<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>Design complexity, examples of embedded and cyber-physical systems, traditional design flows, Platform-Based Design, design capture and entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Architecture and performance abstraction</td>
<td>Definition of architecture, examples. Real time operating systems, scheduling of computation and communication.</td>
</tr>
</tbody>
</table>
EE249 Fall’12: where we are going

1. Introduction
 - Design complexity, examples of embedded and cyber-physical systems, traditional design flows, Platform-Based Design, design capture and entry

2. Functional modeling, analysis and simulation

3. Architecture and performance abstraction
 - Definition of architecture, examples. Real time operating systems, scheduling of computation and communication.

4. Mapping

5. Verification

6. Applications
 - Automotive: car architecture, communication standards (OSEK/AUTOSAR), scheduling and timing analysis. Building automation. Aircraft electric power system.

Contract-Based Design: an all-encompassing framework
The key to Platform Based Design

- Components
- Composition rules
- Refinement rules
- Abstraction rules
Outline: contracts and compositional methods for system design

- Where and why using contracts?
- Introduction to contracts
- Mathematical meta-theory of contracts
- Overview of concrete contract theories
- Application examples
Outline: contracts and compositional methods for system design

- Where and why using contracts?
 - Structuring top-level specifications
 - Sub-contracting and reusing
 - Deployment and mapping
- Introduction to contracts
- Mathematical meta-theory of contracts
- Overview of concrete contract theories
- Application examples
Structuring top-level specifications

• A desirable objective at each step of the design

• Requirement documents are structured into viewpoints (sometimes referred to as chapters, aspects, sub-documents, … depending on the company or sector)
 – Behavioral viewpoint: the functions are specified
 – Timing viewpoint: timing budgets are allocated to activities
 – Safety viewpoint: fault propagation, reliability
 – …

• Viewpoints are generally developed by different teams using different skills, frameworks and tools
Example: a monitoring system

Software for monitoring the physical system

- Requirements must specify
 - Decision logic
 - Sampling period
 - When to activate/inhibit monitoring
 - Time lag before fault confirmation
 - Fault identifier
 - Fault compensation
 - Returns to the cockpit
 - *Very diverse in nature*

- Requirements must also specify *at a higher specification level* what is the objective of the detection, which fault to detect and isolate

decision logic ≈ implementation

Source: A. Benveniste
The Landscape: sub-contracting

structure

- System architecture
 - Context
 - System
 - Sub-system
 - Sub-system
 - Component

semantics

- Specification and development
 - Viewpoint
 - Viewpoint
 - Requirements document
 - Design
 - Designed System
 - Requirements document
 - Requirements document

Developed by different teams

Developed by different suppliers

Source: A. Benveniste
Need for requirement engineering

Traceability
- Requirements attached to “everything” via hyperlinks (tests, V&V, integration)

Ontology
- Terms used for entities should be precise and unambiguous (important)
- Terms used for entities should be structured (ontology)

Identifying responsibilities
- Some requirements express guarantees; other express assumptions

Partitioning and sub-contracting
- Allocating requirements to suppliers, budgeting

Modular handling of viewpoints & subsystems
- Separation of concerns: function, QoS, safety/reliability…

Fundamental properties (certification bodies)
- Completeness, Consistency, Compatibility, … (from INCOSE)

Source: A. Benveniste
Overall, requirements engineering

- has been considered by the AI community (ontologies)
- has been considered by the Software Engineering community as part of MDE
- has been mostly ignored by other research communities
 - control science
 - formal methods in computer science

Source: A. Benveniste
Requirements on the meta-theory

Source: A. Benveniste
Requirements on the meta-theory
{environment, component}

Contexts are important

- What the system guarantees: must be met by any implementation
- What the system assumes about its context of use: must be met by any legal environment

Source: A. Benveniste
Requirements on the meta-theory

Source: A. Benveniste
Requirements on the meta-theory conjunction and parallel composition

From \(\land \) to \(\not\land \)

- Requirements documents decompose into chapters/viewpoints: conjunction \(\land \)
- System = architecture of sub-systems: composition \(\not\land \)
- Independent development

Source: A. Benveniste
Conjunction of contracts

• Development of each viewpoint is performed under assumptions regarding its context of use, including the other viewpoints

• Conjunction is used to fuse viewpoints and get the full system specification

• Each viewpoint is itself a conjunction of requirements

• Consistency checking for contracts obtained as a conjunction is mandatory (is there an implementation satisfying all the requirements?)
Requirements on the meta-theory implements and refines

Designed component \models local contract
- Meets the guarantees under any legal environment

Decomposed contract \preceq global contract
- Stronger guarantees
- Relaxed context

Source: A. Benveniste
Refinement and composition of contracts

\[C_{11} \otimes C_{12} \otimes C_{13} \preceq C_1 \]

- Obtaining the three sub-contracts \(C_{11}, C_{12}, C_{13} \) is the art of the designer, based on architectural considerations.

