Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model
Data-flow networks

- A bit of history
- Syntax and semantics
 - actors, tokens and firings
- Scheduling of Static Data-flow
 - static scheduling
 - code generation
 - buffer sizing
- Other Data-flow models
 - Boolean Data-flow
 - Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

for Digital Signal Processors (HW and SW)
A bit of history

• Karp computation graphs (‘66): seminal work
• Kahn process networks (‘58): formal model
• Dennis Data-flow networks (‘75): programming language for MIT DF machine
• Several recent implementations
 – graphical:
 – Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 – SPW (Cadence), COSSAP (Synopsys)
 – textual:
 – Silage (UCB, Mentor)
 – Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues
- Nodes are commonly called actors
- The bits of information that are communicated over the queues are commonly called tokens
Intuitive semantics

• (Often stateless) actors perform computation
• Unbounded FIFOs perform communication via sequences of tokens carrying values
 – integer, float, fixed point
 – matrix of integer, float, fixed point
 – image of pixels
• State implemented as self-loop
• Determinacy:
 – unique output sequences given unique input sequences
 – Sufficient condition: blocking read
 (process cannot test input queues for emptiness)
Intuitive semantics

- At each time, one actor is fired
- When firing, actors consume input tokens and produce output tokens
- Actors can be fired only if there are enough tokens in the input queues
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

![Diagram of an FIR filter](image-url)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence \(i(n) \)
 - single output sequence \(o(n) \)
 - \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Questions

• Does the order in which actors are fired affect the final result?
• Does it affect the “operation” of the network in any way?
• Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens
- Let tokens be noted by $x_1, x_2, x_3,$ etc…
- A sequence of tokens is defined as
 \[X = [x_1, x_2, x_3, \ldots]\]
- Over the execution of the network, each queue will grow a particular sequence of tokens
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)
Ordering of sequences

• Let X_1 and X_2 be two sequences of tokens.
• We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2
• Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive)
• This is also called the prefix order
• Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$
• Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable
Chains of sequences

• Consider the set S of all finite and infinite sequences of tokens

• This set is partially ordered by the prefix order

• A subset C of S is called a chain iff all pairs of elements of C are comparable

• If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)

• Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain

• Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain
(Least) Upper Bound

- Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y
- Consider now the set Z (subset of S) of all the upper bounds of Y
- If Z has a least element u, then u is called the least upper bound (lub) of Y
- The least upper bound, if it exists, is unique
- Note: u might not be in Y (if it is, then it is the largest value of Y)
Complete Partial Order

• Every chain in S has a least upper bound
• Because of this property, S is called a Complete Partial Order
• Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
• Note: the least upper bound may be thought of as the limit of the chain
Processes

• Process: function from a p-tuple of sequences to a q-tuple of sequences

 \[F : S^p \rightarrow S^q \]

• Tuples have the induced point-wise order:

 \[Y = (y_1, \ldots, y_p), \ Y' = (y'_1, \ldots, y'_p) \text{ in } S^p : Y \leq Y' \iff y_i \leq y'_i \text{ for all } 1 \leq i \leq p \]

• Given a chain \(C \) in \(S^p \), \(F(C) \) may or may not be a chain in \(S^q \)

• We are interested in conditions that make that true
Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains C, \(\text{lub}(F(C)) \) exists and
 \[
 F(\text{lub}(C)) = \text{lub}(F(C))
 \]

- Similar to continuity in analysis using limits

- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'
 \[
 X \leq X' \implies F(X) \leq F(X')
 \]

- Continuity implies monotonicity
 - intuitively, outputs cannot be “withdrawn” once they have been produced
 - timeless causality. F transforms chains into chains
Least Fixed Point semantics

• Let X be the set of all sequences
• A network is a mapping F from the sequences to the sequences

$$X = F(X, I)$$

• The behavior of the network is defined as the unique least fixed point of the equation

