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Abstract: In this paper, we propose a cooperative multi-robot control system, operating in an unfamiliar or unstructured 

environment. We focus on a robust model predictive control (robust-MPC) framework that enables robotic agents to 

operate in uncertain environments, and study the effect of observation uncertainties that arise from sensor noise on 

cooperative control performance. The proposed system relies on cooperative observation based on an information 

seeking theory, in which the system not only can compensate uncertainty, but also takes actions to mitigate it. We carry 

out a case study that demonstrates a multi-robot collision avoidance scenario in an unknown environment. Simulation 

results show that the combination of robust-MPC methods and cooperative observation enables the cooperative 

multi-robot system to move efficiently and reach the goal faster than an uncooperative scenario. 
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1. INTRODUCTION 

The recent developments in robotics technology raise 

the expectation of numerous robotic applications such 

as monitoring, surveillance, and disaster response (Fig. 

1). In these applications, robots often need to work in 

unfamiliar or unstructured environments and be able to 

operate under a large set of uncertainties. 

Focusing on the control mechanisms for a single 

robot, robust model predictive control (robust-MPC) has 

been shown to be an effective control method to deal 

with such uncertainties [1]. The MPC approach predicts 

future states of robots and obstacles in a given 

environment over a finite horizon, and determines the 

control inputs of robots so that any subsequent predicted 

conditions will turn out to be most optimal. The 

performance, of course, depends on the accuracy of the 

predicted situations. Furthermore, the robust-MPC 

framework additionally predicts the reachability sets of 

those future states and finds the control inputs that 

satisfy desired constraints on the reachability sets. 

Although robust-MPC enables robots to work in 

considerably uncertain environments, the performance 

of such robots would still heavily depend on the level of 

uncertainty, mainly due to the very conservative nature 

of the robust-MPC control approach. This uncertainty is 

intrinsic to the relative topology of the robots and the 

obstacles, and in general, cannot be compensated for 

with computational methods alone. In order to optimize 

the performance of robust-MPC, it would be necessary 

to mitigate the level of uncertainty in the environment 

by cooperative exploration. 

The idea of robotic swarms has been explored 
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Fig.1 Robotic application in outdoor environment 

extensively in numerous areas of biology [2], 

mathematics [3, 4] as well as other fields. It has been 

shown that a swarm of robots working collectively 

rather than individually can be more efficient for 

information gathering to achieve a feasible solution to a 

given task. In other words, we could envision the swarm 

computational approach to be carried out in a massively 

decentralized fashion for the sake of robustness, as well 

as for faster algorithmic convergence and speedup in 

problem solving.  

In this paper, we study a multi-robot system that has 

the ability to carry out information seeking in a rather 

unstructured environment by utilizing a robust-MPC 

based control approach. In order for us to fully employ 

information seeking behaviors within our system, we 

consider a mutual information based control objective 

[3, 4]. Our focus is to demonstrate how information 

seeking behaviors of a cooperative robotic swarm can 

positively contribute to higher-level control task carried 

out by robust-MPC. Our work is applicable to several 

areas in which multi-robot systems not only perform 

information seeking, but also carry out a hybrid of 

multi-objective control patterns, for which rapid 

prototyping and on-line repurposing of control 

objectives become crucial. 
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2. FRAMEWORK OF ROBOT SWARM 

2.1 Main framework 

Robotic swarm operation in uncertain environments 

is a broad area of research. Consider, for example, a 

disaster response scenario, in which a team of robotic 

vehicles are to carry out safety assessment and search 

and rescue missions, as depicted in Fig. 1. In this 

scenario, manipulators and transporters, which have 

specific duties, are labeled as the “main robots”. Aside 

from these, we consider a team of “observation robots,” 

which are responsible for cooperatively exploring the 

environment. The control flow for each robot is depicted 

in Fig. 2. The main robots and observation robots are 

subject to the same workflow, but they are subject to 

robot-specific control objective functions. 