- Subsystems can also be developed by re-using off-the-shelf components.

- Contract theories offer the following services:
 - Firmly assess whether the above relation holds for the decomposition step.
 - Formally check the compatibility of \(C_{11}, C_{12}, C_{13} \).
 - Guarantee that the information provided to suppliers is self-contained.
Facilitating integration of specialized tool and frameworks

• Systems are developed by composing pieces that have been (in part) pre-designed by other groups or companies
 – Routinely done in vertical design chains (avionics, automotive,…)
 – …but in a heuristic and ad hoc way

• Need for standards, methods and tools in the software and hardware domains to allow integration of subsystems and their implementations
 – Across the electronic and mechanical domains (near future), but also across chemical and biology domains (further future) for nano-systems
 – From a static standpoint: data dictionaries, off-line model transformations,…
 – From a dynamic standpoint: co-simulation, HW-in-the-loop simulations and emulation
Deployment and mapping

• The satisfaction of safety or timing viewpoints by a considered deployment depends on
 – the supporting execution platform
 – the mapping of the application to the execution platform.

• How to check deployment compositionally?
Deployment and mapping

\[
C = \bigwedge_k \left(\bigotimes_{i \in I_k} C_{ik} \right)
\]
\[
P = \bigotimes_{j \in J} \left(\bigwedge_{\ell \in L_j} P_{j\ell} \right)
\]

- Virtual model of the execution platform \(\mathcal{P} \)
 - available computing units
 - bus protocol
 - library of RTOS services

- Components enhanced with timing information, fault propagation information
Deployment and mapping as parallel composition

\[
 \mathcal{C} = \bigwedge_k \left(\bigotimes_{i \in I_k} \mathcal{C}_{ik} \right) \\
 \mathcal{P} = \bigotimes_{j \in J} \left(\bigwedge_{\ell \in L_j} \mathcal{P}_{j\ell} \right)
\]

- Contracts attached to sub-systems or components
 - Application contract (top)
 - Platform (bottom)
- Composition defined by synchronization tuples, where both occurrences and values of the different elements are unified.
Deployment and mapping as parallel composition

- Checking $C \otimes P \preceq C$ can be performed compositionally!
- $C \otimes P$ also called vertical contract
 - Relates application and computing platforms
 - Horizontal contracts relate components at the same level
- Mapping in RT-Builder and Metropolis

\[C \otimes P = \left[\bigwedge_k (\bigotimes_{i \in I_k} C_{ik}) \right] \otimes \left[\bigotimes_{j \in J} \left(\bigwedge_{\ell \in L_j} P_{j\ell} \right) \right] \]
Outline: contracts and compositional methods for system design

- Where and why using contracts?
- Introduction to contracts
 - Components and contracts
 - Contract operators and properties
 - Incremental design
 - Independent implementability
- Mathematical meta-theory of contracts
- Overview of concrete contract theories
- Application examples
Compositional Reasoning

Reliably derive global properties of systems based on local properties of components

- Contracts as Assume/Guarantee pairs
- Component properties guaranteed under a set of assumptions on the environment
- Composition valid iff all assumptions are satisfied
Components

Set P of ports, $P = I \cup O$
Set A of assumptions
Set G of guarantees

An implementation M satisfies a contract (A, G), if M refines G in the context of A

$$M \cap A \subseteq G$$

Set P of ports, $P = I \cup O$
Set M of behaviors
Implementations and Contracts

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defines the behavior of a component</td>
<td>Defines the boundary of use of a component</td>
</tr>
<tr>
<td>Does not restrict the environment of use</td>
<td>Declares the acceptable environments A (assumptions) and the limits of operation G (guarantees)</td>
</tr>
<tr>
<td>Usually deterministic</td>
<td>Usually non-deterministic</td>
</tr>
<tr>
<td>Usually tied to some particular architectural solution</td>
<td>Usually abstract, to encompass several possible different implementations</td>
</tr>
</tbody>
</table>
A simple static system

