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Abstract 

Combatting the modification of automotive control systems is a 
current and future challenge for OEMs and suppliers. ‘Chip-
tuning’ is a manifestation of manipulation of a vehicle’s original 
setup and calibration. With the increase in automotive 
functions implemented in software and corresponding business 
models, chip tuning will become a major concern. Recognizing 
tuned control units in a vehicle is required to report that 
circumstance for technical as well as legal reasons. 

This work approaches the problem by capturing the behavior of 
relevant control units within a machine learning system called a 
recognition module. The recognition module continuously 
monitors vehicle’s sensor data. It comprises a set of classifiers 
that have been trained on the intended behavior of a control 
unit before the vehicle is delivered. When the vehicle is on the 
road, the recognition module uses the classifier together with 
current data to ascertain that the behavior of the vehicle is as 
intended. 

A proof-of-concept implementation uses the TORCS racing 
simulator to generate traces of the engine’s behavior. The 
recognition module extracts features from these traces and 
feeds them to an artificial neural network (ANN). After training 
on different tracks, the ANN successfully distinguishes traces 
originating from the original racing car as well as traces taken 
from modified racing cars. 

The results show that assessing a vehicle’s behavior is 
feasible and contributes to protect its integrity against 
modifications. Additionally, the availability of a vehicle’s 
behavioral model can trigger even more interesting 
applications. 

Introduction 

Automotive systems are becoming a big target for malicious 
manipulation. Considering the ongoing massive changes in the 
automotive industry, it is obvious that software will be a major 
stakeholder to fuel future innovations in the automotive sector. 
Threats origin not only from the hobbyist hacker or car tuner, 
but the emerging automotive technologies will be an attractive 
target for economically motivated hackers. Cyber security 
means will be required to meet the challenges of a new 
automotive market. For instance, as the revenue from car 
sales is decreasing, Original Equipment Manufacturers (OEM) 
have to look for new business opportunities. Therefore, after 

market sales and subscription services are getting increasingly 
important.  

These new business models together with their dependency on 
software, however, make manipulations of the vehicle’s 
computer systems more attractive for economically motivated 
hackers. For example, chip tuning has not been a big concern 
for OEMs up to now. Hobbyist hackers have manipulated the 
parameters of their vehicle’s engine control units to gain, for 
instance, more horsepower. Consider an automotive software 
app that can enable higher horsepower. Illegally increasing the 
engine’s power by circumventing this app might be a high 
motivation for an attacker. Commercializing such a hack can 
threaten the app provider’s business.  

Moreover, from an OEM’s point of view it is required that the 
vehicle is operated within its technical specification. Failures 
and accidents that happen during this phase can harm then 
reputation of an OEM (e.g., bad news coverage in the media). 
If a vehicle becomes known to be exploitable, prospective 
customers might refrain from actually buying this vehicle 
model. Moreover, driving a vehicle outside the limits of its 
specification and certification, enable a great potential of 
malfunction and defects with catastrophic consequences that 
are not present in the originally configured vehicle.  

This paper proposes a system architecture to securely and 
safely monitor a vehicle’s telemetry data and engine 
parameters in order to recognize anomalous and therefore 
potentially manipulated behavior. Particularly, the paper 
elaborates on: 

• A security architecture for automotive systems  
• Monitoring of an engine’s behavior during operation 
• Machine learning algorithms facilitating the 

recognition of malicious behavior 
• Demonstration in a case study using a car racing 

simulation 

The paper is organized as follows: The next section elaborates 
on the chip tuning attack model. Then an architecture to 
recognize such attacks is presented. The subsequent sections 
present the proposed monitoring and detection mechanisms 
and their application in a case study. Finally, related work is 
described and a conclusion is drawn. 
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Attacks on Electronic Control Units 

Electronic Control Units (ECU) form the backbone of a 
vehicle’s computing infrastructure. Most commonly, ECUs 
perform tasks related to the control of the vehicle’s physical 
dynamics. A modern car deploys up to 100 ECUs [5]. The 
percentage relating the cost of electronics and the production 
cost of the entire vehicle highlights the rising importance of 
ECUs in vehicles: it increased from 19% in 2004 to 40% in 
2010 and it will eventually reach 50% in 2020 [2]. 

