Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model
Data-flow networks

• A bit of history

• Syntax and semantics
 – actors, tokens and firings

• Scheduling of Static Data-flow
 – static scheduling
 – code generation
 – buffer sizing

• Other Data-flow models
 – Boolean Data-flow
 – Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

for Digital Signal Processors (HW and SW)
A bit of history

• Karp computation graphs (‘66): seminal work
• Kahn process networks (‘58): formal model
• Dennis Data-flow networks (‘75): programming language for MIT DF machine
• Several recent implementations
 – graphical:
 – Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 – SPW (Cadence), COSSAP (Synopsys)
 – textual:
 – Silage (UCB, Mentor)
 – Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues.
- Nodes are commonly called actors.
- The bits of information that are communicated over the queues are commonly called tokens.
Intuitive semantics

• (Often stateless) actors perform computation

• Unbounded FIFOs perform communication via sequences of tokens carrying values
 – integer, float, fixed point
 – matrix of integer, float, fixed point
 – image of pixels

• State implemented as self-loop

• Determinacy:
 – unique output sequences given unique input sequences
 – Sufficient condition: blocking read
 (process cannot test input queues for emptiness)
Intuitive semantics

• At each time, one actor is fired
• When firing, actors consume input tokens and produce output tokens
• Actors can be fired only if there are enough tokens in the input queues
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Questions

• Does the order in which actors are fired affect the final result?
• Does it affect the “operation” of the network in any way?
• Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

• Actors operate from a sequence of input tokens to a sequence of output tokens
• Let tokens be noted by $x_1, x_2, x_3, \text{ etc…}$
• A sequence of tokens is defined as

\[X = [x_1, x_2, x_3, …] \]

• Over the execution of the network, each queue will grow a particular sequence of tokens
• In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)
Ordering of sequences

- Let X_1 and X_2 be two sequences of tokens.
- We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2.
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive).
- This is also called the prefix order.
- Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$.
- Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable.
Chains of sequences

- Consider the set S of all finite and infinite sequences of tokens.
- This set is partially ordered by the prefix order.
- A subset C of S is called a chain iff all pairs of elements of C are comparable.
- If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain.
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain.
(Least) Upper Bound

- Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y.
- Consider now the set Z (subset of S) of all the upper bounds of Y.
- If Z has a least element u, then u is called the least upper bound (lub) of Y.
- The least upper bound, if it exists, is unique.
- Note: u might not be in Y (if it is, then it is the largest value of Y).
Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a Complete Partial Order
- Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
- Note: the least upper bound may be thought of as the limit of the chain
Processes

- Process: function from a p-tuple of sequences to a q-tuple of sequences

 $F : S^p \rightarrow S^q$

- Tuples have the induced point-wise order:

 $Y = (y_1, \ldots, y_p)$, $Y' = (y'_1, \ldots, y'_p)$ in $S^p : Y \leq Y'$ iff $y_i \leq y'_i$ for all $1 \leq i \leq p$

- Given a chain C in S^p, $F(C)$ may or may not be a chain in S^q

- We are interested in conditions that make that true
Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains C, $\text{lub}(F(C))$ exists and
 $$F(\text{lub}(C)) = \text{lub}(F(C))$$
- Similar to continuity in analysis using limits
- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'
 $$X \leq X' \Rightarrow F(X) \leq F(X')$$
- Continuity implies monotonicity
 - intuitively, outputs cannot be “withdrawn” once they have been produced
 - timeless causality. F transforms chains into chains
Least Fixed Point semantics

- Let \(X \) be the set of all sequences
- A network is a mapping \(F \) from the sequences to the sequences

\[
X = F(X, I)
\]

- The behavior of the network is defined as the unique least fixed point of the equation
- If \(F \) is continuous then the least fixed point exists \(LFP = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \}) \)
From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
 - firing rule
 (number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)
- Formally shown to be equivalent, but actors with firing are more intuitive
- Mutually exclusive firing rules imply monotonicity
- Generally simplified to blocking read
Examples of Data Flow actors

