Modeling, Simulation, and Analysis of a Bipedal
Walker

Simon Ng
Computer Science
Michigan State University
ngsimon@msu.edu

Graduate Mentor: Haiyang Zheng
Research Supervisor: Dr. Jonathan Sprinkle
Faculty Mentor: Prof. S. Shankar Sastry

July 29, 2005

Summer Undergraduate Program in
Engineering at Berkeley (SUPERB) 2005

Department of Electrical Engineering and Computer Sciences

College of Engineering
University of California, Berkeley

file:ngsimon@msu.edu

Modeling, Simulation, and Analysis of a Bipedal
Walker

Simon Ng

Abstract

The goal of this project is to simulate a bipedal walker that walks down a slight slope without any power. We would like to
make a bipedal walker that allows continuous dynamics to be interrupted by discrete time events. We will use existing equations
from past papers as well as reduplicate dynamics given by Aaron Ames and Bobby Gregg. Wewill use a software called HyVisual.
An analysis of how this was implemented in HyVisual as well as how the graphics were animated in Ptolemy. The results of using
these tools will be a bipedal walker where one can expand the model in the future.

1 INTRODUCTION

Consider these dynamics equations of motion

M(O)i+ N(O,0)0+ ~g(0) = 0 (1)

where§ = < 99";)
M(9) = (_@3+ 1)55;@5 — 0s) _((%:11)5(?%0{38 o) ()
NOD= (5 im0 D0) 5

—((B+1)(p+1) + 1)gsin(0;)

The dynamics of the bipedal walker have been calculated and one is looking for a way to test out the equa-
tions. One approach to get a better idea for a simulation to occur is on a computer to get an intuitive under-
standing of the dynamics and to check if the assumptions are correct. By doing this, one will not need to put to-
gether any physical objects to check the dynamics. Under this project, an animation of this bipedal walker will
be achieved. Given the mathematics from Aaron Ames and Bobby Gregg[4], the process of making the bipedal
walker will be implemented in HyVisual[1]. After the components are implemented in HyVisual, the graphics
animation will be done in Ptolemy II[2]. In this project, a explanation of how to make these components were
built and work together will be explained in more detail.

o(0) = (g3 sin(0,s)) @

2 BACKGROUND INFORMATION
The main tool used in this project is:
2.1 HYVISUAL

HyVisual is the software used to model hybrid systems. HyVisual is a subset of Ptolemy where the graphical
animators are given while the mathematical expressions are made in HyVisual. Block diagrams for ordinary
differential equations, bubble and arc diagrams for finite state machines, and plotters are used in this project
to demonstrate continuous time dynamics with discrete time events. Once this is done, this can be put into
the graphical animator in Ptolemy where one can utilize the tools to make a graphical simulation.

3 MODELING

CTEmbedded Director @ InitialThetaS: 0.2217603172315 @ InitialThetaPS: -1.3166869015235

@ Initial ThetaNS: -0.3613380598161 @ InitialThetaPNS: 0579096006863 1
ThetaS

* }- j ThetaS
T wpression2 ThetaP_standing theta_signding ’
ThenaPSI [{1Ia'\4}'|{-a"‘3*g"[1+E|-etah*cus(ThetaNS—ThetaS]‘sin[ThetaNS]+3..+—i_’_ j | j
ThetaP

ThetaPS
[
TEE ¥pression ThetaP_nonStanding theta_nonStanding
L {(1.'a“4J‘[Bala'(-a‘3‘9‘(2+meu*Bata'{2+Beta)’{1+mau‘.|]'sinr_Tha...+—._’

Thetal i j | J L
ThataPM 1
ThetaPNS

ThetaMs

ThetaNS

Figure 1. Continuous Time Dynamics. Top expression represents the dynamics for 0, and the bottom
expression represents the dynamics for 6,

Modeling the bipedal walker consists of implementing mathematics that allow continuous time dynamic
equations to be interrupted by discrete time events at any time. There have been initial variables set based
off of a paper by Goswami, Thuilot, and Espiau[3]. To do this, we will use ordinary differential equations to
implement the continuous time dynamics and finite state machines to represent discrete time events.

