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Abstract
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks.
In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed
for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different
abstraction levels, from purely qualitative to more complex quantitative models.Noteworthily, each of these models
preserves the underlying graph, which depicts the interactions between the biological components. This article
intends to present the basics of the approach and to foster the potential role PNs could play in the development
of the computational systems biology.
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INTRODUCTION
Beyond the production of a huge amount of

biological data, there is a real challenge in under-

standing how complex interaction networks control

the cell behaviour. To address this challenge, one

needs to resort to formal methods handling the

modelling of such networks. While the study of

the sole topology of the network provides some

knowledge on the involved biological components,

the dynamical modelling aims at understanding

the dynamical properties of the system (see [1] for

a review on the modelling of regulatory networks

and [2] for a recent survey of computational

techniques applied to model signalling networks).

One can distinguish two main classes of dynami-

cal models: on the one hand, quantitative models are

essentially based on systems of ordinary differential

equations (ODEs); on the other hand, qualitative
models can be defined through discrete formalisms

or piecewise linear differential systems. The first

models aim at representing the system in a detailed

way, producing quantitative results. They require

accurate kinetic data, which are often lacking.

Moreover, because of the size and the preciseness

of the models, most of the results are obtained by

numerical integration methods. It is therefore

difficult to apprehend or prove general properties

of the models under study. Quantitative approaches

are thus helpfully complemented by qualitative

approaches, which are more suitable to induce

dynamical properties of complex systems, in partic-

ular when few data are accessible.

Petri nets (PNs) have been named after Carl

Adam Petri who, in the early sixties, proposed

a graphical and mathematical formalism suitable for

the modelling and the analysis of concurrent,

asynchronous, distributed systems [3–6]. With their

various extensions, PNs allow the definition of both

qualitative and quantitative models. During the past

40 years, a large amount of work has been done on

theoretical developments and PNs have been

successfully applied to a wide range of applications.

These were mainly related to the modelling and

analysis of man-made systems (manufacturing

systems, communication networks, computational

distributed systems, etc.). More recently, PN model-

ling appeared for ‘natural’ systems, in particular

for molecular networks. An early attempt to apply

the PN framework to biochemical reaction

systems has been presented by Reddy et al. [7]. As

emphasized in [8], PNs are a convenient mathemat-

ical formalism allowing an intuitive representation of
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biochemical networks. This is mainly due to their

graph-based structure. Moreover, complementing a

purely qualitative structural analysis, one can consider

quantitative information, for instance in the form of

(stochastic) reaction rates, (continuous) concentra-

tion levels, etc. The significant number of related

publications reflects the growing interest for PN

models in this field.

Molecular networks encompass metabolic, signal-

ling and genetic networks. In such networks, the

nature of the relations between the molecular

components differs, depending on the molecular

process (chemical reaction, complex formation,

binding process, transcriptional regulation, etc).

It also depends on the level of abstraction chosen

for the modelling. For example, considering gene

regulation, the activation of a gene may be modelled

by taking into account the different processes from

transcription to translation, or by simply considering

that the gene is activated.

Recently, a number of modelling frameworks

have been applied for the analysis and simulation

of biological networks. Among them, process algebra

(in particular �-calculus) can be related to Petri nets

(see e.g. [9] and references therein, and [10] for a

PN translation of �-calculus terms). However, a

comparative study between the numerous modelling

methods is far beyond the scope of this article. Here,

complementing [11, 12], the aim is to provide

gateways to PN modelling of molecular networks.

This article first introduces PN basics and the most

relevant extensions (further information can be

found in the introductory article from Murata [3]

or in the PN books [4–6]). Next, an intuitive

representation of metabolic networks using PNs is

presented, together with the biological questions

that can be addressed. Beyond a qualitative analysis,

one can use extensions of the original formalism

to model metabolic networks. In particular, stochas-

tic PNs (SPNs) and hybrid PNs (HPNs) are

introduced. Then, the cases of signalling and

regulatory networks are discussed. This article ends

presenting assets, restrictions and prospects for the

modelling and the analysis of biological networks by

means of PNs.

PETRI NET BASICS
A PN is a directed-bipartite graph with two

different types of nodes: places and transitions.

Informally, places represent resources of the system,

while transitions correspond to events that can

change the state of the resources. Weighted arcs

(directed edges) connect places with transitions,
depicting the relations between resources and

events. A place is connected to a transition (it is

said to be an input place of the transition) if the

occurrence of the transition is conditioned by the

state of the place (and subsequently changes

this state). Now, a transition is connected to

a place (output place) if the occurrence of the

event has some consequence on the state of

the resource.