• M_1 computes the division between two real inputs and returns the result as a real output

\[
M_1 : \begin{cases}
\text{variables: } & \{ \text{inputs: } x, y \\
\text{outputs: } & z \}
\text{types: } & x, y, z \in \mathbb{R}
\text{behaviors: } & (y \neq 0 \rightarrow z = x/y) \land (y = 0 \rightarrow z = 0)
\end{cases}
\]

• C_1 intuitively specifies the intended behavior of components that implement division

\[
C_1 : \begin{cases}
\text{variables: } & \{ \text{inputs: } x, y \\
\text{outputs: } & z \}
\text{types: } & x, y, z \in \mathbb{R}
\text{assumptions: } & y \neq 0
\text{guarantees: } & z = x/y
\end{cases}
\]

Environments for C_1? Implementations for C_1? Is C_1 consistent?
Satisfaction

- \(M \cap A \subseteq G \)
- \(M \models (A, G) \)

- An implementation must refine the guarantees, but only in the context of the acceptable environments
 - Less restrictive than regular refinement (trace containment)
 - Refinement is only up to the acceptable contexts
 - Implementations are free to behave as they like (and even break guarantees) for non acceptable contexts
Composition

- Contract composition enables incremental design
- Component *composability* is a syntactic property (type matching)

\[M_1: \begin{align*}
\text{variables:} & \quad \{ \text{inputs: } x, y \\
\text{types: } & \quad x, y, z \in \mathbb{R} \\
\text{behaviors:} & \quad (y \neq 0 \rightarrow z = x/y) \land (y = 0 \rightarrow z = 0) \}
\end{align*} \]

\[M_2: \begin{align*}
\text{variables:} & \quad \{ \text{inputs: } x \\
\text{types: } & \quad x, y \in \mathbb{R} \\
\text{behaviors:} & \quad y = e^x \}
\end{align*} \]

Are \(M_1 \) and \(M_2 \) composable?
Composition

• Contract composition enables incremental design
• Component **composability** is a syntactic property (type matching)

Are M_1 and M'_2 composable?
Composition

\[C_1 : \begin{cases} \text{variables: } & \{ \text{inputs: } x, y \\ \text{outputs: } & z \} \\ \text{types: } & x, y, z \in \mathbb{R} \\ \text{assumptions: } & y \neq 0 \\ \text{guarantees: } & z = x/y \end{cases} \]

\[C_2 : \begin{cases} \text{variables: } & \{ \text{inputs: } u \\ \text{outputs: } & x \} \\ \text{types: } & u, x \in \mathbb{R} \\ \text{assumptions: } & T \\ \text{guarantees: } & x > u \end{cases} \]
Compatibility

- Two contracts are compatible when the guarantees of one do not violate the assumptions of the other
 - And/or when an environment can enforce that condition

- A notion that cannot be expressed on implementations
 - They lack sufficient expressiveness

- A combined syntactic and semantic property
Composition

\[G_{c_1 \otimes c_2} = G_{c_1} \wedge G_{c_2} \]

\[A_{c_1 \otimes c_2} = \max \left\{ A \mid \begin{array}{c} A \wedge G_{c_2} \Rightarrow A_{c_1} \\ A \wedge G_{c_1} \Rightarrow A_{c_2} \end{array} \right\} \]
Composition

\[(A_1, G_1)\]

\[(A_1 \cap A_2) \cup \neg G_1 \cup \neg G_2\]

\[G_1 \cap G_2\]

\[(A_2, G_2)\]
Composition

• The composite must guarantee what the components guarantee
 – $G_1 \cap G_2$

• The composite accepts only what is accepted by both components
 – $A_1 \cap A_2$

• However, part of the assumptions of one component can be discharged directly by the other, and vice-versa
 – $(A_1 \cap A_2) \cup \neg G_1 \cup \neg G_2$
 – Look at the weakest assumption assuring that both the initial contract assumptions are met

• Composition must be both associative and commutative
Composition

$C_1 : \begin{cases}
\text{variables:} & \{ \text{inputs: } x, y \\
& \text{outputs: } z \\
\text{types:} & x, y, z \in \mathbb{R} \\
\text{assumptions:} & y \neq 0 \\
\text{guarantees:} & z = x/y \end{cases}
$

