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Outline 

•  Part 3: Models of Computation 

–  FSMs 

–  Discrete Event Systems  

–  CFSMs 

–  Data Flow Models 

–  Petri Nets  

–  The Tagged Signal Model 
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Data-flow networks 

•  A bit of history 

•  Syntax and semantics 

–  actors, tokens and firings 

•  Scheduling of Static Data-flow 

–  static scheduling 

–  code generation 

–  buffer sizing 

•  Other Data-flow models 

–  Boolean Data-flow 

–  Dynamic Data-flow 
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Data-flow networks 

•  Powerful formalism for data-dominated system specification 

•  Partially-ordered model (no over-specification) 

•  Deterministic execution independent of scheduling 

•  Used for 

–  simulation 

–  scheduling 

–  memory allocation 

–  code generation 

 for Digital Signal Processors (HW and SW) 
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A bit of history 

• Karp computation graphs (‘66): seminal work  

• Kahn process networks (‘58): formal model 

• Dennis Data-flow networks (‘75): programming language for MIT 
DF machine 

• Several recent implementations 

–  graphical: 

–  Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven) 

–   SPW (Cadence), COSSAP (Synopsys) 

–  textual: 

–  Silage (UCB, Mentor) 

–  Lucid, Haskell 
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Data-flow network  

•  A Data-flow network is a collection of functional nodes which 
are connected and communicate over unbounded FIFO queues 

•  Nodes are commonly called actors 

•  The bits of information that are communicated over the queues 
are commonly called tokens 
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Intuitive semantics 

•  (Often stateless) actors perform computation 

• Unbounded FIFOs perform communication via sequences of 
tokens carrying values 

–  integer, float, fixed point 

– matrix of integer, float, fixed point 

–  image of pixels 

• State implemented as self-loop  

• Determinacy:  

–  unique output sequences given unique input sequences  

– Sufficient condition: blocking read 

–   (process cannot test input queues for emptiness) 
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Intuitive semantics 

•  At each time, one actor is fired 

•  When firing, actors consume input tokens and produce output 
tokens 

•  Actors can be fired only if there are enough tokens in the input 
queues 
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Intuitive semantics 

• Example: FIR filter 

–  single input sequence i(n) 

–  single output sequence o(n) 

–  o(n) = c1 i(n) + c2 i(n-1)  

* c1 

+ o 

i * c2 

i(-1) 
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Questions 

• Does the order in which actors are fired affect the final result? 

• Does it affect the “operation” of the network in any way? 

• Go to Radio Shack and ask for an unbounded queue!! 
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Formal semantics: sequences 

•  Actors operate from a sequence of input tokens to a sequence of 
output tokens 

•  Let tokens be noted by x1, x2, x3, etc… 

•  A sequence of tokens is defined as                                   

X = [ x1, x2, x3, …] 

•  Over the execution of the network, each queue will grow a particular 
sequence of tokens 

•  In general, we consider the actors mathematically as functions from 
sequences to sequences (not from tokens to tokens) 
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Ordering of sequences 

•  Let X1 and X2 be two sequences of tokens. 

•  We say that X1 is less than X2 if and only if (by definition) X1 is 
an initial segment of X2  

•  Homework: prove that the relation so defined is a partial order 
(reflexive, antisymmetric and transitive) 

•  This is also called the prefix order 

•  Example:   [ x1, x2 ] <= [ x1, x2, x3 ] 

•  Example:   [ x1, x2 ] and [ x1, x3, x4 ] are incomparable 

20 
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Chains of sequences 

•  Consider the set S of all finite and infinite sequences of 
tokens 

•  This set is partially ordered by the prefix order 

•  A subset C of S is called a chain iff all pairs of elements of C 
are comparable 

•  If C is a chain, then it must be a linear order inside S 
(otherwise, why call it chain?) 

