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Some Basics Terms

Drosophila Melanogaster
Fruitfly (very popular in gene expression studies)

Nonparametric methods
Machine learning methods that use a set of examples as the 
learning primitives

Spatial Gene Expression Patterns
Usually the micro array gene expression data is a time series with 
information about lots of genes but no spatial resolution
Patterns of spatial expression are considered to show the effect
of a gene on a cell’s evolution and behavior

Imaginal Discs
Primordial tissues that will go on to become part of the 
exoskeletons of the Fruitfly
Separated in embryogenesis
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So how do imaginal discs look like?
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Motivation

High throughput systems require automatic alignment 
and simple processing pipeline

Manual curation is expensive

Align the imaginal disc shapes to facilitate:
Meaningful quantitative analysis of spatial gene expression 
patterns
Learning the underlying model of the imaginal disc shapes 
for use with model based techniques
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Given

A set of imaginal disc images of a specific class, with 
various stain patterns

Known class labels
Underlying shape model is unknown
Transformation parameters unknown
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Difficulties

A clean shape model of the tissue class is generally not 
available

Manually selecting features on images is expensive 
and time consuming

Images have a lot of clutter and noise
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Revisit: Can you see the difficulties?
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Prior Work

Analysis of precise spatial gene expression patterns in Drosophila 
embryos through in situ hybridization[Berman et.al 2002, 
Tomancak et.al 2002]

Curation is manual
Requires annotation

Automated embryo registration and stain classification [Peng and 
Myers (RECOMB 2004)] using Gaussian mixture models

Registration is very simplistic (major/minor axes)
Shape learning and alignment is a well-studied problem

Miller et.al (CVPR 2000)
Charpiat et.al (ICIP2003)
Frey and Jojic (CVPR1999)
Tsai et.al(TMI 2003)
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Data Flow in the Proposed Approach
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Highlights of the Approach

Proposed approach makes no assumptions on the underlying 
anatomy or shape

Generalizable to other gene expression studies
Removes the need for experts to mark points of interest

Amenable to large scale automation
Unsupervised
Registration performance improves asymptotically as number of 
samples (images) increases

Learned transformations are semantically meaningful
Augments model based registration techniques

Learned model can be used to bootstrap model based methods
Extendable to 3D datasets and gray-scaled valued datasets
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Segmentation

Manually segment a few sample images
Learn shape model from these images

Combine variance segmented images with learned shape model 
to automate segmentation process
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Joint Nonparametric Alignment and 
Shape Learning  

Learn MAP estimate of the underlying shape model
Entropy minimization algorithm: Congealing (ref: Miller 
et. al. – CVPR ‘00)

Coordinate descent method 
Input: A set of binary shape masks of tissues of a 
given class
Output upon convergence: Aligned binary shapes + 
corresponding transformations

Over parameterization used: x-translation, y-translation, rotation, 
x-log-scale, y-log-scale, x-shear, y-shear
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Mean Images from 
Shape Learning Stage

Wing, Haltere, Leg, Eye discs

A: Before Alignment; B: Alignment with 3 parameters;

C: Alignment with 7 parameters
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Alignment Results

Wing, Leg, Eye discs: A: Before Alignment; B: Alignment with 3 parameters; C: Alignment with 7 parameters
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Stain Scored Patterns: Aligned Vs. 
Unaligned

Wing discs: A: Before Alignment; B: After Alignment with 7 parameters



161 July 2005Parvez Ahammad, UC Berkeley

For Further Details: 
Parvez Ahammad, Cyrus Harmon, Ann Hammonds, 
Shankar Sastry and Gerald Rubin, ‘Joint Nonparametric 
Alignment for Analyzing Spatial Gene Expression 
Patterns of Drosophila Imaginal Discs’, Proceedings 
IEEE Conference on Computer Vision and Pattern 
Recognition, June 20-25, 2005, San Diego, CA, USA.
Erik Miller, Nick Matsakis and Paul Viola, ‘Learning from 
One Example Through Shared Densities on 
Transforms’, Proceedings IEEE Conference on Computer 
Vision and Pattern Recognition, Vol. 1, pp. 464-471, 2000.
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Questions?

Thank you!
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