$C_2 : \begin{cases}
\text{variables:} & \{ \text{inputs: } u \\
& \text{outputs: } x \\
\text{types:} & u, x \in \mathbb{R} \\
\text{assumptions:} & \text{true} \\
\text{guarantees:} & x > u \end{cases}
$

$C_1 \otimes C_2 : \begin{cases}
\text{variables:} & \{ \text{inputs: } u, y \\
& \text{outputs: } x, z \\
\text{types:} & x, y, u, z \in \mathbb{R} \\
\text{assumptions:} & y \neq 0 \\
\text{guarantees:} & x > u \land z = x/y \end{cases}$
Viewpoints

- Same component
- Different aspects
- Aspects do not combine by parallel composition
- We must instead take their conjunction
Refinement and conjunction

• Conjunction better defined as the greatest lower bound of a refinement order
 – A contract $C = (A, G)$ is stronger than, or refines a contract $C' = (A', G')$ whenever it guarantees more while assuming less
 – $G \subseteq G'$
 – $A \supseteq A'$
 – (If M satisfies C, then M also satisfies C')

• Greatest lower bound
 – $C \land C' = (A \cup A', G \cap G')$
 – The conjunction must accept the environments of both viewpoints
 – The conjunction must enforce the guarantees of both viewpoints
 – If M satisfies both C and C', then M satisfies $C \land C'$
Example: refinement and independent implementability

- For all contracts C_1, C_2, C'_1, C'_2, let
 - C_1 be compatible with C_2
 - $C'_1 \preceq C_1$ and $C'_2 \preceq C_2$

Then C'_1 is compatible with C'_2 and $C'_1 \otimes C'_2 \preceq C_1 \otimes C_2$

- Example:

\begin{align*}
\text{variables: } & \{ y \} \\
\text{inputs: } & y \\
\text{outputs: } & z \\
C''_1 : & \{ y, z \in \mathbb{R} \} \\
\text{assumptions: } & y \neq 0 \\
\text{guarantees: } & z \in \mathbb{R} \\
\text{variables: } & \{ x \} \\
\text{inputs: } & x \\
\text{outputs: } & y \\
C''_2 : & \{ x, y \in \mathbb{R} \} \\
\text{assumptions: } & \text{T} \\
\text{guarantees: } & y > 0 \\
\text{variables: } & \{ x, y \} \\
\text{inputs: } & x, y \\
\text{outputs: } & z \\
C_1 : & \{ x, y, z \in \mathbb{R} \} \\
\text{assumptions: } & y \neq 0 \\
\text{guarantees: } & z = x/y
\end{align*}

- C''_1 compatible with C''_2
- $C_1 \preceq C''_1$

Then $C_1 \otimes C''_2 \preceq C''_1 \otimes C''_2$
Example: conjunction

• For all contracts C_1, C_2 shared refinable, then
 - $C_1 \land C_2 \preceq C_1$ and $C_1 \land C_2 \preceq C_2$
 - for all C, if $C \preceq C_1$ and $C \preceq C_2$ then $C \preceq C_1 \land C_2$

• Example:
 - C_T^2 shared refinable with C_1
 - $C_T^2 \land C_1$ guarantees, in addition to C_1, a latency with bound 1.
Platform-Based Design: Horizontal and Vertical Contracts

• So far, contracts for components at the same level of abstraction
 – We refer to this kind of composition as horizontal, and we talk about horizontal contracts

• A component could express assumptions and guarantees w.r.t. another level of abstraction
 – For instance, it may assume an execution environment with certain properties or performance
 – Likewise, it may guarantee certain patterns of activation to the execution environment
 – Contracts that span different levels of abstraction are referred to as vertical contracts
Vertical contracts

- Top-down vertical contracts
 - Capture the desired specifications (gain, bandwidth, carrier frequency, ...)
 - Limit the impact of undesired behaviors (loading, crosstalk, coupling, ...)
 - Take into consideration the approximations of the system model used to reduce complexity

- Bottom-up vertical contracts
 - enforce validity of higher-level macro-models w.r.t. lower level models
Putting it all together

Layer N + 1

Layer N

Layer N - 1

Putting it all together
Circular reasoning in horizontal contracts

- G_{1H} can only be guaranteed for legal design contexts of S_1
 - need to establish A_{1H}
 - To establish A_{1H}, want to involve G_{3H}, hence A_{3H}