2.2 Measurement and estimation 

Robots, as those aforementioned, can be equipped 

with one or many sensors such as cameras, laser 

rangefinders, and ultrasonic sensors. In the proposed 

system, measurements from these sensors are broadcast 

among all robots. We use particle filtering to synthesize 

received measurements and perform target state 

estimation, individually for each robot. Note that this 

framework can be extended to apply for multiple objects 

using estimation methods such as JPDAF [5]. It is also 

possible that the state of the robot itself is 

simultaneously estimated with the state of external 

objects using SLAM (Simultaneous Localization and 

Mapping) techniques. 

In this paper, we consider the collision avoidance 

scenario shown in Fig. 3, where a robot equipped with a 

range-only sensor is to estimate the position and 

velocity of a non-stationary obstacle. In this formulation, 

the state-space model of the particle filter is given by 

𝑋𝑡 = [𝑃𝑜𝑡, 𝑉𝑜𝑡]𝑇, 

𝑋𝑡+1 = [
1 1
0 1

] ∙ [
𝑃𝑜𝑡

𝑉𝑜𝑡
] + 𝑤𝑡,                  (1) 

𝑧𝑡 = ‖𝑃𝑟𝑡 − 𝑃𝑜𝑡‖2 + 𝜂𝑡, 

where  𝑃𝑜𝑡 , 𝑉𝑜𝑡  are the position and velocity of the 

obstacle, respectively, 𝑤𝑡  and 𝜂𝑡 denote the process 

and measurement noise, and  𝑃𝑟𝑡 is a position of the 

robot. 

2.3 Optimal control for the main robot 

In the collision avoidance scenario shown in Fig. 3, 

the main robot tries to move from a starting point in 2-D 

space to a final checkpoint, respectively chosen to be 

(150, 0) and (0, 0), keeping the distance to the obstacle 

larger than 10 m. The control input to the main robot is 

an acceleration input, obtained by solving an 

optimization problem given by 

min
𝑈

∑ 𝑓0

𝑁

𝑘=1

= min
𝑈

∑|𝑃𝑟𝑡+𝑘|2

𝑁

𝑘=1

 ,                                  (2) 

subject to 

𝑓1 + 𝛼 ∙ 𝜎𝑡+𝑘 ≤ 0      (𝑓1 = 𝐷2−|𝑃𝑟𝑡+𝑘 − 𝑃𝑜𝑡+𝑘|2), 

𝑓2 = |𝑉𝑡+𝑘| − 𝑉𝑚𝑎𝑥 ≤ 0,  

𝑓3 = |𝑈𝑡+𝑘| − 𝐴𝑚𝑎𝑥 ≤ 0,  

 

Fig.2 Robot control flow 

 

Fig.3 Collision avoidance scenario trajectory scheme 

where 𝑉𝑡 is the velocity and 𝑈𝑡 is the acceleration of 

the main robot. The state variables of the robot 

( 𝑃𝑟𝑡+𝑘, 𝑉𝑡+𝑘 ) are predicted using current state and 

control inputs of future steps  𝑈𝑡+𝑘 . Current position of 

the obstacle 𝑃𝑜𝑡  is estimated by a distribution of 

particles, which is obtained from the particle filter at 

each time step.  

𝑓0  is the squared Euclidean distance from current 

position of the robot to the goal. 𝑓1  is a collision 

avoidance constraint. If the robot is within a distance D 

to the obstacle, then 𝑓1 will be active. 𝑓2 and 𝑓3 are 

box constraints on the velocity and acceleration of the 

main robot, respectively.  D is a safety margin on 

distance to the obstacle, Vmax is the maximum velocity, 

and Amax is the maximum acceleration, are all chosen 

with respect to the hardware configuration and 

functional capabilities of the robot. 𝜎𝑡 is a variance of 

the constraint function 𝑓1 which is given by 

𝜎𝑡 = √(
𝜕𝑓1

𝜕𝑃𝑜𝑡
) ∙ 𝐶𝑡 ∙ (

𝜕𝑓1

𝜕𝑃𝑜𝑡
)

𝑇

 , (3) 

where 𝐶𝑡  is a covariance matrix of 𝑃𝑜𝑡  computed 

from the distribution of particles. If the obstacle’s 

position 𝑃𝑜𝑡  is unknown, 𝜎𝑡  is large so that the 

constraint 𝑓1 is tightened. The robot will move away 

from the obstacle proportionally to the scaling factor 𝛼. 