At any time of the evolution of a PN, places hold

zero or a positive number of tokens. The state of the

system is represented by this allocation of tokens over

the places and is called a marking. The definition of a

PN includes the specification of an initial marking,
which allocates a number of tokens to each place.

A transition is enabled if its input places contain at least

the required numbers of tokens (defined by the

weight assigned to the arcs). The firing of an enabled

transition will then result in the consumption of the

tokens of its input places and the production of a

number of tokens in its output places (this number

is determined by the weights of the arcs going out

of the transition). This ‘token game’ represents

the dynamical evolution of the system. Figure 1

illustrates, through a simple PN, the token game, the

algebraic representation, as well as the description of

the behaviour by means of a marking graph. For

a formal introduction to PNs, see references [3–6].

For modelling facility, PNs may encompass

extended arcs (test and inhibitor arcs). In Figure 1,

a test arc connects p1 to t1 (it is a bi-directional arc

indicating that p1 marking governs the enabling of t1
but is not modified by the firing of t1). Test arcs are
useful to model current situations in biochemical

networks (such as enzymatic reactions, cf. Figure 2).

Inhibitor arcs, from a place to a transition, notably

increase the expressiveness, allowing a ‘test to zero’

(the transition is enabled provided the place is empty,

Figure 2). In the presence of test or inhibitor arcs, the

incidence matrix C no longer reflects the incidence

relation of the net (Figure 1B). In some cases, when

required, e.g. for analysis purposes, one can recover

a standard PN: a test arc is replaced by a dummy

couple of one place and one transition, an inhibitor

arc from a bounded place (which marking is limited),

is removed by adding a complementary place

correctly linked to the transitions associated to the

original place.
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Standard PN models are discrete and non-

temporized (time is implicit, the marking graph

accounts for the possible sequences of events). One

can then check qualitative properties using algebraic

methods (by means of the incidence matrix),

analysing the structure of the net, or investigating

the whole marking graph. Hereafter, some typical

properties are described, together with their possible

interpretations in the context of biological networks:

� Boundedness insures that, whatever the initial mark-

ing and the evolution of the net, the number of

Figure 1: A PN example: (A) graphically, places are depictedby circles, transitions by rectangles and tokens by black
dots.Weighted arcs connect places and transitions (the weight is omitted when it is1).The three figures illustrate the
firingprocess from the initialmarkingM0 enabling the firing of transition t1 (which leads to the newmarkingM1), which
in turn enables the firing of t2 (leading toM2). (B) The algebraic description of the PN: a marking is defined as a vector
giving the number of tokens allocated to each place, the initialmarking (M0) defines the initial state of the net; weighted
arcs define a relation between, on the one hand, places and transitions (Pre, denoting preconditions on the required
marking of inputplaces), on the other hand, transitions andplaces (Post, denoting theproducednumbers of tokens into
outputplaces); the incidencematrix gives, for each transition, thebalance of its firing onto each place (number of tokens
produced minus number of tokens consumed); finally, the state equation defines the resulting marking after a firing
sequence (using a Parikh vector � encompassing, for each transition of the net, its number of occurrences).The solva-
bility of this equation is limited (as markings must be non-negative integers and also because of the
non-determinism of PNs); an application of the state equation is provided, showing thatM2 is reached fromM0 after
the firing of both t1 and t2. (C) Given the initial marking, the dynamical behaviour is described by the marking graph
in terms of transitions between states (markings) and is denoted R (M0).
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tokens in each place is bounded, i.e. limited. For

metabolic networks, it means that no product can

accumulate;

� P-invariants are sets of places for which the

weighted sum of tokens is constant independently

of the sequence of firings (x, a vector of integers

defines a P-invariant if CT.x¼ 0). In metabolic

networks, these sets correspond to conservation

relations;

� T-invariants are firing sequences, which reproduce

a marking (y, a vector of integers defines

a T-invariant if C.y¼ 0). In biological terms,

T-invariants may represent cyclical behaviours and

correspond to the elementarymodes of the Metabolic

Control Theory (i.e. feasible metabolic routes as

defined by Schuster et al. [13]);
� Reachability of a marking M asserts that there exists

an evolution (a sequence of firings) from the initial

marking to the marking M (i.e. M is in the

marking graph R(M0)). This property may be

relevant for biological networks, as it ensures

the existence of a trajectory leading the system

from an initial state to a desired state;

� Liveness insures that it is always possible to

ultimately fire any transition. In other words,

liveness guarantees that an event (a reaction

for example) can eventually occur. Restricted

definitions of liveness can also be considered

(for instance, liveness of a sole transition, or even

a guaranteed number of possible firings, etc.).