![Diagram showing relationships between S_1, S_2, S_3, A_{1H}, A_{2H}, A_{3H}, G_{1H}, G_{2H}, and G_{3H} with transition probabilities p_{S1}, p_{S2}, p_{12}, p_{23}, p_{31}, and p_{2S}.]
Circular reasoning in horizontal contracts

- To establish A_{3H}, need to involve G_{2H} as a witness, hence A_{2H}
Circular reasoning in horizontal contracts

- …but to establish A_{2H}, we need to establish G_{1H}, which is where we started the chain!
- Seemingly circular arguments are justified for assumptions and guarantees expressed as safety properties
 - can be proven or disproved by finite observations
 - need to observe restrictions on how A/G refer to ports
Cyber-physical control system

Assume execution parameters such as jitter, latency, accuracy, WCET

Assume load and utilization levels, resource usage
Contracts

Controller

• **Assumptions**
 – Overall closed loop latency less than T
 – Compute resource availability above $P\%$
 – Computing MIPS power at least M

• **Guarantees**
 – Model prediction error bounded by Δ
 – Deadlock state unreachable
 – Response time less than R

Platform

• **Assumptions**
 – Task activation interval no more than I
 – Task is thread and memory safe (can avoid checks)
 – Task are jitter independent within period

• **Guarantees**
 – Temporal isolation
 – Minimum dedicated computing power
 – Minimum sensor accuracy S
Outline: Contracts and compositional methods for system design

- Where and why using contracts?
- Introduction to contracts
- Mathematical meta-theory of contracts
 - Components and composition
 - Contracts
 - Refinement and conjunction
 - Contract composition
 - Quotient
 - Observers
- Overview of concrete contract theories
- Application examples
The meta-theory

- We assume some primitive concepts

<table>
<thead>
<tr>
<th>Component</th>
<th>M open or closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composability</td>
<td>A type property</td>
</tr>
<tr>
<td>Composition</td>
<td>(\times) commutative & associative</td>
</tr>
<tr>
<td>Environment</td>
<td>$E : E \times M$ closed</td>
</tr>
</tbody>
</table>

- On top of these primitive concepts we define generic operators satisfying generic properties

- How primitive concepts, operators, and properties, are made effective depends on the specific framework

Source: A. Benveniste
The meta-theory

- Generic Relations and Operators:

<table>
<thead>
<tr>
<th>Contract</th>
<th>$C = (\mathcal{E}_c, \mathcal{M}_c) = $ (set of environments, set of implementations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>$\mathcal{M}_c \neq \emptyset$</td>
</tr>
<tr>
<td>Compatibility</td>
<td>$\mathcal{E}_c \neq \emptyset$</td>
</tr>
<tr>
<td>Implementation</td>
<td>$M \models^M C$ iff $M \in \mathcal{M}_c$; $E \models^E C$ iff $E \in \mathcal{E}_c$</td>
</tr>
</tbody>
</table>
The meta-theory

- Generic Relations and Operators:

<table>
<thead>
<tr>
<th>Contract</th>
<th>(C = (\mathcal{E}_c, \mathcal{M}_c) = (\text{set of environments, set of implementations}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>(\mathcal{M}_c \neq \emptyset)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>(\mathcal{E}_c \neq \emptyset)</td>
</tr>
<tr>
<td>Implementation</td>
<td>(M \models^M C \iff M \in \mathcal{M}_c); (E \models^E C \iff E \in \mathcal{E}_c)</td>
</tr>
<tr>
<td>Refinement</td>
<td>(C' \subseteq C \iff \mathcal{E}_{c'} \supseteq \mathcal{E}c) and (\mathcal{M}{c'} \subseteq \mathcal{M}_c)</td>
</tr>
<tr>
<td>Conjunction</td>
<td>(C_1 \wedge C_2 = \text{GLB for } \leq)</td>
</tr>
</tbody>
</table>

Source: A. Benveniste
Refinement and conjunction: properties

• **Expressible contract family** \(\mathcal{C} \). Every set \(\mathcal{M}' \subseteq \mathcal{M} \) of components can be represented as \(\mathcal{M}' = \mathcal{M}_C \) for some contract \(C \), and similarly for sets of environments.