•  Example: { [ x1 ], [ x1, x2 ], [ x1, x2, x3 ], … } is a chain 

•  Example: { [ x1 ], [ x1, x2 ], [ x1, x3 ], … } is not a chain  
21 
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(Least) Upper Bound 

•  Given a subset Y of S, an upper bound of Y is an element z of 
S such that z is larger than all elements of Y 

•  Consider now the set Z (subset of S) of all the upper bounds 
of Y 

•  If Z has a least element u, then u is called the least upper 
bound (lub) of Y 

•  The least upper bound, if it exists, is unique  

•  Note: u might not be in Y (if it is, then it is the largest value of 
Y) 

22 
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Complete Partial Order 

•  Every chain in S has a least upper bound 

•  Because of this property, S is called a Complete Partial Order 

•  Notation: if C is a chain, we indicate the least upper bound of 
C by lub( C ) 

•  Note: the least upper bound may be thought of as the limit of 
the chain 

23 
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Processes 

•  Process: function from a p-tuple of sequences to a q-tuple of 
sequences 

  F  :  Sp  ->  Sq 

•  Tuples have the induced point-wise order:    

Y = ( y1, … , yp ),  Y’ = ( y’1, … , y’p ) in Sp :Y <= Y’  iff  yi <= y’i  
for all 1 <= i <= p 

•  Given a chain C in Sp, F( C ) may or may not be a chain in 
Sq 

•  We are interested in conditions that make that true 
24 
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Continuity and Monotonicity 

•  Continuity: F is continuous iff (by definition) for all chains C, 
lub( F( C ) ) exists and 

   F( lub( C ) = lub( F( C ) ) 

•  Similar to continuity in analysis using limits 

•  Monotonicity: F is monotonic iff (by definition) for all pairs X, X’ 
  X <= X’ => F( X ) <= F( X’ ) 

•  Continuity implies monotonicity 

–  intuitively, outputs cannot be “withdrawn” once they have been 
produced 

–  timeless causality. F transforms chains into chains 

25 
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Least Fixed Point semantics 

•  Let X be the set of all sequences 

•  A network is a mapping F from the sequences to the 
sequences        

X = F( X, I ) 

•  The behavior of the network is defined as the unique least 
fixed point of the equation 

•  If F is continuous then the least fixed point exists LFP = 
LUB( { Fn( ⊥, I ) : n >= 0 } ) 

26 
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From Kahn networks to Data Flow networks 

•  Each process becomes an actor: set of pairs of 

–  firing rule  

 (number of required tokens on inputs) 

–  function  

 (including number of consumed and produced tokens)  

•  Formally shown to be equivalent, but actors with firing are 
more intuitive 

•  Mutually exclusive firing rules imply monotonicity 

•  Generally simplified to blocking read 

27 
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Examples of Data Flow actors 

•  SDF: Synchronous (or, better, Static) Data Flow 
–  fixed input and output tokens 

•  BDF: Boolean Data Flow 
–  control token determines consumed and produced tokens 

+ 
1 

1 
1 

FFT 
1024 1024 10 1 

merge select 
T F 

F T 
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Static scheduling of DF 

•  Key property of DF networks: output sequences do not depend on 
time of firing of actors 

•  SDF networks can be statically scheduled at compile-time  

–  execute an actor when it is known to be fireable 

–  no overhead due to sequencing of concurrency 

–  static buffer sizing 

•  Different schedules yield different  

–  code size 

–  buffer size 

–  pipeline utilization 
29 
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Static scheduling of SDF 

•  Based only on process graph (ignores functionality) 

•  Network state: number of tokens in FIFOs 

•  Objective: find schedule that is valid, i.e.: 

–  admissible  

 (only fires actors when fireable) 

–  periodic  

 (brings network back to initial state firing each actor at least once) 

•  Optimize cost function over admissible schedules 

30 
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Balance equations 

•  Number of produced tokens must equal number of consumed tokens 
on every edge 

•  Repetitions (or firing) vector vS of schedule S: number of firings of 
each actor in S 

•   vS(A) np = vS(B) nc 

 must be satisfied for each edge 

np nc 
A B 
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Balance equations 

B C 

A 
3 

1 

1 

1 

2 
2 

1 
1 

•  Balance for each edge: 

–  3 vS(A) - vS(B) = 0 

–  vS(B) - vS(C) = 0 

–  2 vS(A) - vS(C) = 0 

–  2 vS(A) - vS(C) = 0 
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Balance equations 