- **SDF**: Synchronous (or, better, Static) Data Flow
 - fixed input and output tokens

- **BDF**: Boolean Data Flow
 - control token determines consumed and produced tokens
Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors

- SDF networks can be statically scheduled at compile-time
 - execute an actor when it is known to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing

- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization
Static scheduling of SDF

- Based only on process graph (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is valid, i.e.:
 - admissible
 (only fires actors when fireable)
 - periodic
 (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
 - $v_S(A) \ n_p = v_S(B) \ n_c$
 - must be satisfied for each edge
Balance equations

- \(3 v_S(A) - v_S(B) = 0 \)
- \(v_S(B) - v_S(C) = 0 \)
- \(2 v_S(A) - v_S(C) = 0 \)
- \(2 v_S(A) - v_S(C) = 0 \)
Balance equations

- \(M \nu_S = 0 \)
 - iff \(S \) is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule
 - (too many tokens accumulate on A->B or B->C)
Balance equations

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of $q = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^T$ satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule

$$M = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & -1 \end{bmatrix}$$
Static SDF scheduling

• Main SDF scheduling theorem (Lee ‘86):
 – A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank $n-1$
 – If M has rank $n-1$ then there exists a unique smallest integer solution q to
 \[M \, q = 0 \]
• Rank must be at least $n-1$ because we need at least $n-1$ edges (connected-ness), providing each a linearly independent row
• Admissibility is not guaranteed, and depends on initial tokens on cycles
Admissibility of schedules

- No admissible schedule: BACBA, then deadlock…
- Adding one token (delay) on A→C makes BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

- Adding initial token changes FIR order

\[i \cdot c_1 + o \cdot c_2 + i(-1) \sim i(-2) \]
From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix} \]

- Can find either ABCBC or ABBCC

- If deadlock before original state, no valid schedule exists (Lee ‘86)
From schedule to implementation

- Static scheduling used for:
 - behavioral simulation of DF (extremely efficient)
 - code generation for DSP
 - HW synthesis (Cathedral by IMEC, Lager by UCB, ...)

- Issues in code generation
 - execution speed (pipelining, vectorization)
 - code size minimization
 - data memory size minimization (allocation to FIFOs)
 - processor or functional unit allocation
Compilation optimization

- Assumption: *code stitching* (chaining custom code for each actor)
- More efficient than C compiler for DSP
- Comparable to hand-coding in some cases
- Explicit parallelism, no artificial control dependencies
- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

• Assumptions (based on DSP architecture):
 – subroutine calls expensive
 – fixed iteration loops are cheap
 (“zero-overhead loops”)

• Absolute optimum: *single appearance schedule*
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 – may or may not exist for an SDF graph…
 – buffer minimization relative to single appearance schedules
 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)
Buffer size minimization

- Assumption: no buffer sharing

- Example:

$$q = \begin{bmatrix} 100 & 100 & 10 & 1 \end{bmatrix}^T$$

- Valid SAS: \((100 \ A) \ (100 \ B) \ (10 \ C) \ D\)
 - requires 210 units of buffer area

- Better (factored) SAS: \((10 \ (10 \ A) \ (10 \ B) \ C) \ D\)
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

• SDF is limited in modeling power
 – no run-time choice
 – cannot implement Gaussian elimination with pivoting
• More general DF is too powerful
 – non-Static DF is Turing-complete (Buck ‘93)
 – bounded-memory scheduling is not always possible
• BDF: semi-static scheduling of special “patterns”
 – if-then-else
 – repeat-until, do-while
• General case: thread-based dynamic scheduling
 – (Parks ‘96: may not terminate, but never fails if feasible)
Example of Boolean DF

- Compute absolute value of average of n samples
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

- Deterministic merge
 (no "peeking")

a = get (A)
b = get (B)
forever {
 if (a > b) {
 put (O, a)
 a = get (A)
 } else if (a < b) {
 put (O, b)
 b = get (B)
 } else {
 put (O, a)
 a = get (A)
 b = get (B)
 }
}
Summary of DF networks