 – Only contracts belonging to this family can be considered

• **Shared refinement**

 – Any contract that refines \(C_1 \land C_2 \) also refines \(C_1 \) and \(C_2 \). Any implementation of \(C_1 \land C_2 \) is a shared implementation of \(C_1 \) and \(C_2 \). Any environment of \(C_1 \) and \(C_2 \) is an environment of \(C_1 \land C_2 \).

 – For \(\mathcal{C}' \subseteq \mathcal{C} \) subset of contracts, \(\land \mathcal{C}' \) is compatible if and only if there exists a compatible \(C \in \mathcal{C}' \)
The meta-theory

- **Generic Relations and Operators:**

<table>
<thead>
<tr>
<th>Contract</th>
<th>$C = (\mathcal{E}_c, \mathcal{M}_c) = (\text{set of environments, set of implementations})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>$\mathcal{M}_c \neq \emptyset$</td>
</tr>
<tr>
<td>Compatibility</td>
<td>$\mathcal{E}_c \neq \emptyset$</td>
</tr>
<tr>
<td>Implementation</td>
<td>$M \models^M C$ iff $M \in \mathcal{M}_c$; $E \models^E C$ iff $E \in \mathcal{E}_c$</td>
</tr>
<tr>
<td>Refinement</td>
<td>$C' \preceq C$ iff $\mathcal{E}_{c'} \supseteq \mathcal{E}c$ and $\mathcal{M}{c'} \subseteq \mathcal{M}_c$</td>
</tr>
<tr>
<td>Conjunction</td>
<td>$C_1 \land C_2 = \text{GLB for } \preceq$</td>
</tr>
<tr>
<td>Composition</td>
<td>$C_1 \otimes C_2 = \bigwedge \left{ C \left</td>
</tr>
</tbody>
</table>

Source: A. Benveniste
The meta-theory

- **Generic Relations and Operators:**

<table>
<thead>
<tr>
<th>Contract</th>
<th>(C = (\mathcal{E}_c, \mathcal{M}_c) = \text{(set of environments, set of implementations)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>(\mathcal{M}_c \neq \emptyset)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>(\mathcal{E}_c \neq \emptyset)</td>
</tr>
<tr>
<td>Implementation</td>
<td>(M \models^M C \text{ iff } M \in \mathcal{M}_c ; \quad E \models^E C \text{ iff } E \in \mathcal{E}_c)</td>
</tr>
<tr>
<td>Refinement</td>
<td>(C' \leq C \text{ iff } \mathcal{E}_{c'} \supseteq \mathcal{E}c \text{ and } \mathcal{M}{c'} \subseteq \mathcal{M}_c)</td>
</tr>
<tr>
<td>Conjunction</td>
<td>(C_1 \land C_2 = \text{GLB for } \leq)</td>
</tr>
<tr>
<td>Composition</td>
<td>(C_1 \otimes C_2 \text{ is defined if } \left{ \begin{array}{l} M_1 \models^M C_1 \ M_2 \models^M C_2 \end{array} \right} \Rightarrow (M_1, M_2) \text{ composable})</td>
</tr>
<tr>
<td>Quotient</td>
<td>(C_1 / C_2 = \bigvee { C \mid C \otimes C_2 \preceq C_1 } \text{ Least Upper Bound (LUB) for } \leq)</td>
</tr>
</tbody>
</table>

Source: A. Benveniste
The meta-theory

- Generic Properties:

<table>
<thead>
<tr>
<th>Refinement</th>
<th>Substituability of environments</th>
<th>Substituability of implementations</th>
</tr>
</thead>
</table>

Composition

- (C_1, C_2) compatible $C_i' \preceq C_i$ \implies \begin{align*}
 \{ (C_1', C_2') \text{ compatible } \\
 C_1' \otimes C_2' \preceq C_1 \otimes C_2
\end{align*}

 Independent implementability

- $(C_1 \otimes C_2) \otimes (C_3 \otimes C_4) = (C_1 \otimes C_3) \otimes (C_2 \otimes C_4)$

 Compatibility \implies Compatibility

 Associativity

- $[(C_{11} \land C_{21}) \otimes (C_{12} \land C_{22})] \preceq [(C_{11} \otimes C_{12}) \land (C_{21} \otimes C_{22})]$

 Distributivity (freedom in design processes)

Quotient

- $C \preceq C_1/C_2 \iff C \otimes C_2 \preceq C_1$

Source: A. Benveniste
Independent implementability

\[(C_1, C_2) \text{ compatible} \quad \begin{cases} C'_i \leq C_i \end{cases} \quad \Rightarrow \quad \begin{cases} (C'_1, C'_2) \text{ compatible} \\ C'_1 \otimes C'_2 \leq C_1 \otimes C_2 \end{cases} \]

