
Chapter 3

Concurrency

This chapter, yet to be written, gives an overview of concurrent models of computation and their
application to embedded systems.

3.1 Interrupts

3.2 Threads

3.3 Process Networks

3.4 Dataflow

3.5 Synchronous/Reactive Systems

3.6 Discrete-Event Systems

Exercises

1. Figure 3.1 gives the sketch of a program that performs some function repeatedly for three
seconds. The function is invoked by calling the procedure foo(). The program begins by
setting up a timer interrupt to occur once per second (the code to do this setup is not shown).
Each time the interrupt occurs, the specified interrupt service routine is called. That routine
decrements a counter until the counter reaches zero. The main() procedure initializes the
counter with value 3 and then invokes foo() until the counter reaches zero.

(a) We wish to assume that the segments of code in the grey boxes, labeled A, B, and C, are

33

eal
Text Box
Introduction to Embedded SystemsNotes for EECS 124Spring 2008Edward A. Lee, Sanjit A. Seshia, and Claire Tomlineal@eecs.berkeley.edu, sseshia@eecs.berkeley.edu, tomlin@eecs.berkeley.eduElectrical Engineering & Computer SciencesUniversity of California, BerkeleyFebruary 25, 2008

34 CHAPTER 3. CONCURRENCY

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;

// Interrupt service routine.
SIGNAL(SIG_OUTPUT_COMPARE1A) {

 if(timer_count > 0) {
 timer_count--;
 }
}

// Main program.
int main(void) {
 // Set up interrupts to occur
 // once per second.
 ...

 // Start a 3 second timer.
 timer_count = 3;

 // Do something repeatedly
 // for 3 seconds.
 while(timer_count > 0) {
 foo();
 }
}

A

B

C

Figure 3.1: Sketch of a C program that performs some function by calling
procedure foo() repeatedly for 3 seconds, using a timer interrupt to deter-
mine when to stop.

3.6. DISCRETE-EVENT SYSTEMS 35

atomic. State conditions that make this assumption valid.

(b) Construct a state machine model for this program. The transitions in your state machine
should be labeled with “guard/action”, where the action can be any of A, B, C, or noth-
ing. The actions A, B, or C should correspond to the sections of code in the grey boxes
with the corresponding labels. You may assume these actions are atomic.

(c) Is your state machine deterministic? What does it tell you about how many times foo()
may be invoked? Do all the possible behaviors of your model correspond to what the
programmer likely intended?

Note that there are many possible answers. Simple models are preferred over elaborate ones,
and complete ones (where everything is defined) over incomplete ones. Feel free to give more
than one model.

	Model-Based Design
	Modeling Physical Dynamics
	Newtonian Mechanics
	Actor Models
	Linearity and Time Invariance
	Stability
	Feedback Control

	Modeling Modal Behavior
	Finite-State Machines
	Non-Determinism
	Behaviors and Traces

	Modeling Hybrid Systems

	Sensors
	Signal Conditioning
	Sampling
	Probing further: Impulse Trains

	Concurrency
	Interrupts
	Threads
	Process Networks
	Dataflow
	Synchronous/Reactive Systems
	Discrete-Event Systems

	Index