To implement the ordinary differential equations in HyVisual, tools such as an expression operator, rela-
tion, integrator, and output port are used. An expression operator is represented by a block, relations are rep-
resented by black diamonds, integrators are represented by blocks with integrator signs, and output ports are
represented by black polygons. An expression operator is just a way of implementing a mathematical function.

The way that the dynamics were implemented was the following

98 = f(enm ésa ensu 65) (5)
8‘7’1,8 - g(enm 937 91157 85) (6)

tps= s — O

qi=(3 + 1)2 620, sin(tps) cos(tps)B,s '

q2= ((5+ 1)B0, sin(tps))(B + 1) (M+ 1) +1))0s

43=((3985(0,5)) (3 + 1)*(u + 1) + 1))

qa=((= (5 + 1)5 cos(tps)) L (~Bp — 6 — s — 2)g sin,

a5=((8 + 1) 0y sin(tps))fpe

q6=(8 + 1)%3%0, sin(tps) cos(tps)b;

q7_[11952 (B + 1) sin(0ns) cos(Ons)
8=((—(8+1)82B cos(tps)) 2 (=B — B — pp — 2)gsin b,

ql +q2 —q3+ ¢4

= B @IP() + 1) = (175 cos(tps)?)

(7)

a5+ q6 + g7+ ¢8
(B2((b1)*(ul) 4 1)) — ((b1)?532 cos(tps)?)

The following is demonstrated in figure 1. There are four input ports and one output port on each expres-
sion operator. The input ports denote (9;15, 95, Ons, 0s. This is needed because the continuous dynamics need
to change over time and a way to do it is to re-input the changing dynamics over time. The output port on each
expression go to two different integrators to get an output of) sand 0 for the stance leg, and 97; sand 0,,, for the
non-stance leg. This allows the continuous dynamics to be recalculated while being able to go to the output
or back into the expression. Two relations on each expression is used to take the output of each integrator to
multiple destinations. For 9,'18 and 95, the output will go to the next integrator to make 0,5 or 0, the output
ports so it can go to something outside of the finite state machine, and back into the expression because of the
changing dynamics over time. For 8,5 and 0, the output will go to the output ports for something outside the
finite state machine and back into the expression. This is one way to allow the dynamics to be continuous.

0, = (8)

To demonstrate the discrete time events, a finite state machine was used. A finite state machine is a mod-
eling technique which alllows for states, transitions, and actions|5]. A state represents results that have been
completed. Transitions represent a change in state and this is indicated by a guard condition in equation 7.
Actions are ongoing activity that the finite state machine is producing at a certain time. In this model, there are
two different states, a initial state and a reset state.

true

state.InitialThetaNS = 0.28; state.InitialThetaS = -0.212;
state.lnitialThetaPNS = -0.65; state.InitialThetaPS = -1.12;
counter.count = 0.0; counter.x= 0.0; counter.y = 0.0

g O

(ThetaS+ThetaNS == -2*slope) && (ThetaNS > 0)

state.Initial ThetaNS = ThetaS; state.InitialThetaS = ThetaNS;

state.Initial ThetaPS = -(Beta*ThetaPNS)/(2+meu+Beta*(2+Beta)*(1+meu)(1+Beta)*2*
cos(ThetaNS-ThetaS)*2)+(2*(1+Beta)*(1+meu+Beta*meu)*ThetaPS*cos(ThetaNS-ThetaS))
(3+2*meu+Beta*(2+Beta)*(1+2*meu)(1+Beta)*2*cos(2*(ThetaNS-ThetaS)));

state.Initial ThetaPNS =
-(2*Beta*(1+Beta)*'ThetaPNS*cos(ThetaNS-ThetaS)-ThetaPS*(-2+(-1+Beta)*(1+Beta)*2*meL
+(1+Beta)*2*(2+meu+Beta*meu)*cos(2*(ThetaNS-ThetaS))))
(2*Beta*(2+meu+Beta*(2+Beta)*(1+meu){1+Beta)*2*cos(ThetaNS-ThetaS)*2));
counter.count = collisionNumber + 1;

counter.x = x_offset + 2*length*abs(sin((ThetaS - ThetaNS)/2))*cos(slope);

counter.y = y_offset - 2*length*abs(sin((ThetaS - ThetaNS)/2))*sin(slope)