Extensions of the PN formalism have been

defined to increase its expressiveness (in particular

to allow quantitative analyses) and a series of

dedicated tools have been developed to support the

different PN modelling approaches (see Table 1 for

a selected list of tools). However, the more expres-

sive the formalism, the more difficult the analysis,

and models featuring detailed descriptions are often

checked through simulation, exhibiting specific

trajectories of the system. In contrast, when available,

analytical methods provide formal proofs of proper-

ties. Besides algebraic resolutions and topological

analyses, model-checking usefully complements tech-

niques for exact analysis [14]. Using temporal logics,

one can express behavioural properties (e.g. the

reachability of a given state or the fulfilment of

a property along a trajectory). Model-checking

methods have been used to query or validate

biochemical networks in BIOCHAM (Biochemical

Abstract Machine, a programming environment for

biochemical networks [15]) and genetic regulatory

networks in GNA (Genetic Network Analyzer [16]).

Model checking has been developed also in the

context of PN theory (Table 1) and should greatly

facilitate the analysis of large networks.

In the sequel, the extensions that proved useful

for the modelling of biological networks are shortly

described.

Coloured Petri Nets (CPNs) assign data values

to the tokens (defining colour sets), and expressions are

attached to the arcs. These define the constraints on

the token values in the input places to enable the

transitions, and define the token values, produced

by the firings, in the output places. With CPNs,

the definition and manipulation of data types

increase the modelling potential of PNs thus

allowing the delineation of reduced models for

complex systems [17, 18]. In addition, CPNs still

convey formal analysis methods. CPNs can also

encompass timed transitions. CPNTools is a software
dedicated to hierarchical CPNs (composed of

Figure 2: PN modelling of different basic reactions:
a synthesis, a decomposition, a catalysis, an inhibition
and a reversible reaction. In the case of catalysis, the
enzyme place is linked to the transition by a test arc.
For an inhibition, the inhibitor place is linked to the
transition by an inhibitor arc (which allows a ‘test to zero’:
the transition is enabled when the place is not marked).
A reversible reaction is represented by two separate
transitions (one for each direction).
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subnets with well-defined interfaces [19]).

Hierarchical modelling is convenient in specifying

models of complex biological systems [12].

It may be necessary to take into account

uncertainty attached to data, or to describe external

noise (generated by fluctuations of the environment),

or intrinsic noise (due to low molecular concentra-

tions). Stochastic Petri Nets (SPNs) supply such

random aspects: enabled transitions fire with expo-

nentially distributed time delays. It has been

demonstrated that, for a bounded SPN, the marking

graph is isomorphic to a finite Markov Chain (see

[20] and references therein).

Hybrid Petri Nets (HPNs) allow the coexistence

of both continuous and discrete processes. They

include discrete places (marked with tokens) and

continuous places associated with real variables (e.g.

concentration levels). Discrete transitions fire after a

determined delay, while enabled continuous transi-

tions fire continuously at a given rate. Finally, HPNs

encompass both test and inhibitor arcs [21]. To

further increase the modelling power of HPNs,

Hybrid Functional Petri Nets (HFPNs) have been

introduced purposely to model biological networks

[22]. Additional features have been included: con-

tinuous transition firing rates can depend on the

values of the input places and the weights of arcs can

be defined as a function of the markings of the

connected places.

PETRI NETSAPPLIEDTOTHE
MODELLING OF BIOLOGICAL
NETWORKS
This section presents a number of applications of

PN theory to model a range of molecular processes,

employing standard or more sophisticated PNs.

Biochemical networks
In [7], Reddy et al. have shown that standard PNs
allow the representation of the essential components

in biochemical pathways, and that PN models can be

used to perform a qualitative analysis. Metabolic

pathways are generally seen as interconnected net-

works of enzymatic reactions, where the product of

one reaction is a reactant of (or an enzyme that

catalyses) a subsequent reaction. Figure 2 illustrates

the PN modelling of five types of reactions; places

represent reactants, products or enzymes whereas

transitions represent reactions, each modifying the

amounts of its products and reactants. At any time,

the marking represents the distribution of molecules

of each species in the network. The arc weights

correspond to the stoichiometric coefficients of the

reactions.