Traditional applications are, for instance, engine control, anti-
lock braking system (ABS) and electronic stability program 
(ESP). Future applications will include driver assistance 
systems (e.g., Autonomous Emergency Braking), advanced 
energy management in hybrid and electrical vehicles, as well 
as information exchange (i.e., vehicle-to-vehicle, vehicle-to-
infrastructure). These emerging services pose opportunities to 
deliver new, valuable services to drivers and passengers, but 
also represent new risks that have to be addressed.  

Protecting the integrity of the vehicle’s E/E platform is a major 
effort for cyber security in the automotive domain. Integrity and 
availability directly relate to a system’s dependability, thus, a 
failure in these properties might propagate to the safety 
domain. Assuming that an attacker employs economic thinking, 
availability is a lesser concern than integrity, because a failure 
in availability caused by a manipulation usually results in 
denial-of-service, which serves neither the attacker nor the 
vehicle holder. 

Chip Tuning 

This paper focuses on chip tuning. Chip tuning has 
accompanied the introduction of ECUs in vehicles right from 
the beginning. The basic observations made in this study 
translate, however, easily to other automotive systems.  

Chip tuning attacks aim at changing the behavior of a vehicle’s 
control algorithms by modifying the vehicle’s software. Control 
algorithms are increasingly implemented through digital control 
systems, thus, as programs stored in a vehicle’s ECU. The 
critical parts of a control program are the parameters of the 
control algorithm. These parameters adjust a control algorithm 
to the intended behavior in a specific engine. Usually, these 
parameters are stored in a table within an ECU’s flash 
memory.  

Definition 1: Chip tuning refers to any attempt to change the 
behavior of a vehicle with respect to control. The car 
tuner intrudes ECUs by illegally accessing its flash 
memory and programmatically resetting parameters or 
software, or the attacker adds hardware components that 
act in an abnormal manner. 

An exemplary chip tuning attack might be executed as follows: 
The tuner reads out the ECU’s flash memory to produce a raw 
binary dump of the control application’s binary image. This can 
be done, for instance, using the On–Board Diagnostics (OBD) 
interface [6] of an ECU. Next, the image is disassembled to 
reveal the structure of the code. The next step is to locate and 
modify the desired parameters. This is often done in a try–
and–error fashion. The modified image is then reprogrammed 

in the original ECU’s flash memory. Various companies offer 
chip tuning as a service. These companies assist vehicle 
owners or they work on behalf of the owners to carry out chip 
tuning. For example, a popular tuning attack is to increase the 
engine’s horsepower by manipulating the engine’s ECU. 

System Architecture for Intrusion Detection  

Figure 1 describes the proposed system architecture. There 
is a central gateway (CGW) that connects to the OBD2 port, 
telematics and infotainment units, as well as one or several 
communication busses (e.g. CAN) with connected ECUs. We 
assume that data on the in-vehicle communication bus is not 
encrypted but ideally it is authenticated. Such authentication 
stops obvious packet injection attacks and reduces the attack 
surface to attackers that successfully extracted cryptographic 
keys or successfully compromised an ECU. We also expect 
that in-vehicle authentication reduces error rates of the 
intrusion detection and prevention system (IPS). Ideally ECUs 
(including telematics and infotainment) are equipped with 
firewalls/packet filters that only allow packets to pass that were 
white-listed.  

The IPS is installed at least in the CGW but additional IPS 
could be deployed in dedicated or even all ECUs. A recognition 
module in the IPS monitors the in-vehicle communication 
packets and also the ECU status it is installed in. The IPS has 
means to react to detected misbehavior. We suggest that the 
IPS regularly pings all essential ECUs to notify them of a 
normal status. If ECUs do not receive pings anymore for a 
certain amount of time periods, they can conclude that an 
anomaly was detected by the IPS. The IPS is able to provide 
reports of detected abnormal behavior to a central server that 
analyzes the reports and potentially updates the IPS’ detection 
rules (e.g. as part of a firmware update).  

 
Figure 1: System architecture 

Recognizing Manipulated Behavior 

Manipulations of an ECU might be detected in two ways: 

a. Internally by verifying the ECU’s flash memory 
through checksums and other integrity protection 
mechanisms 

b. Externally through monitoring the ECU’s behavior 
and comparing to a reference of the 
intended/specified behavior 
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Internal verification is a very worthwhile approach to protect an 
ECU’s integrity. It is, however, often not sufficient, because 
integrity protection mechanisms can fail. Researchers have 
demonstrated that flash protection mechanisms can be 
overridden [7]. Therefore, we advocate an external approach 
by monitoring an ECU to complement the internal verification. 