• \((C_1, C_2)\) are compatible if their composition is defined and compatible

• Independent implementability says that compatible contracts can be independently refined

• **Corollary**: Compatible contracts can be independently implemented

 – Apply independent implementability with \(C'_1, C'_2\) singletons
Independent implementability: proof sketch

\[(C_1, C_2) \text{ compatible} \quad C'_i \preceq C_i \quad \Rightarrow \quad \{ (C'_1, C'_2) \text{ compatible} \quad C'_1 \otimes C'_2 \preceq C_1 \otimes C_2 \}\]

• Assumption 1

Let \(C_{C_1 \otimes C_2} = \{ C \mid M_1 \models^M C_1 \text{ and } M_2 \models^M C_2 \text{ and } E \models^E C \downarrow \}

\[M_1 \times M_2 \models^M C \text{ and } E \times M_2 \models^E C_1 \text{ and } E \times M_1 \models^E C_2 \]

Then \(C_1 \otimes C_2 \in C_{C_1 \otimes C_2}\), i.e. the GLB is in the set.

• Assumption 1 ensures that:

 – Composing implementations of each contract yields an implementation for the composition;

 – Composing an environment for the resulting composition with an implementation for \(C_2\) yields an implementation for \(C_1\) and vice-versa.
Independent implementability: proof sketch

\[(C_1, C_2) \text{ compatible} \quad \{ \quad \Rightarrow \quad (C'_1, C'_2) \text{ compatible} \quad C'_i \preceq C_i \quad \}
\]

- **Lemma 1**: Let \(C'_i \preceq C_i \) and \(C_1 \otimes C_2 \) well defined (respective implementations are composable). Then so is \(C'_1 \otimes C'_2 \) and \(C_{C'_1 \otimes C'_2} \supseteq C_{C_1 \otimes C_2} \).

- **Proof of Lemma 1**

 - \(C_1 \otimes C_2 \) well defined implies that every \((M_1, M_2)\) implementing the contracts are composable. Hence, \(C'_1 \otimes C'_2 \) well defined.

 - Any respective implementations of \(C'_1 \) and \(C'_2 \) are also implementations of \(C_1 \) and \(C_2 \)

 - Similarly any environment for \(C_1 \) and \(C_2 \) satisfies also \(C'_1 \) and \(C'_2 \)

 - Replace in the composition formula \(C_1 \) by \(C'_1 \) and \(C_2 \) by \(C'_2 \),...
Independent implementability: proof sketch

\((C_1, C_2) \) compatible \(C'_i \preceq C_i \) \(\Rightarrow \) \((C'_1, C'_2) \) compatible \(C'_1 \otimes C'_2 \preceq C_1 \otimes C_2 \)

- **Lemma 1**: Let \(C'_i \preceq C_i \) and \(C_1 \otimes C_2 \) well defined (respective implementations are composable). Then so is \(C'_1 \otimes C'_2 \) and \(C_{C'_1 \otimes C'_2} \supseteq C_{C_1 \otimes C_2} \).

- **Proof of Lemma 1**
 - Replace in the composition formula \(C_i \) by \(C'_i \) and \(C_2 \) by \(C'_2 \)

\[
C_{C'_1 \otimes C'_2} = \left\{ C \left| \begin{array}{l}
M_1 \models^M C_1 \text{ and } M_2 \models^M C_2 \text{ and } E \models^E C \\
M_1 \times M_2 \models^M C \text{ and } E \times M_2 \models^E C_1 \text{ and } E \times M_1 \models^E C_2
\end{array} \right. \right\}
\]

\(C_0 \in C_{C'_1 \otimes C'_2} \Rightarrow C_0 \in C_{C'_1 \otimes C'_2} \)

- Independent implementability becomes a direct corollary of Lemma 1
Meta-theory versus concrete theories

- The meta-theory offers some fundamental properties (incremental development, independent implementability,…)

- Need concrete definitions for components, component compositions

- Need effective means to implement (or approximate) the notions of contracts, refinement, conjunction, composition,…

