
EE249Fall07
1

Outline

•  Part 3: Models of Computation

–  FSMs

–  Discrete Event Systems

–  CFSMs

–  Data Flow Models

–  Petri Nets

–  The Tagged Signal Model

EE249Fall07
2

Data-flow networks

•  A bit of history

•  Syntax and semantics

–  actors, tokens and firings

•  Scheduling of Static Data-flow

–  static scheduling

–  code generation

–  buffer sizing

•  Other Data-flow models

–  Boolean Data-flow

–  Dynamic Data-flow

EE249Fall07
3

Data-flow networks

•  Powerful formalism for data-dominated system specification

•  Partially-ordered model (no over-specification)

•  Deterministic execution independent of scheduling

•  Used for

–  simulation

–  scheduling

–  memory allocation

–  code generation

 for Digital Signal Processors (HW and SW)

EE249Fall07
4

A bit of history

• Karp computation graphs (‘66): seminal work

• Kahn process networks (‘58): formal model

• Dennis Data-flow networks (‘75): programming language for MIT
DF machine

• Several recent implementations

–  graphical:

–  Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)

–  SPW (Cadence), COSSAP (Synopsys)

–  textual:

–  Silage (UCB, Mentor)

–  Lucid, Haskell

EE249Fall07
5

Data-flow network

•  A Data-flow network is a collection of functional nodes which
are connected and communicate over unbounded FIFO queues

•  Nodes are commonly called actors

•  The bits of information that are communicated over the queues
are commonly called tokens

EE249Fall07
6

Intuitive semantics

•  (Often stateless) actors perform computation

• Unbounded FIFOs perform communication via sequences of
tokens carrying values

–  integer, float, fixed point

– matrix of integer, float, fixed point

–  image of pixels

• State implemented as self-loop

• Determinacy:

–  unique output sequences given unique input sequences

– Sufficient condition: blocking read

–  (process cannot test input queues for emptiness)

EE249Fall07
7

Intuitive semantics

•  At each time, one actor is fired

•  When firing, actors consume input tokens and produce output
tokens

•  Actors can be fired only if there are enough tokens in the input
queues

EE249Fall07
8

Intuitive semantics

• Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
9

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
10

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
11

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
12

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
13

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall07
14

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall07
15

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall07
16

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall07
17

Intuitive semantics

•  Example: FIR filter

–  single input sequence i(n)

–  single output sequence o(n)

–  o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall07
18

Questions

• Does the order in which actors are fired affect the final result?

• Does it affect the “operation” of the network in any way?

• Go to Radio Shack and ask for an unbounded queue!!

EE249Fall07
19

Formal semantics: sequences

•  Actors operate from a sequence of input tokens to a sequence of
output tokens

•  Let tokens be noted by x1, x2, x3, etc…

•  A sequence of tokens is defined as

X = [x1, x2, x3, …]

•  Over the execution of the network, each queue will grow a particular
sequence of tokens

•  In general, we consider the actors mathematically as functions from
sequences to sequences (not from tokens to tokens)

EE249Fall07

Ordering of sequences

•  Let X1 and X2 be two sequences of tokens.

•  We say that X1 is less than X2 if and only if (by definition) X1 is
an initial segment of X2

•  Homework: prove that the relation so defined is a partial order
(reflexive, antisymmetric and transitive)

•  This is also called the prefix order

•  Example: [x1, x2] <= [x1, x2, x3]

•  Example: [x1, x2] and [x1, x3, x4] are incomparable

20

EE249Fall07

Chains of sequences

•  Consider the set S of all finite and infinite sequences of
tokens

•  This set is partially ordered by the prefix order

•  A subset C of S is called a chain iff all pairs of elements of C
are comparable

•  If C is a chain, then it must be a linear order inside S
(otherwise, why call it chain?)

•  Example: { [x1], [x1, x2], [x1, x2, x3], … } is a chain

•  Example: { [x1], [x1, x2], [x1, x3], … } is not a chain
21

EE249Fall07

(Least) Upper Bound

•  Given a subset Y of S, an upper bound of Y is an element z of
S such that z is larger than all elements of Y

•  Consider now the set Z (subset of S) of all the upper bounds
of Y

•  If Z has a least element u, then u is called the least upper
bound (lub) of Y

•  The least upper bound, if it exists, is unique

•  Note: u might not be in Y (if it is, then it is the largest value of
Y)

22

EE249Fall07

Complete Partial Order

•  Every chain in S has a least upper bound

•  Because of this property, S is called a Complete Partial Order

•  Notation: if C is a chain, we indicate the least upper bound of
C by lub(C)

•  Note: the least upper bound may be thought of as the limit of
the chain

23

EE249Fall07

Processes

•  Process: function from a p-tuple of sequences to a q-tuple of
sequences

 F : Sp -> Sq

•  Tuples have the induced point-wise order:

Y = (y1, … , yp), Y’ = (y’1, … , y’p) in Sp :Y <= Y’ iff yi <= y’i
for all 1 <= i <= p

•  Given a chain C in Sp, F(C) may or may not be a chain in
Sq

•  We are interested in conditions that make that true
24

EE249Fall07

Continuity and Monotonicity

•  Continuity: F is continuous iff (by definition) for all chains C,
lub(F(C)) exists and