Challenges 

A manipulated engine does not always exhibit manipulated 
behavior. For example, even through the controller might be 
manipulated it might not become visible at all times. 
Manipulation in the control setting is not a binary property, on 
the contrary to cryptography where a key can be either secret 
or disclosed. Consider a manipulated engine controller that 
maximizes the engine’s horsepower. In an urban driving 
situation involving frequent stops, the engine will most likely 
not exhibit the manipulated behavior, because quick 
accelerations or similar maneuvers might not be possible. 
Although, an intrusion is present in the ECU, it is not activated 
and consequently it cannot be observed. 

Figure 2 depicts this relationship between ‘specified’ and 
‘modified’ behavior. The state space of the ECU is partitioned 
in safe and unsafe states. Unsafe states refer to states that 
might have catastrophic consequences like a crash or 
irreversible damage. Usually, fault tolerance mediates between 
safe and unsafe system states. Regarding security the 
boundaries get blurred. Clearly, if a system operates within its 
specified behavior, it is safe and secure. If a manipulation is 
triggered, the system will transition to a modified behavior. This 
modified behavior might still be in the safe partition, but it could 
also cause unsafe system states. For instance, chip tuning 
aims to modify a system, while still being safe. However, if the 
car tuner goes over the top or works imprecise, the engine 
might get damaged. Recovery mechanisms can repair the 
system (e.g., by reflashing the ECU). A prerequisite for 
recovery is that the manipulation has been recognized. 

 

Figure 2: How security and safety are interacting 

 

Learning an Engine’s Characteristics 

Machine learning is the field of learning statistical models from 
data. As every engine can have its own characteristics and the 
characteristics are even subject to change over time, there is 
no single equation that covers the entire variety of engine 
behaviors. Therefore, this work employs machine learning 

techniques to build a statistical model of the engine’s behavior. 
Such model can be built in a controlled environment, for 
instance, when the vehicle is on the test track or when it is 
under maintenance. Training data is collected and used to 
calibrate the statistical model. During operation the current 
behavior of the vehicle is constantly checked against the model 
of its accepted behavior. The IPS’ recognition module then 
determines, if the actual behavior deviates from the accepted, 
trained behavior. Such a deviation is then related to potential 
manipulations. Note that the IPS runs in the CGW and 
monitors the engine ECU externally. 

Recognition Module 

The recognition module encompasses all programs and data 
collection and processing routines that are required to 
determine manipulated behavior of an engine. Sensors provide 
the recognition module with current telemetry data that the 
recognition module processes to generate a report to any 
interested party (e.g., the car holder, the maintenance 
technician, or the OEM). 

In order to recognize manipulated behavior, the recognition 
module aims to detect anomalous behavior in the telemetry 
data of the engine. By solving the problem of recognizing 
manipulated behavior through anomaly detection, we implicitly 
account for the circumstance that a manipulated engine will not 
always exhibit manipulated behavior, but only under specific 
conditions.  

Figure 3 depicts the basic workflow of the recognition module. 
At each analysis step a portion of the data is used to compute 
a feature vector (i.e., an individual). The insight exploited in this 
work is that the trained model will reconstruct some small 
number of individuals poorly and these can be considered as 
anomaly or outliers. Ranking data according to the magnitude 
of the reconstruction error and thus computing an anomaly 
score measures outlyingness. The recognition module 
searches for bundles of anomalies in the telemetry data stream 
and reports a potential manipulation, if a certain threshold is 
exceeded. The manipulation detector block performs a 
plausibility check by fusing the result of the anomaly detection 
with other relevant data such as a diagnostic data. For 
instance, if the engine is faulty, it might produce a high number 
of anomalies that might lead to false positives. 

 

Figure 3: Recognition module process flow 

Features 

Features represent characteristic forms or shapes of an object 
under observation. Features are measurable and quantifiable. 
An individual is a vector of measurements of individuals.  
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Feature selection  

In order to characterize the behavior of a regular combustion 
engine the three parameters speed, RPM, and torque were 
selected. All three parameters were measured at the same 
instant and carry therefore the same timestamp. Optionally 
acceleration as a fourth feature could be computed from this 
data. 