•  M vS = 0 

 iff S is periodic 

•  Full rank (as in this case)  
–  no non-zero solution  
–   no periodic schedule 

(too many tokens accumulate on A->B or B->C) 

3  -1  0 
0  1  -1 
2  0  -1 
2  0  -1 

M = 

B C 

A 
3 

1 

1 

1 

2 
2 

1 
1 
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Balance equations 

•  Non-full rank 
–  infinite solutions exist (linear space of dimension 1) 

•  Any multiple of q = |1   2   2|T satisfies the balance equations 

•  ABCBC and ABBCC are minimal valid schedules 

•  ABABBCBCCC is non-minimal valid schedule 

2  -1  0 
0  1  -1 
2  0  -1 
2  0  -1 

M = 

B C 

A 
2 

1 

1 

1 

2 
2 

1 
1 
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Static SDF scheduling 

•  Main SDF scheduling theorem (Lee ‘86): 

–  A connected SDF graph with n actors has a periodic schedule iff its 
topology matrix M has rank n-1 

–  If M has rank n-1 then there exists a unique smallest integer solution q 
to  

 M q = 0 

•  Rank must be at least n-1 because we need at least n-1 edges 
(connected-ness), providing each a linearly independent row 

•  Admissibility is not guaranteed, and depends on initial tokens on 
cycles 
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Admissibility of schedules 

•  No admissible schedule: 

 BACBA, then deadlock… 

•  Adding one token (delay) on A->C makes 

 BACBACBA  valid 

•  Making a periodic schedule admissible is always possible, but 
changes specification... 

B C 

A 
1 

2 

1 

3 

2 

3 
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Admissibility of schedules 

•  Adding initial token changes FIR order 

* c1 

+ o 

i 

* c2 

i(-1) 
i(-2) 
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From repetition vector to schedule 

•  Repeatedly schedule fireable actors up to number of times in 
repetition vector 

  q = |1   2   2|T 

•  Can find either ABCBC or ABBCC  

•  If deadlock before original state, no valid schedule exists (Lee ‘86) 

B C 

A 
2 

1 

1 

1 

2 
2 

1 
1 
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From schedule to implementation 

•  Static scheduling used for: 

–  behavioral simulation of DF (extremely efficient) 

–  code generation for DSP  

– HW synthesis (Cathedral by IMEC, Lager by UCB, …) 

•  Issues in code generation 

–  execution speed (pipelining, vectorization) 

–  code size minimization 

–  data memory size minimization (allocation to FIFOs) 

–  processor or functional unit allocation 
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Compilation optimization 

•  Assumption: code stitching 

(chaining custom code for each actor) 

•  More efficient than C compiler for DSP 

•  Comparable to hand-coding in some cases 

•  Explicit parallelism, no artificial control dependencies 

•  Main problem: memory and processor/FU allocation 
depends on scheduling, and vice-versa 
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Code size minimization 

•  Assumptions (based on DSP architecture): 

–  subroutine calls expensive 

–  fixed iteration loops are cheap  

 (“zero-overhead loops”) 

•  Absolute optimum: single appearance schedule 

e.g. ABCBC -> A (2BC),  ABBCC -> A (2B) (2C) 

–  may or may not exist for an SDF graph… 

–  buffer minimization relative to single appearance schedules  

 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97) 
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Buffer size minimization 

•  Assumption: no buffer sharing 

•  Example: 

 q = | 100  100  10  1|T 

•  Valid SAS: (100 A) (100 B) (10 C) D 
–  requires  210 units of buffer area 

•  Better (factored) SAS: (10 (10 A) (10 B) C) D 
–  requires 30 units of buffer areas, but… 
–  requires 21 loop initiations per period (instead of 3) 

A 

C D 
1 10 

B 10 

10 

1 

1 
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Dynamic scheduling of DF 

• SDF is limited in modeling power  
–  no run-time choice 

–  cannot implement Gaussian elimination with pivoting 

• More general DF is too powerful 
–  non-Static DF is Turing-complete (Buck ‘93)  