 F(lub(C) = lub(F(C))

•  Similar to continuity in analysis using limits

•  Monotonicity: F is monotonic iff (by definition) for all pairs X, X’
 X <= X’ => F(X) <= F(X’)

•  Continuity implies monotonicity

–  intuitively, outputs cannot be “withdrawn” once they have been
produced

–  timeless causality. F transforms chains into chains

25

EE249Fall07

Least Fixed Point semantics

•  Let X be the set of all sequences

•  A network is a mapping F from the sequences to the
sequences

X = F(X, I)

•  The behavior of the network is defined as the unique least
fixed point of the equation

•  If F is continuous then the least fixed point exists LFP =
LUB({ Fn(⊥, I) : n >= 0 })

26

EE249Fall07

From Kahn networks to Data Flow networks

•  Each process becomes an actor: set of pairs of

–  firing rule

 (number of required tokens on inputs)

–  function

 (including number of consumed and produced tokens)

•  Formally shown to be equivalent, but actors with firing are
more intuitive

•  Mutually exclusive firing rules imply monotonicity

•  Generally simplified to blocking read

27

EE249Fall07
28

Examples of Data Flow actors

•  SDF: Synchronous (or, better, Static) Data Flow
–  fixed input and output tokens

•  BDF: Boolean Data Flow
–  control token determines consumed and produced tokens

+
1

1
1

FFT
1024 1024 10 1

merge select
T F

F T

EE249Fall07

Static scheduling of DF

•  Key property of DF networks: output sequences do not depend on
time of firing of actors

•  SDF networks can be statically scheduled at compile-time

–  execute an actor when it is known to be fireable

–  no overhead due to sequencing of concurrency

–  static buffer sizing

•  Different schedules yield different

–  code size

–  buffer size

–  pipeline utilization
29

EE249Fall07

Static scheduling of SDF

•  Based only on process graph (ignores functionality)

•  Network state: number of tokens in FIFOs

•  Objective: find schedule that is valid, i.e.:

–  admissible

 (only fires actors when fireable)

–  periodic

 (brings network back to initial state firing each actor at least once)

•  Optimize cost function over admissible schedules

30

EE249Fall07
31

Balance equations

•  Number of produced tokens must equal number of consumed tokens
on every edge

•  Repetitions (or firing) vector vS of schedule S: number of firings of
each actor in S

•  vS(A) np = vS(B) nc

 must be satisfied for each edge

np nc
A B

EE249Fall07
32

Balance equations

B C

A
3

1

1

1

2
2

1
1

•  Balance for each edge:

–  3 vS(A) - vS(B) = 0

–  vS(B) - vS(C) = 0

–  2 vS(A) - vS(C) = 0

–  2 vS(A) - vS(C) = 0

EE249Fall07
33

Balance equations

•  M vS = 0

 iff S is periodic

•  Full rank (as in this case)
–  no non-zero solution
–  no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

EE249Fall07
34

Balance equations

•  Non-full rank
–  infinite solutions exist (linear space of dimension 1)

•  Any multiple of q = |1 2 2|T satisfies the balance equations

•  ABCBC and ABBCC are minimal valid schedules

•  ABABBCBCCC is non-minimal valid schedule

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

EE249Fall07
35

Static SDF scheduling

•  Main SDF scheduling theorem (Lee ‘86):

–  A connected SDF graph with n actors has a periodic schedule iff its
topology matrix M has rank n-1

–  If M has rank n-1 then there exists a unique smallest integer solution q
to

 M q = 0

•  Rank must be at least n-1 because we need at least n-1 edges
(connected-ness), providing each a linearly independent row

•  Admissibility is not guaranteed, and depends on initial tokens on
cycles

EE249Fall07
36

Admissibility of schedules

•  No admissible schedule:

 BACBA, then deadlock…

•  Adding one token (delay) on A->C makes

 BACBACBA valid

•  Making a periodic schedule admissible is always possible, but
changes specification...

B C

A
1

2

1

3

2

3

EE249Fall07
37

Admissibility of schedules

•  Adding initial token changes FIR order

* c1

+ o

i

* c2

i(-1)
i(-2)

EE249Fall07
38

From repetition vector to schedule

•  Repeatedly schedule fireable actors up to number of times in
repetition vector

 q = |1 2 2|T

•  Can find either ABCBC or ABBCC

•  If deadlock before original state, no valid schedule exists (Lee ‘86)

B C

A
2

1

1

1

2
2

1
1

EE249Fall07
39

From schedule to implementation

•  Static scheduling used for:

–  behavioral simulation of DF (extremely efficient)

–  code generation for DSP

– HW synthesis (Cathedral by IMEC, Lager by UCB, …)

•  Issues in code generation

–  execution speed (pipelining, vectorization)

–  code size minimization

–  data memory size minimization (allocation to FIFOs)

–  processor or functional unit allocation

EE249Fall07
40

Compilation optimization

•  Assumption: code stitching

(chaining custom code for each actor)