Figure 2. Finite State Machine. Has two states: Initial state and Reset State

3.1 Initial State

The initial state is the way to start the finite state machine. There is a guard set to true so when the model
starts, it will always have an initial output. In this model, there are 4 states, state.Initial ThetaS, state.Initial ThetaNs,
state.InitialThetaPS, and state.InitialThetaPNS. The state.InitialThetaS and state.Initial ThetaNS are used for
the angular position of the stance leg and non-stance leg. The state.InitialThetaPS and state.Initial ThetaPNS
are used for the angular velocity of the stance leg and non-stance leg. By making these initial states, one can
set the legs accordingly so that there is enough initial momentum for a stable limit cycle. The counter.x and
counter.y is based off the Cartesian coordinate system from where the leg starts. The initial start is (0, 0). The
transition from the initial state is to go into the reset state where the mathematics is done.

3.2 Reset State

The reset state is needed for the discrete time events to occur. The reset state can jump around to different
functions, new states, at any given time when the guard condition is true. Inside the reset state are where the
continuous time dynamics are. Outside of the state, there is another guard condition. The guard condition is
as follows:

Ops+6s=—2aandb,, >0

This guard condition comes from the Gowsami paper where we used some of his mathematical techniques
to solve the problem. The guard condition is a transition equation where when this is true, the legs will switch
states where the non-stance leg becomes the stance leg and the stance leg becomes the non-stance leg. This
guard condition will allow the transition to another totally different state where the angular velocities have
changed because of the impact to the ground, so they can not be simply switched. Because of this, the angular

velocities have to be recomputed. The offsets for making the switch of the legs have to be recomputed every
time the guard is true. This was done through basic geometry to reposition the center mass and stance leg. The
Cartesian coordinates for where the walker is now have to be recorded. To do this, a counter has been made
inside the state. The counter is supposed to record the change of position of where the walkeris at in the simu-
lation. When the guard condition is true, the Cartesian coordinates are computed in the reset map. After these
are computed, the counter records them and increments the counter for collisions up one. This will allow the
reset map to restart using current conditions and settings on the new Cartesian coordinates thus allowing the
same dynamics to go over and over every time a collision occurs.

CTEmbedded Director
® X 2.1428922371003

e count: 4.0 @y.-0.1498456224789
Const collisionNumber

Const2 y_offset

4.

Const3

E X _offset

Figure 3. Counter for Collisions and Offsets

In figure four, This is a hierarchial view that has the dynamics on one side and the animation on the other.
The x and y displacements for the center mass are computed there with expression operators. The periodic
samplers allow the continous dynamics to become discrete so the animation actors can translate the outputs
correctly. This is where the initial setting from the Goswami paper are so we can test out some conditions to
make the best possible model.

3.3 Trajectory of Center Mass

This is used to show how the center mass moves with respect to the slope in the x-y plane. The straight
line in the graph represents the original starting point of the center mass while going down the slope. The
mass dips below the trajection because it is not in a stable limit cycle at first but will eventually fall right on
the trajectory line. Originally, the mass dips because of where the starting position of the legs is located at. The
mass moves in a periodic motion where the discontinuous spots are the dynamics of where each leg is switched.
The center mass trajectory increases when the leg is off the ramp and will peak out at some point. The center
mass will than decrease and drop until it hits the transition guard.

3.4 Timed Theta Collision

This graph is used to show how the legs are switched and when a collision occurs. The collision line is
showing when a collision will occur and that is when the guard condition is true. The 64 and 8,,; are used to

CT Director

TimedThetaCollision

ThetaNSvThetaPNS
r i N
Dynamics pLialabs e <

TNSPeriodicSampler Animation

| : Py offset ThetaSvThetaPS x centsiMass, E}D
o Y e o ceneme
H] TSPeriodicSampler

J

] — J
LE»pres.swcn d

‘ ThetaNS+ThetaS + 2*slope
—>-

18H0 X
1840

®Beta: 1.0 #9:98
®a:05 e phi: 0
elength: 1 emeu:2 - »

@ slope: Pli45 em: 5 y_displacement2
ﬁﬁg length*cos(ThetaS) + y_offset

x_displacement2
-length*sin(ThetaS) + x_offset

PeriodicSampler

v

fai

ec0

J
Trajectory of Center Mass
5

Eie Edt Special Help

BRME|

Trajectory of Center Mass (x_y plane)

0.2
081

041 00 01 02 03 04 05 06 07 08 08 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24

Figure 5. Trajectory of the center mass in the x-y plane

see if the the cycle is periodic over the given time. Over the given time, both legs move in the same motion
shown by the periodic lines for each leg.