Optimization problem (2) can be solved using general 

constrained optimization theory. Specifically, we use the 

interior point barrier-method [6] to solve it.  

2.4 Optimal control for the observation robots 

Unlike the case for the main robot, the control 

objective of the observation robots is not set to be a 

pursuit goal. The objective instead is to provide as much 

information as possible about the unknown environment 



to the main robots by utilizing their on-board sensors 

and dynamic capabilities.  

For the control of observation robots, we use Eq. (4) 

as the objective function instead of Eq. (1). Here, 𝐼𝑡 is 

the mutual information between the estimated state of 

the obstacle and the future measurements of the 

observation robots, given by Eq. (5). The function 𝑃 in 

Eq. (5) is a conditional probability density function, 

𝑧𝑡,𝑘  and 𝑧𝑡,𝑗  are the prediction of measurements if the 

robot measures the particle k and j, respectively, and 𝜂𝑡 

is an assumption of measurement noise. More details 

about information seeking using mutual information are 

described in [3, 4]. Using the objective function given 

by Eq. (4), observation robots can be controlled to 

maximize the expected future mutual information, or 

equivalently, to minimize the expected future 

uncertainty of the obstacle’s position estimate (Fig. 4).  

min
𝑈

{− ∑ 𝐼𝑡+𝑘

𝑁

𝑘=1

}                                                          (4) 

subject to 

𝑓1 + 𝛼 ∙ 𝜎𝑡+𝑘 ≤ 0       (𝑓1 = 𝐷2−|𝑃𝑟𝑡+𝑘 − 𝑃𝑜𝑡+𝑘|2), 

𝑓2 = |𝑉𝑡+𝑘| − 𝑉𝑚𝑎𝑥 ≤ 0 ,  

𝑓3 = |𝑈𝑡+𝑘| − 𝐴𝑚𝑎𝑥 ≤ 0 ,  

𝑀𝑡 ≈ − ∑ 𝑤𝑡,𝑘𝑙𝑜𝑔 ∑ 𝑤𝑡,𝑗

𝑁

𝑗=1

𝑃(𝑧𝑡,𝑘; 𝑧𝑡,𝑗 ,  𝜂𝑡)          (5)

𝑁

𝑘=1

 

3. CASE STUDY: COLLISION AVOIDANCE 

3.1 Experimental Setup 

In this section, we explore a cooperative multi-robot 

swarm, which has the purpose of reaching a target point 

in the presence of obstacles of unknown dynamics. The 

simulation parameters are summarized in Tables 1 and 2. 

Case 1 describes a model of a traditional standalone 

robot, which does not consider measurement uncertainty. 

Case 2 describes a robot that utilizes robust-MPC. Cases 

3 and 4 are cooperative systems, which can proactively 

decrease the uncertainty using observation robots.  

The simulations of each case developed using 

Ptolemy II [7], which is a Java-based actor-oriented 

graphical modeling platform that offers extensive actor 

libraries for machine learning and optimization tools [8]. 

At each time step, the position of the obstacle is 

calculated with additive Gaussian noise 𝜂𝑡  and then 

sent to the control system. To simulate a range-only 

measurement sensor, 𝜎b is set to be a large value, which 

approximates the uncertainty of the obstacle as an 

ellipse in 2-D space, as illustrated in Fig. 4. 

3.2 Result of case 1: traditional robot 

The trajectories corresponding to all four scenarios 

are illustrated in Fig. 5. The robot without robustness is 

shown not to be able to avoid the obstacle all the times. 