Recently, it has been shown that several concepts

arising in structural pathway analysis of biochemical

networks have their counterparts in PN theory [23].

In particular, it has been demonstrated that

T-invariants correspond to elementary modes.

Table 1: Selection of existing PN tools that have been used (or could be used) for the modelling of biological mole-
cular networks.The last row indicates themainweb site of the PN community

Name Features Web site

INA Analysis of standard (timed) PNs and CPNs, no
graphical editor, includes a model-checker for CTL.

http://www2.informatik.hu-berlin.de/�starke/ina.html

Prod Efficient reachability analysis tool for standard PNs. http://www.tcs.hut.fi/Software/prod/
Maria Extensive reachability analysis and model checking

of CPNs.
http://www.tcs.hut.fi/Software/maria/

Snoopy Edition, animation, analysis of standard PNs, simulation
of continuous PNs, hierarchical modelling, export
facilities to INA, Maria, Prod.

http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html

CPN tools Edition, simulation and analysis of (timed) CPNs,
graphical editor, hierarchical modelling.

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

GreatSPN Modelling, validation and performance evaluation
of distributed systems using Generalized SPNs and
their colored extension, export facilities to PRISM.

http://www.di.unito.it/�greatspn/

Mo« bius Edition, analysis, simulation of stochastic models http://www.mobius.uiuc.edu
GON Edition and simulation of biopathways by means of

HFPNs.GON is now commercialized as Cell Illustrator.
http://genomicobject.net/

PRISM Probabilistic model checker. http://www.cs.bham.ac.uk/�dxp/prism/
Petri nets world A variety of online services on Petri nets including

an up-to-date database of currently used tools.
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
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Indeed, the topology of the PN matches the

topology of the corresponding metabolic network,

and one can draw extensive relationships between

the traditional biochemical models and PNs [24].

As a consequence, the stoichiometry matrix of

a metabolic network corresponds to the PN

incidence matrix. PN theory can be used for the

structural validation of metabolic networks through

qualitative analysis. For example, the sucrose break-

down metabolism in the potato tuber is considered

in [25]. The authors demonstrate that qualitative

analysis can be used to validate the model and that

T-invariants relate to combinations of subpathways

in the network.

The use of CPNs to simulate enzymatic reaction

chains is proposed in [26]. The colour associated to

a place is a pair encompassing the name and the

concentration of the related substrate. Reaction

transitions are associated with a kinetic function.

In [27], the authors use colours to differentiate

molecules of the same species (according to the paths

along which they are produced and consumed)

and perform a qualitative analysis of the combined

glycolysis and pentose phosphate pathway in eryth-

rocytes (a refined version of the original model

proposed by Reddy et al. in [7]).

Deterministic simulations do not consider the

intrinsic noise due to low concentrations. SPNs are
used for the modelling and simulation of stochastic

molecular interactions and facilitate the modelling

process [28, 29] (these models essentially reproduce

the Gillespie’s algorithm [30]). In [31], Shaw and

co-authors address the problem of kinetic parameter

estimation by developing stochastic simulations

relying on SPNs.

Functional PNs, primarily defined by Valk as

self-modified PNs [32], allow the flow relations

between places and transitions to depend on the

marking. Hofestädt and Thelen suggested to apply

this extension to quantitatively model biochemical

networks [33]. Pursuing along this line, Matsuno

et al. [22] defined the HFPNs, which provide a rich

set of features for the modelling of biochemical

pathways. The development of a dedicated software,

Genomic Object Net (GON), surely contributed

to the success of HFPNs in the field [34]. Several

recent papers present HFPN-based models showing

the attraction of this approach for quantitative

simulation. In particular, in [35], Doi et al. define
a detailed model of the p53 transcriptional activity,

with transitions accounting for different processes in

the interactions between p53, MDM2, p19ARF

(nuclear import/export, binding, transcription, trans-

lation, ubiquitination) and places representing the

different substances (e.g. p53 in the nucleus, complex

p53–MDM2 complex in the cytoplasm, etc).

Their simulation results suggest a transcriptional

activity of the complex p53–MDM2–p19ARF on

genes MDM2 and BAX.

The critical problem of parameter estimation

is addressed using a HFPN modelling in [36].

It exploits the topology of the network to system-

atically decompose it into subpathways whose

parameters can be estimated independently.

A detailed model of the Akt and MAPK pathways

with their possible crosstalks is provided to illustrate

the method.