3.5 6,vs 95

This graph is showing a stable limit cycle between 65 vs 05 over a given amount of time. The periodic move-
ment is through the graph having the same general motion over a given amount of time.

3.6 0,,vs0,,

This graph is also showing a stable limit cycle but between 6,5 vs 8,5 over a given amount of time. The
periodic movement is through the graph having the same general motion over a given amount of time.

[F8file:/C:/Documents and Settings/ngsim. . jects/research/bipedal /goswami-Ic1.plt
Ele Yiw Edt Special Help

theta$, thetaNS, and collision @E@E

0.30 Thetag =
Thetahis =
callision =

Figure 6. Collision between theta, and theta,,,

[F8.walkingbipedalRobotwithAnimation3dreduction_mathematica.ThetasyThetaPs
Fle Ede specil Help

BN

ThetaSvThetaPS

Figure 7. Stable Limit Cycle between 6, and 93

4 Graphical Animation

The graphics domain in Ptolemy renders objects and movements based on given inputs and initial settings
in the actors. The graphics of the bipedal walker are in two dimensions and fixed in the x-y plane. There are
four visualization objects needed for the simulation: swing leg, stance leg, center mass, and a ramp. Some re-
lations are used to stream multiple inputs to some different actors. The Scale actor is used to adjust how the
simulation is shown onto the screen. The ViewScreen3D is used render the simulation onto the screen.

[F8.walkingbipedalRobotwithAnimationadreduction_mathematica.ThetaNsyThetaPNs
Eie Edf Specisl Help

BHHE|

ThetaNSvThetaPNS

Figure 8. Stable Limit Cycle between 6,5 vs éns

SwingLeg

! ' SwingLegTranslate
L GR Director
ThetaNS >
| [

x_centerMass

RotateSwinglLeg

y_centerMass - 1
Center Mass | S
s ——p

U } FAVAVAY

Translate3D3

Ramp

| » ’j Scale3D ViewScreen3D
‘ ¥
> p—i >
Stanceleg sceneGraphin,StanceLegTranslate »

sceneGraphQut
i Trandatey| L
ZTransate

thetaS scenelraphin,. RotateStancdleg
angle
’ VO eneGraphQut
x_offset Vo >
PIvVO o
JAYAVAY

XSIxXE
ASIxE
ZsIxe

y_offset

Figure 9. Animation Actor

4.1 Sphere

The sphere actor is used to show the center mass located at the top of the walker. The color is yellow and the
radius is 0.03.

411 Translate

To translate the sphere, the xTranslate and yTranslate will receive its position from the z.enter Mass and
yeenterMass ports. Since the center mass does not move in an axis direction, it will just move according to

the translate actor and not need the rotate actor.
4.2 PolyCylinder

In the PolyCylinder actor, a number of coordinates can be inputted to make the PolyCylinder. These coor-
dinates are given in the x-y plane. In this model, there are 3 different sets of Cartesian coordinates to denote a
ramp. After these are made, the thickness was added onto this to make a width of the ramp. The width runs
along the z-axis since the coordinates are given in the x-y plane.

4.3 Swing Leg

There are three parts to the swing, non-stance, leg: a cylinder, translate actor, and rotate actor.

431 Cylinder

The cylinder is used for making the leg visual in the simulation. The leg was made by renaming and making a
new radius, length, and color. All of this can be defined in the figure by using the configure area of the translate
actor. The radius is 0.01, height is 1.0, and the color is red.

4.3.2 Translate

The translate actor is used to position the leg. There is one input and output port, SceneGraphln and Scene-
GraphOut, thatis used to connect to the other graphics actors. The position of the leg before changing anything
with the actor is that half of the leg is above the x-axis, half is below, and it is parallel to the y-axis. To change
this, the actor needs to be configured to where the y position goes up o.5. After the change, the whole leg is
above the x-axis and parallel to the y-axis. The leg also has to move according to the mathematics done in the
dynamics. To do this, there are some input ports for the Cartesian coordinates to be plugged in and show the
amount of translation over a given time.