This selection of features is aimed to distinguish more powerful 
engine configurations from less powerful ones. In order to 
recognize other manipulations (e.g., towards fuel 
consumption), another set of features will most likely be 
selected. 

Feature extraction 

The selected features are collected in the form of time series 
data. Time series data cannot be directly used for the intended 
machine learning approach. First, the time series is chopped in 
sequences that are used as atomic input units. Then features 
that can be fed to the neural network are extracted from each 
sequence. Following the feature extraction approach described 
in [9], following statistical moments features are computed to 
characterize each sequence and to make different sequences 
comparable: 

• Mean value of all values in the sequence 
• Standard deviations or variance measures amount 

of variation or dispersion from the average 
• Variance is the square of the standard deviation 
• Skewness: degree of asymmetry of values around 

the mean value 
• Kurtosis: relative peakness or flatness 

The features are computed on the original (primary) sequence 
as well as on a shifted sequence. Figure 4 depicts a flow 
diagram of the feature extraction method after [9]. 

 

Figure 4: Feature extraction of time series data 

Feature scaling 

Unity-based normalization is applied to all features X that 
brings them in the range [0,1]: 

𝑋!"#$ =
𝑋 − 𝑋!"#

𝑋!"# − 𝑋!"#
 

 

Normalizing values eliminates effects of different magnitudes 
of single features. This facilitates the comparison of different 
features in a feature vector. 

Anomaly Detection Algorithm 

Technically, the anticipated anomaly detection algorithm has to 
solve a one-class classification problem. Since it is not known 
at design time in which ways the vehicle might be tuned, only 
normal data can be used to train the model. Thus, only one 
label is available. This is also called semi-supervised anomaly 
detection. The survey in [11] lists several possible methods to 
perform this task. The proposed one-class classification 
approach is based on a particular variant of artificial neural 
networks (ANN), namely a bottleneck type network. 
Traditionally, these ANNs were used for data compression, the 
paper in [1210] suggested to use them on one-class 
classification problems. The hidden layer generalizes all 
trained features, thus, it stores the typical behavior of an 
engine. 

Like depicted in Figure 5, such a network consists of an input 
layer and an output layer of equal sizes, with an intermediate 
layer of smaller size in-between. For example, using the three 
selected parameters speed, RPM, and torque for the feature 
vector and extracting five features for each parameter, the 
resulting ANN encompasses 30 input and output units. 
Typically, six units are used in the hidden layer [12]. 

The training of a bottleneck ANN works as follows: First, a 
neural network is trained on the normal training data to learn 
the different normal classes. Second, each test instance is 
provided as an input to the neural network. Then outputs are 
combined using a Root-Mean-Square (RMS) function to 
compute an anomaly score for each feature vector. 

𝑆𝑐𝑜𝑟𝑒 =∥ 𝑥 − 𝑥 ∥! 

The anomaly score is a measure of similarity to the trained, 
normal features. If it is close to that of the training set, it is 
assumed that the feature vector under consideration is normal, 
otherwise it is an anomaly. 

 

Figure 5: Bottleneck Neural Network 

Case Study: Racing Simulation 

The case study uses the TORCS racing simulator [8] to 
simulate vehicles with different engine configurations. TORCS 
provides a realistic physics environment, car models, 
racetracks, and an interface to implement robots that are 
computer programs steering vehicles. The simulator has a 
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logging interface that was used to output time-stamped engine 
data, namely speed, RPM, and torque. This datasets were 
then imported and preprocessed in Matlab and feed into the 
recognition module. 

Simulation configuration 

TORCS was configured with the standard parameters of 
version 1.3.6. The simulation was executed from the command 
line to shorten experiment time. 

Cars 

The car model ‘p406’ simulating a Peugeot 406 is the baseline 
for our experiments. A car in TORCS consists of a 
configuration contained in an XML file. All different kinds of 
vehicle parameters are configurable, e.g., chassis size, aero 
dynamical properties, wheel rigidity, axles diameter, etc. For 
the purpose of emulating a manipulated engine, the ‘Engine’ 
parameter was modified. An RPM/torque curve characterizes 
the performance of an engine. Figure 6 depicts the engine 
characteristics of the employed car model. It shows two 
curves, blue for the original engine, red for the manipulated 
engine. The manipulated engine increased its torque by values 
between 10 Nm and 30 N. The same robot was used for each 
vehicle configuration. 

