

Visual Target Segmentation and Identification

Lana Haru Carnel Undergraduate Researcher University of California, Berkeley

Overview

1.0 Background

- 1.1 Past Work
- 1.2 Motivation
- 1.3 Problem Description

2.0 Image Acquisition

- 2.1 Controlled Environment
- 2.2 Uncontrolled Environment

3.0 Image Segmentation

- 3.1 Explanation of Color Representation in Images
- 3.2 RGB vs. HSV Color Mask
- 3.3 Smoothing Filter
- 3.4 Other methods

4.0 Identification

- 4.1 Clustering for Multiple Targets
- 4.2 Centroid Calculation
- **5.0 Results**
- **6.0 Acknowledgements**

1.1 Past Work

- Detecting Pedestrians Using Patterns of Motion and Appearance [Viola 2003]
 - Pedestrian detection on low resolution images
 - Uses appearance, motion direction, and motion magnitude filters to separate people from other video elements
- Finding (Un)Usual Events in Video [Zhong 2003]
 - Detection and classification of human activities
 - Frames not containing foreground images are dropped by comparison of frame to the background image
 - Binary mask created to isolate foreground elements in remaining frames

1.2 Motivation

- Use of camera surveillance systems require analysis of the collected information
 - Human evaluation of events are time consuming and expensive

Segmentation and Identifications of the visual target
 Effectively represents desired information for further analysis

1.3 Problem Description

2.1 Controlled Environment

Still images in surveillance environment

2.2 Uncontrolled Environment

Video clip taken from existing camera network

Represented Challenges:

- Occlusion
- □ Reflection
- □ Variation in Lighting Conditions

3.1 Explanation of Color Representation in Images

- ✤ RGB (red, green, blue)
 - Represented as 3 monochrome intensity images

- ✤ HSV (hue, saturation, value)
 - □ Closely mimics the way humans view color

- CMY (cyan, magenta, yellow)
 - □ Values are determined subtractive from RGB
 - Typically used for printing

3.1 RGB vs. HSV Color Mask

3.3 Smoothing Filter

- Provides noise reduction
- Slightly distorts shape

Pixels are re-valued using moving average value in a 5x5 matrix:

h[n] = (1/25)(g(n-2, m-2)+g(n-2, m-1)+g(n-2, m)...g(n+2, m+2))

Pixels are then returned to binary using: (h[n] <= .1) = 0 (h[n] > .1) = 1

3.4 Other Methods

Size filter Identify targets by thresholding cluster size

Motion filter

□ Implementation by detecting changes between image frames
> d_{ij}(x,y) = {(1 if | f(x,y,t_i) - f(x,y,t_j) | > T); 0 otherwise}

4.1 Clustering for Multiple Targets

Single target

□ Identified as all pixels with value '1'

Multiple targets

□ Must differentiate between groups of pixels with value '1'

- □ Check for connectivity
 - Change value for each new group of pixels

4.2 Centroid Calculation

Centroid calculation is given by:

 $M = \iint \sigma(x,y) dA$

 $x_{c} = \frac{\iint x \sigma(x, y) dA}{M}$

$$y_c = \frac{\iint y \sigma(x, y) dA}{M}$$

Centroid location = (x_c, y_c)

5.0 Results

Output

- □ Segmented image with marked centroids
- Centroid locations by x and y coordinates and frame number

Limitations

- □ Targets sharing boundaries appear as one target
- □ Cannot account for changes in elevation

Acknowledgements

SUPERB-CHESS faculty and staff Parvez Ahammad Jonathan Sprinkle Mike Ecklund Andrew Chekerylla John Suarez Mom and Pops