4.3.3 Rotate

Rotating the leg is needed to show the movement of the leg. Similar to the translate there is an input and out-
put port to connect the graphics actors. When configuring the rotate actor, the pivot location and in which
direction the leg moves is the first task. The pivot location is located on the bottom of the leg after the trans-
lation has been done. To switch the location and make it at the top, configuring the initial angle to Pi will flip
the leg to the bottom so the pivot position to be the top of the leg. To pick an axis of how the leg rotates, the
actor has an axis direction section where it can be picked. To rotate on the x-y plane, the z axis of rotation will
be picked. For the input ports, angle, pivotX, and pivotY are needed. The angle port is used to show how the leg
rotates counterclockwise based on the dynamics. This is done by feeding in ThetaNS into the angle port. The
pivotX and pivotY is used to show where the position of the leg will pivot over time.

4.4 Stance Leg

Like the Swing Leg here are three parts to the non-swing, stance, leg: a cylinder, translate actor, and rotate
actor.

4.41 Cylinder

The cylinder to make the stance leg is the same as above for the swing leg except the color is blue.

4.4.2 Translate

The translate for this leg is also the same as above for the swing leg. The only difference is the xTranslate and
yIranslate have different ports coming in. This is different because the pivot position and where the leg is
located are not the same for the stance leg.

4.4.3 Rotate

The rotate actor is pretty similar to the swing leg. The axis direction is the same but the major difference is that
the pivot position has to be on the bottom and the leg to rotate clockwise. Because of this, the initial angle will
be zero to leave the pivot at the bottom. The angle, pivotX, and pivotY are used in the same context but receive
different values because of how this leg works.

5 CONCLUSION

With our model, we were able to simulate and animate the two-dimensional bipedal walker. Thanks to
Aaron and Bobby, we were able to help them visualize stable limit cycles so this bipedal walker could walk
forever if we wanted the simulation. By making this model, we were able to get an intuitive understanding of

the dynamics behind this bipedal walker.

6 FUTUREWORK

Due to the time constraint, we were unable to simulate and animate a three-dimensional bipedal walker
that could walk in a stable limit cycle. We were able to input the new three-dimensional mathematics into our
existing model but we did not have enough time to finish the animation. We would like to finish this at some
point if given the time as well as expand on the future horizons that this could bring.

7 Acknowledgements

I would like to thank the National Science Foundation and UC Berkeley for putting on SUPERB-IT. I would
like to thank the CHESS project for believing in my abilities to participate in your research group. Thanks to
Dr. Jonathan Sprinkle, Rebecca Brown, Shelia Humphreys, Beatriz Flores-Lopez, and the rest of the SUPERB
group for all the help and fun times. Last but not least, I would like to thank Haiyang Zheng, Aaron Ames, and
Bobby Gregg. Without them, this project would have not been possible.

References

[1] C.Brooks, A. Cataldo, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng. Hyvisual: A hybrid system
visual modeler. Technical Memorandum UCB/ERL Mos/24, University of California, Berkeley, Berkeley, CA

04720, July 2005.

10

[2] C.Brooks,E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous concurrent modeling
and design in java. Technical Memorandum UCB/ERL Mos/23, University of California, Berkeley, July 200s5.
http://ptolemy.eecs.berkeley.edu/publications/papers/04/ptIIDesignIntro/.

[3] A Goswami, B. Thuilot, and B. Espiau. Compass-like biped robot: Part 1: Stability and bifurification of
passive gaits. Technical report, INRIA Rhone Alpes, France, Oct. 1996.

[4] R. Gregg and A. Ames. Hybrid reduction of a bipedal walker from three dimensions to two dimensions.
Tecnical report, University of California Berkeley, Berkeley, CA 94720, June 2005. SUPERB-IT.

[5] E. A Lee and H. Zheng. Operational semantics of hybrid systems. Invited paper in proceedings of hybrid
systems: Computation and control (hscc) Incs thd, Zurich, Switzerland, Mar. 2005.

11

http://ptolemy.eecs.berkeley.edu/publications/papers/04/ptIIDesignIntro/