• If F is continuous then the least fixed point exists $LFP = \text{LUB}\left(\{ F^n(\bot, I) : n \geq 0 \} \right)$
From Kahn networks to Data Flow networks

• Each process becomes an actor: set of pairs of
 – firing rule
 (number of required tokens on inputs)
 – function
 (including number of consumed and produced tokens)
• Formally shown to be equivalent, but actors with firing are more intuitive
• Mutually exclusive firing rules imply monotonicity
• Generally simplified to blocking read
Examples of Data Flow actors

- **SDF**: Synchronous (or, better, Static) Data Flow
 - fixed input and output tokens

 ![SDF Diagram]

- **BDF**: Boolean Data Flow
 - control token determines consumed and produced tokens

 ![BDF Diagram]
Static scheduling of DF

• Key property of DF networks: output sequences do not depend on *time of firing* of actors

• SDF networks can be *statically scheduled* at compile-time
 – execute an actor when it is *known* to be fireable
 – no overhead due to sequencing of concurrency
 – static buffer sizing

• Different schedules yield different
 – code size
 – buffer size
 – pipeline utilization
Static scheduling of SDF

- Based only on *process graph* (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is *valid*, i.e.:
 - *admissible*
 (only fires actors when fireable)
 - *periodic*
 (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

• Number of produced tokens must equal number of consumed tokens on every edge

\[v_S(A) n_p = v_S(B) n_c \]

• Repetitions (or firing) vector \(v_S \) of schedule \(S \): number of firings of each actor in \(S \)

must be satisfied for each edge
Balance equations

- Balance for each edge:
 - $3 \nu_S(A) - \nu_S(B) = 0$
 - $\nu_S(B) - \nu_S(C) = 0$
 - $2 \nu_S(A) - \nu_S(C) = 0$
 - $2 \nu_S(A) - \nu_S(C) = 0$
Balance equations

- $M \nu_S = 0$
 - iff S is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule

 (too many tokens accumulate on $A \rightarrow B$ or $B \rightarrow C$)

$$M = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 0 & -1 \end{bmatrix}$$
Balance equations

- Non-full rank
 - Infinite solutions exist (linear space of dimension 1)
- Any multiple of \(q = [1 \ 2 \ 2]^T \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCBC is non-minimal valid schedule

\[
M = \begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1 \\
\end{bmatrix}
\]
Static SDF scheduling

- Main SDF scheduling theorem (Lee ‘86):
 - A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank $n-1$
 - If M has rank $n-1$ then there exists a unique smallest integer solution q to
 \[M \cdot q = 0 \]
- Rank must be at least $n-1$ because we need at least $n-1$ edges (connected-ness), providing each a linearly independent row
- Admissibility is not guaranteed, and depends on initial tokens on cycles
Admissibility of schedules

- No admissible schedule:
 BACBA, then deadlock...
- Adding one token (delay) on A->C makes
 BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

• Adding initial token changes FIR order
From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector

 \[q = [1 \ 2 \ 2]^T \]

- Can find either ABCBC or ABBCC

- If deadlock before original state, no valid schedule exists (Lee ‘86)
From schedule to implementation

• Static scheduling used for:
 – behavioral simulation of DF (extremely efficient)
 – code generation for DSP
 – HW synthesis (Cathedral by IMEC, Lager by UCB, …)

• Issues in code generation
 – execution speed (pipelining, vectorization)
 – code size minimization
 – data memory size minimization (allocation to FIFOs)
 – processor or functional unit allocation
Compilation optimization

• Assumption: *code stitching*
 (chaining custom code for each actor)
• More efficient than C compiler for DSP
• Comparable to hand-coding in some cases
• Explicit parallelism, no artificial control dependencies
• Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap
 ("zero-overhead loops")
- Absolute optimum: single appearance schedule
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 - may or may not exist for an SDF graph…
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)
Buffer size minimization