As shown in Fig. 6, before the robot comes close to the 

obstacle, those particles associated with the obstacle 

were spread widely, hence the drastic change in the 

distribution center of the particle ensemble. This  

 

Fig.4 Information seeking using mutual information 

Table 1 Simulation condition 

 
Robustness 

factor 𝛼 

The number of  

Obs. robot 

Case 1 0 0 

Case 2 1 0 

Case 3 1 1 

Case 4 1 2 

Table 2 Parameter settings for simulation scenarios 

Vmax 40 m/s 

Amax 40 m/𝑠2 

Measurement noise 𝜂𝑡 Distance 𝜎𝑑=1 m,  

Bearing 𝜎b=10 m 

Prediction time horizon  N = 20 steps 

1step = 0.1 s 

 

Fig.5 Robot trajectories under different control scenarios 

estimation error causes a large prediction error in the 

future state of the robot, consequently leading it straight 

to the obstacle. When operating a robot in uncertain 

environments, problems of the aforementioned type will 

most likely occur at some point. In general, smart robots 

working in unfamiliar environments would need to have 

that extra capability of survival in order to be able to 

avoid not only any encountered obstacle, but also all 

other unforeseeable situations that may unexpectedly 

and rather dynamically come about.  

3.3 Result of case 2: robust controlled robot 

As shown in Fig. 5, given the level of uncertainty, the 

robot of case 2 can safely avoid the obstacle. However,  



 

 
Fig.6 Particles estimating obstacle position in Case 1 

given the wide distribution of particles as shown in Fig. 

6, the robot would need to travel the furthest in order to 

avoid the restricted area of particle distribution.  

The result of this case implies that the robot can 

arrive at its goal faster provided the high accuracy of its 

sensors. However, general sensors have to deal with 

noise all the time especially in outdoor scenarios. This is 

a tough problem to completely resolve, but in general, 

synthesizing multiple measurements would certainly 

reduce some of those uncertainties.  

3.4 Result of case 3: the robot swarm 

In the presence of two robots, we notice the total 

distance covered by the main robot until the target point 

is shorter than that of the single robot of case 2. The set 

of observation robots as shown in Fig. 7 have their own 

separate trajectories. Such trajectories would allow for 

obstacle observation from different locations, at a 

distance from the main robot. As a result, we notice that 

the obstacle position is estimated to be a relatively small 

and precise area within the search space. Reduction in 

the size of the particle area turns out to have some 

interactive benefits between the observation robots and 

the main robot. Specifically, this could directly lead to a 

form of constraint relaxation on the main robot, and in 

turn, allows the main robot to follow a less conservative 

yet safe trajectory around the obstacle.  

Comparing with case 3, the trajectory of the main 

robot of case 4 was slightly shorter (see Fig. 5). This 

result implies that with the increase in the number of 

observation robots, more information is available and 

the main robot can move to the goal more properly. 

When considering more complicated situations, there is 

a possibility that three or more observation robots are 

needed. For example, some robots have different kind of 

sensors such as cameras and laser range-finders and 

measurement noises of each sensor can vary. In that 

case, a large number of observation robots, a 

cooperative robot swarm, would be beneficial to reduce 

uncertainty further, and to provide a stable and high 

performing set of main robots. 

4. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a new multi-robot control 

system that works in uncertain environments. The  

proposed system operates multiple robots to decrease 

 
Fig.7 Trajectory of the robot swarm in case 4 

 

sensed uncertainty and achieve high performance. 

Simulation studies have shown that the observation 

robots play a crucial role in enhancing the capabilities 

of main robots in order to avoid obstacles and safely 

arrive at the target points in shorter times. 

Future work includes evaluation of the proposed 

system in a more complex environment, which 

considers varying sensor noise levels for each robot, as 

well as other noise sources such as obstacle motion, 

sensor faults, and communication delays. Particularly, 

distributed control techniques will be explored, which 

reduces the local dependency to information from other 

robots under communication imperfections. 
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