Tracks 

The simulation was executed on a set of 41 racing tracks. The 
standard as well as the expansion pack was used for the 
experiments. Some tracks were discarded, because robot 
could not solve all. The tracks are a representative sample to 
accommodate for many different driving situations and 
maneuvers. Figure 7 depicts an overview of the driving 
performance on all tracks with the two engine configurations. It 
shows that the employed manipulation resulted in lower track 
times, thus, increased the overall speed performance. 

Recognition of Manipulated Behavior 

An ANN was trained according to the parameters described in 
Table 1 using the MATLAB Neural Network Toolbox. Figure 8 
shows the training performance for each of the three datasets 
(i.e., 5 s, 1 s, 0.5 s sampling periods) for six nodes in the 
hidden layer. The ANNs are converging after a few iterations.  

The trained ANN was then validated using traces from the 
manipulated engine. Figure XX shows the performance of 
different numbers of nodes in the hidden layer. 

The Manipulation detector contains a threshold parameter for 
the anomaly score to determine, if a current sample represents 
an anomaly or not. Depending on the selected threshold 
different anomaly rates are resulting. Figure 9 shows the 
relation between the anomaly rate for original and manipulated 
behavior. Receiver Operating Characteristic (ROC) curves is a 
standard means used to represent the performance of a 
particular recognition mechanism. It shows the relation 
between true positives and false positives under a varying 
parameter that is this case the threshold in the Manipulation 
detector. The figure reveals that the True positive rate is larger 

than the False positive rate, thus, the recognition works. Figure 
10 compares the ROC curve for different numbers of hidden 
units in the ANN. We read out of the graph that eight seems to 
be the best choice. 

Table 1: Neural Network parameters 

ANN 
Structure Feedforward Inputs: 

30 
Hidden: 
8 

Outputs
: 30 

Training 
function Levenberg-Marquardt backpropagation 

Performance 
function Mean-square-error 

Regularization Automated Regularization (trainbr) 

 

 

Figure 6: Engine characteristics 

 

 

Figure 7: Speed of manipulated engine on different tracks 

 

Figure 8: Neural Network training performance 



Page 6 of 8 

 

 

Figure 9: ROC of the anomaly detector with 8 hidden units 

 

Figure 10: ROC for a varying number of hidden units 

Related Work 

Automotive security is a research field emerging at a high 
speed. Several surveys and overview papers are available [15] 
[17] [18]. Automotive intrusion detection systems (IDS) have 
been proposed in [16]. An approach to IDS using the entropy 
of messages on the automotive bus is in [19]. First commercial 
IDS are appearing on the market1. Chip tuning and IP 
protection in automotive environments has been extensively 
discussed in the literature [15]. 

Diagnostics of machinery is a large application field for 
machine learning [1]. ANNs have been used to diagnose faults 
in combustion engines [10]. Other variants of bottleneck ANNs 
are Replicator Neural Networks (RNN) [13], and autoencoder 

                                                             

1 Online, http://www.tower-sec.com/ [accessed Oct. 2014] 

neural networks [14], which have been used in [20] to analyze 
(electrical) engine behavior.  

Conclusion 

This paper presents a method based on Neural Networks to 
differentiate between original and manipulated behavior of an 
engine. Studies have shown that the selected approach is 
feasible. The results look promising, however, there is still 
some room for improving the anomaly detection algorithms. 
Future work has to include adaptive learning to accommodate 
for ageing and repair effects of the engine. Moreover, faulty 
behavior has to be considered as well. Fusing the recognition 
module with diagnostic data can enable a powerful approach to 
assess the state of the vehicle and the applications will go far 
beyond that of recognizing manipulations. 
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Definitions/Abbreviations 

ABS Anti-lock Braking System 

ANN Artificial Neural Network 

CAN Controller Area Network 

CGW Central Gateway 

ECU Electronic Control Unit 

ESP Electronic Stability 
Program 

IDS Intrusion Detection 
System 

IPS Intrusion Detection and 
Prevention System 

OEM Original Equipment 
Manufacturer 

RMS Root-Mean-Square 

ROC Receiver Operating 
Characteristic 

XML eXtensible Markup 
Language 

 