Genetic networks
When modelling a biological network, it is crucial to

consider the relevant level of abstraction, depending

on the question to be addressed, but also on available

data. In the case of the regulation of gene expression,

it is often sufficient to represent the fact that a

particular regulatory product activates or inhibits

a gene (or a set of genes) to convey the role of this

product in the network. Such regulatory interactions

differ semantically from metabolic reactions. Indeed,

while in a chemical reaction the reactants are

consumed, the expression levels of regulators do

not change during the regulatory process. Figure 2

shows that chemical reactions are naturally repre-

sented in PN, but regulatory interactions are not so

easily modelled (as a fundamental purpose of PNs

is to represent production/consumption effects).

One successful method to qualitatively model

such regulatory networks is the logical approach

initially developed by Thomas and collaborators [37].

In a logical regulatory graph, the nodes represent

genes, which are associated with discrete levels of

expression, and arcs represent interactions between

genes. Each interaction is associated with an

expression level threshold from which the regulator,

source of the interaction, has an effect onto the

targeted gene. For each gene, a discrete logical

function indicates to which qualitative level the gene

tends when submitted to a given combination of

interactions.

It is possible to derive a standardPN model from

a Boolean regulatory network (where genes are

ON or OFF) [38, 39]. A systematic rewriting of

multi-level models is defined in [40]. This last paper
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also proposes a CPN representation of logical

models, leading to simplified nets. This translation

opens the way to the application of PN analysis tools

to logical regulatory models.

Complementing the qualitative analysis tools,

model checking can be used to check dynamical

properties. As CPNs are amenable to model-

checking techniques (Maria tool, see Table 1),

Comet et al. [41] develop a translation of logical

regulatory graphs into CPNs producing a compact

model. The goal here, is to supply the biologist with

a tool that systematically verifies the coherence of

the model under various hypotheses (accounting for

observed biological behaviours such as homeostasis,

multistationarity, or even more specific temporal

properties). For parameterized models, the CPN

representation proposed in [40] will allow to check

dynamical properties for large logical regulatory

graphs.

In [42], Simão et al. propose a method to define

integrated models of regulated biochemical
pathways, considering a logical model of the

regulation level (a PN representation) linked to a

classical PN model of the metabolic part. This

approach is illustrated with a qualitative modelling of

the biosynthesis of tryptophan (Trp) in Escherichia coli,
taking into account two regulatory feedbacks:

the direct inhibition of the first enzyme of the

pathway by the final product and the transcriptional

inhibition of the Trp operon by the Trp repressor

complex.

Matsuno et al. [43] have considered HPN
modelling of gene regulatory networks. HPNs

provide a convenient way to represent protein

concentration dynamics being coupled with discrete

switches. A detailed modelling of gene regulatory

networks would require the representation of several

stages including DNA modification, transcription,

translation, post-transcriptional and translational

modifications. Since the data and knowledge on

these mechanisms are lacking, it is generally difficult

to conceive kinetic models of these mechanisms,

which are therefore abstracted as a single process.

HPN quantitative modelling and simulation of gene-

regulated metabolic networks is also illustrated

through a study of the urea cycle in [44]. Several

regulated metabolic pathways have been modelled

and simulated using HFPNs (eg. [45, 46] ). In [46],

the Delta-Notch dependent boundary formation in

theDrosophila large intestine is analysed, considering

cell-to-cell interactions.

Signalling networks
Signal transduction, like genetic regulation, encom-

passes response to signal (presence or threshold level

of given molecules) rather than product transforma-

tion. Signalling pathways are generally complex,

encompassing numerous mechanisms such as

complex formation, translocation, etc. As in [22],

which proposes a HFPN model of Fas-induced

apoptosis, Heiner et al. [47] also consider apoptotic

pathways. Using standard PNs, this signal transduc-

tion network is qualitatively modelled and validated.

In the same line, the modelling of different

functional forms of proteins is addressed by

Sackmann et al., [48] who recently applied standard

PNs to signalling pathways. They further show that a

structural analysis can provide a means for model

validation and better understanding of the network

(in particular by the determination of a meaningful

decomposition of the net). A model of the mating

pheromone response pathway in budding yeast is

provided as a case study.

In [49], Gilbert and Heiner propose a bridge

between qualitative PNs and traditional ODE

modelling. Using a model of the influence of

the Raf Kinase Inhibitor Protein (RKIP) on the

Extracellular signal Regulated Kinase (ERK) signal-

ling pathway, they show that a standard PN model

constitutes a convenient step towards the definition

of a more detailed quantitative model. More

precisely, they demonstrate that analysis of a discrete

PN model can then be used to derive sets of initial

concentrations required by the related ODE model.

