a function (actor)

• Functions operating on streams of data rather than states evolving in response to traces of events (data vs. control)

• Convenient to mix denotational and operational specifications
Telecom/MM applications

• Heterogeneous specifications including
 – data processing
 – control functions

• Data processing, e.g. encryption, error correction…
 – computations done at regular (often short) intervals
 – efficiently specified and synthesized using DataFlow models

• Control functions (data-dependent and real-time)
 – say when and how data computation is done
 – efficiently specified and synthesized using FSM models

• Need a common model to perform global system analysis and optimization
Mixing the two models: 802.11b

• State machine for control
 – Denotational: processes as sequence of events, sequential composition, choice etc.
 – Operational: state transition graphs

• Data Flow for signal processing
 – Functions
 – Data flow graphs

• And what happens when we put them together?
802.11b: Modes of operation

<table>
<thead>
<tr>
<th>Data rate (Mbit/s)</th>
<th>Modulation</th>
<th>Coding rate</th>
<th>Ndbps</th>
<th>1472 byte transfer duration (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BPSK</td>
<td>1/2</td>
<td>24</td>
<td>2012</td>
</tr>
<tr>
<td>9</td>
<td>BPSK</td>
<td>3/4</td>
<td>36</td>
<td>1344</td>
</tr>
<tr>
<td>12</td>
<td>QPSK</td>
<td>1/2</td>
<td>48</td>
<td>1008</td>
</tr>
<tr>
<td>18</td>
<td>QPSK</td>
<td>3/4</td>
<td>72</td>
<td>672</td>
</tr>
<tr>
<td>24</td>
<td>16-QAM</td>
<td>1/2</td>
<td>96</td>
<td>504</td>
</tr>
<tr>
<td>36</td>
<td>16-QAM</td>
<td>3/4</td>
<td>144</td>
<td>336</td>
</tr>
<tr>
<td>48</td>
<td>64-QAM</td>
<td>2/3</td>
<td>192</td>
<td>252</td>
</tr>
<tr>
<td>54</td>
<td>64-QAM</td>
<td>3/4</td>
<td>216</td>
<td>224</td>
</tr>
</tbody>
</table>

- Depending on the channel conditions, the modulation scheme changes.
- It is natural to mix FSM and DF (like in figure).
- Note that now we have real-time constraints on this system (i.e. time to send 1472 bytes).
Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model