• Advantages:
 – Easy to use (graphical languages)
 – Powerful algorithms for
 – verification (fast behavioral simulation)
 – synthesis (scheduling and allocation)
 – Explicit concurrency

• Disadvantages:
 – Efficient synthesis only for restricted models
 – (no input or output choice)
 – Cannot describe reactive control (blocking read)
Base-band Processing in Cell Phones

Preprocessing → Add headers etc. → Frame to transmit
(stream of bits)

End of Pkt → Payload → Network information → Synch

Mapping on a Constellation (QPSK)

Filtering

Modulation

Mapping on a Constellation (QPSK):

- 01 → q
- 11 → q
- 00 → i
- 10 → i

Filtering:

- Unity Gain
- Raised Cosine
- Total Attenuation

Modulation:
Base-band Processing: Denotation

Composition of functions = overall base-band specification

\[x[n] = (Map_i(s) \ast h)[n] \sin(2\pi f_I nT) + (Map_q(s) \ast h)[n] \cos(2\pi f_I nT) \]

\[i[n] = Map_i(s[n]) \]
\[q[n] = Map_q(s[n]) \]

\[i_f[n] = \sum_{k=1}^{N} h[k-1] i_f[n-k] \]
\[q_f[n] = \sum_{k=1}^{N} h[k-1] q_f[n-k] \]

\[x[n] = i_f[n] \sin(2\pi f_I nT) + q_f[n] \cos(2\pi f_I nT) \]
Base-band Processing: Data Flow Model

Mapping on a Constellation (QPSK)

01
00
11
10

Filtering

Modulation
Remarks

• Composition is achieved by input-output connection through communication channels (FIFOs)

• The operational semantics dictates the conditions that must be satisfied to execute a function (actor)

• Functions operating on streams of data rather than states evolving in response to traces of events (data vs. control)

• Convenient to mix denotational and operational specifications
Telecom/MM applications

- Heterogeneous specifications including
 - data processing
 - control functions
- Data processing, e.g. encryption, error correction…
 - computations done at regular (often short) intervals
 - efficiently specified and synthesized using DataFlow models
- Control functions (data-dependent and real-time)
 - say when and how data computation is done
 - efficiently specified and synthesized using FSM models
- Need a common model to perform global system analysis and optimization
Mixing the two models: 802.11b

• State machine for control
 – Denotational: processes as sequence of events, sequential composition, choice etc.
 – Operational: state transition graphs

• Data Flow for signal processing
 – Functions
 – Data flow graphs

• And what happens when we put them together?
802.11b: Modes of operation

<table>
<thead>
<tr>
<th>Data rate (Mbit/s)</th>
<th>Modulation</th>
<th>Coding rate</th>
<th>Ndbps</th>
<th>1472 byte transfer duration (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BPSK</td>
<td>1/2</td>
<td>24</td>
<td>2012</td>
</tr>
<tr>
<td>9</td>
<td>BPSK</td>
<td>3/4</td>
<td>36</td>
<td>1344</td>
</tr>
<tr>
<td>12</td>
<td>QPSK</td>
<td>1/2</td>
<td>48</td>
<td>1008</td>
</tr>
<tr>
<td>18</td>
<td>QPSK</td>
<td>3/4</td>
<td>72</td>
<td>672</td>
</tr>
<tr>
<td>24</td>
<td>16-QAM</td>
<td>1/2</td>
<td>96</td>
<td>504</td>
</tr>
<tr>
<td>36</td>
<td>16-QAM</td>
<td>3/4</td>
<td>144</td>
<td>336</td>
</tr>
<tr>
<td>48</td>
<td>64-QAM</td>
<td>2/3</td>
<td>192</td>
<td>252</td>
</tr>
<tr>
<td>54</td>
<td>64-QAM</td>
<td>3/4</td>
<td>216</td>
<td>224</td>
</tr>
</tbody>
</table>

- Depending on the channel conditions, the modulation scheme changes
- It is natural to mix FSM and DF (like in figure)
- Note that now we have real-time constraints on this system (i.e. time to send 1472 bytes)
Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model