–  bounded-memory scheduling is not always possible 

• BDF: semi-static scheduling of special “patterns” 
–  if-then-else 
–  repeat-until, do-while 

• General case: thread-based dynamic scheduling  
–  (Parks ‘96: may not terminate, but never fails if feasible) 
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Example of Boolean DF 

•  Compute absolute value of average of n samples 

+1 + 

- 

>n 

T F T F 

T F 

T F 

T 
T 

T F 

<0 

T F 

0 0 

In 

Out 
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Example of general DF 

•  Merge streams of multiples of 2 and 3 in order (removing duplicates) 

•  Deterministic merge 

(no “peeking”) 

ordered 
merge 

* 2 dup 
1 

* 3 dup 
1 

A B 

O 

out 

a = get (A) 
b = get (B) 
forever { 
        if (a > b) { 
                put (O,  a) 
                a = get (A) 
        } else if (a < b) { 
                put (O,  b) 
                b = get (B) 
        } else { 
                put (O, a) 
                a = get (A) 
                b = get (B) 
        } 
} 
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Summary of DF networks 

• Advantages: 

– Easy to use (graphical languages) 

– Powerful algorithms for 

–  verification (fast behavioral simulation) 

–  synthesis (scheduling and allocation) 

– Explicit concurrency 

• Disadvantages: 

– Efficient synthesis only for restricted models 

–  (no input or output choice) 

– Cannot describe reactive control (blocking read) 

46 
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Base-band Processing in Cell Phones 

Preprocessing Add headers etc. 

Frame to transmit  
(stream of bits) 

Synch 
Network 
information 

Payload End 
of Pkt 

Mapping on a  
Constellation (QPSK) 

Filtering Modulation 
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Base-band Processing: Denotation 

Mapping on a  
Constellation (QPSK) 

Modulation 

Composition of functions = overall base-band specification 

Filtering 
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Base-band Processing: Data Flow Model 

Mapping on a  
Constellation (QPSK) 

Modulation 

MAP 

RRC 

RRC 

Mult 

Mult 

Sum 

Filtering 
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Remarks 

• Composition is achieved by input-output connection through 
communication channels (FIFOs) 

• The operational semantics dictates the conditions that must be 
satisfied to execute a function (actor) 

• Functions operating on streams of data rather than states 
evolving in response to traces of events (data vs. control) 

• Convenient to mix denotational and operational specifications 
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Telecom/MM applications 

•  Heterogeneous specifications including  

–  data processing 

–  control functions 

•  Data processing, e.g. encryption, error correction… 

–  computations done at regular (often short) intervals  

–  efficiently specified and synthesized using DataFlow models 

•  Control functions (data-dependent and real-time) 

–  say when and how data computation is done 

–  efficiently specified and synthesized using FSM models 

•  Need a common model to perform global system analysis and 
optimization 
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Mixing the two models: 802.11b 

• State machine for control 

– Denotational: processes as sequence of events, sequential 
composition, choice etc. 

– Operational: state transition graphs 

• Data Flow for signal processing 

– Functions  

– Data flow graphs 

• And what happens when we put them together? 
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Data rate    Modulation  Coding        Ndbps         1472 byte
(Mbit/s)                   rate                                 transfer duration(µs)

 
6 BPSK 1/2 24 2012
9 BPSK 3/4 36 1344
12 QPSK 1/2 48 1008
18 QPSK 3/4 72 672
24 16-QAM 1/2 96 504
36 16-QAM 3/4 144 336
48 64-QAM 2/3 192 252
54 64-QAM 3/4 216 224

802.11b: Modes of operation 

•  Depending on the channel conditions, the modulation scheme changes 

•  It is natural to mix FSM and DF (like in figure) 

•  Note that now we have real-time constraints on this system (i.e. time to 
send 1472 bytes) 

FSM 

Multimode 
Modulator 

Channel  
estimation 

RX 
TX 

Mode 

Link  
quality 
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Outline 

•  Part 3: Models of Computation 

–  FSMs 

–  Discrete Event Systems  

–  CFSMs 

–  Data Flow Models 

–  Petri Nets  

–  The Tagged Signal Model 