•  More efficient than C compiler for DSP

•  Comparable to hand-coding in some cases

•  Explicit parallelism, no artificial control dependencies

•  Main problem: memory and processor/FU allocation
depends on scheduling, and vice-versa

EE249Fall07
41

Code size minimization

•  Assumptions (based on DSP architecture):

–  subroutine calls expensive

–  fixed iteration loops are cheap

 (“zero-overhead loops”)

•  Absolute optimum: single appearance schedule

e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)

–  may or may not exist for an SDF graph…

–  buffer minimization relative to single appearance schedules

 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)

EE249Fall07
42

Buffer size minimization

•  Assumption: no buffer sharing

•  Example:

 q = | 100 100 10 1|T

•  Valid SAS: (100 A) (100 B) (10 C) D
–  requires 210 units of buffer area

•  Better (factored) SAS: (10 (10 A) (10 B) C) D
–  requires 30 units of buffer areas, but…
–  requires 21 loop initiations per period (instead of 3)

A

C D
1 10

B 10

10

1

1

EE249Fall07
43

Dynamic scheduling of DF

• SDF is limited in modeling power
–  no run-time choice

–  cannot implement Gaussian elimination with pivoting

• More general DF is too powerful
–  non-Static DF is Turing-complete (Buck ‘93)

–  bounded-memory scheduling is not always possible

• BDF: semi-static scheduling of special “patterns”
–  if-then-else
–  repeat-until, do-while

• General case: thread-based dynamic scheduling
–  (Parks ‘96: may not terminate, but never fails if feasible)

EE249Fall07
44

Example of Boolean DF

•  Compute absolute value of average of n samples

+1 +

-

>n

T F T F

T F

T F

T
T

T F

<0

T F

0 0

In

Out

EE249Fall07
45

Example of general DF

•  Merge streams of multiples of 2 and 3 in order (removing duplicates)

•  Deterministic merge

(no “peeking”)

ordered
merge

* 2 dup
1

* 3 dup
1

A B

O

out

a = get (A)
b = get (B)
forever {
 if (a > b) {
 put (O, a)
 a = get (A)
 } else if (a < b) {
 put (O, b)
 b = get (B)
 } else {
 put (O, a)
 a = get (A)
 b = get (B)
 }
}

EE249Fall07

Summary of DF networks

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

–  verification (fast behavioral simulation)

–  synthesis (scheduling and allocation)

– Explicit concurrency

• Disadvantages:

– Efficient synthesis only for restricted models

–  (no input or output choice)

– Cannot describe reactive control (blocking read)

46

EE249Fall06
47

Base-band Processing in Cell Phones

Preprocessing Add headers etc.

Frame to transmit
(stream of bits)

Synch
Network
information

Payload End
of Pkt

Mapping on a
Constellation (QPSK)

Filtering Modulation

EE249Fall06
48

Base-band Processing: Denotation

Mapping on a
Constellation (QPSK)

Modulation

Composition of functions = overall base-band specification

Filtering

EE249Fall06
49

Base-band Processing: Data Flow Model

Mapping on a
Constellation (QPSK)

Modulation

MAP

RRC

RRC

Mult

Mult

Sum

Filtering

EE249Fall07
50

Remarks

• Composition is achieved by input-output connection through
communication channels (FIFOs)

• The operational semantics dictates the conditions that must be
satisfied to execute a function (actor)

• Functions operating on streams of data rather than states
evolving in response to traces of events (data vs. control)

• Convenient to mix denotational and operational specifications

EE249Fall07
51

Telecom/MM applications

•  Heterogeneous specifications including

–  data processing

–  control functions

•  Data processing, e.g. encryption, error correction…

–  computations done at regular (often short) intervals

–  efficiently specified and synthesized using DataFlow models

•  Control functions (data-dependent and real-time)

–  say when and how data computation is done

–  efficiently specified and synthesized using FSM models

•  Need a common model to perform global system analysis and
optimization

EE249Fall07
52

Mixing the two models: 802.11b

• State machine for control

– Denotational: processes as sequence of events, sequential
composition, choice etc.

– Operational: state transition graphs

• Data Flow for signal processing

– Functions

– Data flow graphs

• And what happens when we put them together?

EE249Fall07
53

Data rate Modulation Coding Ndbps 1472 byte
(Mbit/s) rate transfer duration(µs)

6 BPSK 1/2 24 2012
9 BPSK 3/4 36 1344
12 QPSK 1/2 48 1008
18 QPSK 3/4 72 672
24 16-QAM 1/2 96 504
36 16-QAM 3/4 144 336
48 64-QAM 2/3 192 252
54 64-QAM 3/4 216 224

802.11b: Modes of operation

•  Depending on the channel conditions, the modulation scheme changes

•  It is natural to mix FSM and DF (like in figure)

•  Note that now we have real-time constraints on this system (i.e. time to
send 1472 bytes)

FSM

Multimode
Modulator

Channel
estimation

RX
TX

Mode

Link
quality

EE249Fall07
54

Outline

•  Part 3: Models of Computation

–  FSMs

–  Discrete Event Systems

–  CFSMs

–  Data Flow Models

–  Petri Nets

–  The Tagged Signal Model