On the basis of the definition of standard PN

modules for the essential components of signalling

pathways, Li and co-authors propose a method to

determine relevant (deterministic) transition delays to

derive a timed PN model [50]. Simulation and

token animation of the timed PN can then provide

an intuitive view of the behaviour of the pathway.

A (timed) CPN model of a complex signal

transduction system (the EFG-induced signalling

pathways) is developed in [51]. An efficient simula-

tion is provided by this CPN modelling approach,

which is consistent with a differential approach.

Using Continuous Time Markov Chains

(CTMCs), Calder et al. [52] propose an approach

allowing a quantitative analysis of the network in

terms of probabilities associated to given events. For

this purpose, they have used a stochastic temporal

logic and PRISM, a specific model checker

[cf. Table1]. They have applied their method to
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the analysis of the RKIP-inhibited ERK pathway.

Interestingly, SPNs are isomorphic to CTMCs [20],

and thus could be used for a similar approach.

Indeed, SPN models are amenable to model-

checking techniques since they can be translated

into the input format of PRISM [53].

DISCUSSION
This brief overview emphasizes the effectiveness of

PNs for the modelling, analysis and simulation of

molecular networks. Increasing use of PN-based

models for biological networks can be explained by

their underlying graphical representation, their

suitability to model concurrent distributed systems,

their well-founded mathematical theory and the

availability of dedicated tools (cf. Table 1). A series of

biological applications have been already developed,

using purely qualitative to sophisticated HPN

formalisms. These different modelling approaches

led to different kinds of analyses, from structural

analyses to pure simulations, from qualitative results

to quantitative ones. We have seen that PN model-

ling of metabolic reactions is relatively intuitive.

It is less natural for gene interactions (activation

or inhibition) or signal transduction, which imply

regulatory interactions rather than consumptions/

productions. However, extended arcs (inhibitor and

test arcs) and CPNs provide a convenient represen-

tation of such interactions. As for HPNs, they

support the representation of a wide range of

molecular mechanisms.

Biologists have in hand a large amount of

interaction data, but accurate values of concentration

levels or kinetic parameters are often scarce. This

motivates the development of qualitative models,

which further allow a formal analysis and constitute

a first step towards the definition of quantitative

models. Several PN extensions have been intro-

duced to increase the expressiveness of the primary

formalism (in particular, to include temporal,

stochastic and continuous aspects). As a counterpart

of these refined features, the analysis is more difficult

and, in general, only simulation results are provided.

Still, as a major advantage, the formalism opens the

road to a progressive top-down modelling method,

from a qualitative structural representation to

a quantitative detailed description.

PNs are not meant to represent spatial properties.

However, molecular transportation or diffusion can

be modelled in the following way: places represent

the presence of a given substance in different

compartments, whereas transitions express the dis-

placement of this substance [35]. The size of the

model can then be considerable for a large number

of compartments and diffusing substances. A more

convenient approach uses CPNs, where an identifier

(a colour) is associated to the tokens and can serve to

convey such spatial information [27]. Nevertheless,

as transport mechanisms are essential in various

regulatory processes, their PN representation still

deserves further methodological developments.

Hierarchical modelling might be a valuable means

to address this issue. Hierarchical modelling can also

be applied to large networks, often composed of

interconnected functional modules. In order to allow

model composition, PN units or modules might be

defined as building blocks of biological network

models. Along the same line, additional methodo-

logical work would define a systematic integration

of PN models accounting for different levels of

abstraction. In particular, biological processes occur

at different time scales, and this question should be

addressed properly.

Finally, bridges might be defined between other

modelling formalisms and PNs (as in [40, 49]). In this

respect, standard XML formats facilitate automatic

translations, as proposed by Shaw etal. [54] with their

mapping from SBML (Systems Biology Markup

Language) to PNML (Petri Net Markup Language)

(SBML web site: sbml.org; PNML web

site: www.informatik.hu-berlin.de/top/pnml). The

development of standard formats also leads up to

the automatic definition and parameterization of

models from data queried in dedicated databases.

As a first step in this direction, standardized PN units

are proposed in [55], which are based on ontology

for signalling processes. This methodology could

support reusing and scaling up of existing models.
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Key Points
� PNs come along with a graphical representation, a well-founded

mathematical theory and a series of computational tools.
� PNs allow the analysis of qualitative structural to quantitative

behavioural properties.
� PNs are effective for themodelling of molecular networks.
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