• Assumption: no buffer sharing

• Example:

```
q = | 100 100 10 1 |^T
```

• Valid SAS: (100 A) (100 B) (10 C) D
 – requires 210 units of buffer area

• Better (factored) SAS: (10 (10 A) (10 B) C) D
 – requires 30 units of buffer areas, but...
 – requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 - (Parks ‘96: may not terminate, but never fails if feasible)
Example of Boolean DF

- Compute absolute value of average of n samples
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

```
a = get (A)
b = get (B)
forever {
    if (a > b) {
        put (O,  a)
        a = get (A)
    } else if (a < b) {
        put (O,  b)
        b = get (B)
    } else {
        put (O, a)
        a = get (A)
        b = get (B)
    }
}
```

- Deterministic merge
 (no “peeking”)

Diagram:

- Nodes labeled with operations: *2, dup, *3, dup, ordered merge, out
- Edges connecting nodes:
 - *2 to dup
 - *3 to dup
 - A to ordered merge
 - B to ordered merge
 - ordered merge to out
 - 1 as an edge label between dup and ordered merge
 - A and B as input streams
 - O as the output stream
Summary of DF networks

• Advantages:
 – Easy to use (graphical languages)
 – Powerful algorithms for
 – verification (fast behavioral simulation)
 – synthesis (scheduling and allocation)
 – Explicit concurrency

• Disadvantages:
 – Efficient synthesis only for restricted models
 – (no input or output choice)
 – Cannot describe reactive control (blocking read)
Base-band Processing in Cell Phones

1. Preprocessing
 → Add headers etc.

2. Frame to transmit
 (stream of bits)

3. Mapping on a Constellation (QPSK)
 - 01
 - 10
 - 11
 - 00

4. Filtering
 - Unity Gain
 - Cosine
 - Raised Cosine
 - Total Attenuation

5. Modulation
 - fI
Base-band Processing: Denotation

Composition of functions = overall base-band specification

\[x[n] = (Map_i(s) * h)[n] \sin(2\pi f_I nT) + (Map_q(s) * h)[n] \cos(2\pi f_I nT) \]

\[i[n] = Map_i(s[n]) \]
\[q[n] = Map_q(s[n]) \]

\[i_f[n] = \sum_{k=1}^{N} h[k-1]i_f[n-k] \]
\[q_f[n] = \sum_{k=1}^{N} h[k-1]q_f[n-k] \]

\[x[n] = i_f[n] \sin(2\pi f_I nT) + q_f[n] \cos(2\pi f_I nT) \]

Mapping on a Constellation (QPSK)

Filtering

Modulation
Base-band Processing: Data Flow Model

Mapping on a Constellation (QPSK)

01
00

11
10

Filtering

Modulation

MultMult

RRC

RRC

Sum

Mult
Remarks

• Composition is achieved by input-output connection through communication channels (FIFOs)

• The operational semantics dictates the conditions that must be satisfied to execute a function (actor)

• Functions operating on streams of data rather than states evolving in response to traces of events (data vs. control)

• Convenient to mix denotational and operational specifications
Telecom/MM applications

- Heterogeneous specifications including
 - data processing
 - control functions
- Data processing, e.g. encryption, error correction…
 - computations done at regular (often short) intervals
 - efficiently specified and synthesized using DataFlow models
- Control functions (data-dependent and real-time)
 - say when and how data computation is done
 - efficiently specified and synthesized using FSM models
- Need a common model to perform global system analysis and optimization
Mixing the two models: 802.11b

• State machine for control
 – Denotational: processes as sequence of events, sequential composition, choice etc.
 – Operational: state transition graphs

• Data Flow for signal processing
 – Functions
 – Data flow graphs

• And what happens when we put them together?
802.11b: Modes of operation

- Depending on the channel conditions, the modulation scheme changes
- It is natural to mix FSM and DF (like in figure)
- Note that now we have real-time constraints on this system (i.e. time to send 1472 bytes)
Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model