- Observers provide a generic approach to recover effectiveness
Observers

- Originate from the basic notion of test for programs
- **Definition.** An observer for a contract \(C \) is a pair \((b^E_C, b^M_C)\) of non-deterministic Boolean functions called **verdicts**, such that:
 - \(b^E_C(M) \) outputs \(F \) \(\rightarrow \) \(M \notin \mathcal{E}_C \)
 - \(b^M_C(M) \) outputs \(F \) \(\rightarrow \) \(M \notin \mathcal{M}_C \)
- Non-determinism accounts for dependence of test on the environment stimuli and internal non-determinisms of the component
- Tests only provide **semi-decision** (arrow in one direction)
Mirroring the algebra of contracts with observers

<table>
<thead>
<tr>
<th>Notion</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C = (\mathcal{E}_C, \mathcal{M}_C))</td>
<td>((b^E_C, b^M_C))</td>
</tr>
<tr>
<td>(C = C_1 \land C_2)</td>
<td>(b^E_C = b^E_{C_1} \lor b^E_{C_2}), (b^M_C = b^M_{C_1} \land b^M_{C_2})</td>
</tr>
<tr>
<td>(C = C_1 \lor C_2)</td>
<td>(b^E_C = b^E_{C_1} \land b^E_{C_2}), (b^M_C = b^M_{C_1} \lor b^M_{C_2})</td>
</tr>
<tr>
<td>(C = C_1 \otimes C_2)</td>
<td>(b^E_C(E) = \begin{cases} b^M_{C_1}(M_1) \land b^M_{C_2}(M_2) \ \downarrow b^E_{C_2}(E \times M_1) \land b^E_{C_1}(E \times M_2) \ b^M_C(M_1 \times M_2) = b^M_{C_1}(M_1) \land b^M_{C_2}(M_2) \end{cases})</td>
</tr>
</tbody>
</table>

- Nothing can be said about the relation of the observers for contracts in a refinement ordering
- Nothing can be inferred about contract refinement from observers in a refinement ordering
Observers: properties

• **Lemma 2**: \((b^E_C, b^M_C)\) be an observer for \(C\) and let \(C' \leq C\). Then, any \((b^E, b^M)\) satisfying \(b^E \geq b^E_C\) and \(b^M \leq b^M_C\) is an observer for \(C'\).

• **Lemma 3**

 – If \(b^E_C(E)\) outputs F for all tested environment \(E\), then \(C\) is incompatible

 – If \(b^M_C(M)\) outputs F for all tested component \(M\), then \(C\) is inconsistent

• Still need to exercise all components or environments

 – Non-effective unless notion of “strongest” component or environment is provided in concrete theories
Observers: survey

• Widely studied for software and system testing

• Synchronous languages are a formalism of choice
 – E.g. Esterel, Lustre, Signal, …, Scade V6
 – Support only discrete dynamics
 – Benefit from a solid mathematical semantics
 – Results independent of the type of simulator
 – Consistency between simulated and generated code

• RT-Builder supports the combination of functional and timing viewpoints on top of Signal
Observers: survey

- **Simulink/Stateflow**
 - Mathematical semantics is less firmly defined
 - Supports CT dynamics in the forms of ODE
 - Simulink+SimScape allows including physical system models in observers
 - Similar considerations for Modelica

- **Advocated in the context of Lustre, Scade, Esterel and Signal**
 - In Scade, tests can be evaluated at run time while executing a program
Observers: survey

• Property Specification Language (PSL)
 – An industrial standard for functional properties targeted to digital HW
 – Well-suited specification language for expressing functional requirements involving sequential causality of actions and events
 – Suitable in the contract-based design using observers because of the existing tool support
 – E.g. FoCS translate PSL into checkers to be attached to the design
 – Used for generating transactors that adapt high-level requirements in TLM to RTL implementations
 – Exist a methodology for user-guided automated property exploration
Observers: survey

- **Live Sequence Charts**
 - Graphical specification language based on scenarios
 - Pre-chart versus Main-chart semantics
 - Multi-modal: cold ("may happen") or hot ("must happen")

- **Abstract interpretation techniques can offer finite and effective representation of contracts**
 - Non-computable objects are under- or over-approximated by computable ones
 - It is possible to prove consistency and compatibility for concrete contracts, based on corresponding abstractions (observers can only disprove properties)
Outline: Contracts and compositional methods for system design

- Where and why using contracts?
- Introduction to contracts
- Mathematical meta-theory of contracts
- Overview of concrete contract theories
- Application examples