
Page 1 of 8

Type Paper Number Here

Recognizing Manipulated Electronic Control Units

Armin Wasicek and Andre Weimerskirch
University of California, Berkeley and University of Michigan

Preprint, Copyright © 2014 Armin Wasicek

Abstract

Combatting the modification of automotive control systems is a
current and future challenge for OEMs and suppliers. ‘Chip-
tuning’ is a manifestation of manipulation of a vehicle’s original
setup and calibration. With the increase in automotive
functions implemented in software and corresponding business
models, chip tuning will become a major concern. Recognizing
tuned control units in a vehicle is required to report that
circumstance for technical as well as legal reasons.

This work approaches the problem by capturing the behavior of
relevant control units within a machine learning system called a
recognition module. The recognition module continuously
monitors vehicle’s sensor data. It comprises a set of classifiers
that have been trained on the intended behavior of a control
unit before the vehicle is delivered. When the vehicle is on the
road, the recognition module uses the classifier together with
current data to ascertain that the behavior of the vehicle is as
intended.

A proof-of-concept implementation uses the TORCS racing
simulator to generate traces of the engine’s behavior. The
recognition module extracts features from these traces and
feeds them to an artificial neural network (ANN). After training
on different tracks, the ANN successfully distinguishes traces
originating from the original racing car as well as traces taken
from modified racing cars.

The results show that assessing a vehicle’s behavior is
feasible and contributes to protect its integrity against
modifications. Additionally, the availability of a vehicle’s
behavioral model can trigger even more interesting
applications.

Introduction

Automotive systems are becoming a big target for malicious
manipulation. Considering the ongoing massive changes in the
automotive industry, it is obvious that software will be a major
stakeholder to fuel future innovations in the automotive sector.
Threats origin not only from the hobbyist hacker or car tuner,
but the emerging automotive technologies will be an attractive
target for economically motivated hackers. Cyber security
means will be required to meet the challenges of a new
automotive market. For instance, as the revenue from car
sales is decreasing, Original Equipment Manufacturers (OEM)
have to look for new business opportunities. Therefore, after

market sales and subscription services are getting increasingly
important.

These new business models together with their dependency on
software, however, make manipulations of the vehicle’s
computer systems more attractive for economically motivated
hackers. For example, chip tuning has not been a big concern
for OEMs up to now. Hobbyist hackers have manipulated the
parameters of their vehicle’s engine control units to gain, for
instance, more horsepower. Consider an automotive software
app that can enable higher horsepower. Illegally increasing the
engine’s power by circumventing this app might be a high
motivation for an attacker. Commercializing such a hack can
threaten the app provider’s business.

Moreover, from an OEM’s point of view it is required that the
vehicle is operated within its technical specification. Failures
and accidents that happen during this phase can harm then
reputation of an OEM (e.g., bad news coverage in the media).
If a vehicle becomes known to be exploitable, prospective
customers might refrain from actually buying this vehicle
model. Moreover, driving a vehicle outside the limits of its
specification and certification, enable a great potential of
malfunction and defects with catastrophic consequences that
are not present in the originally configured vehicle.

This paper proposes a system architecture to securely and
safely monitor a vehicle’s telemetry data and engine
parameters in order to recognize anomalous and therefore
potentially manipulated behavior. Particularly, the paper
elaborates on:

• A security architecture for automotive systems
• Monitoring of an engine’s behavior during operation
• Machine learning algorithms facilitating the

recognition of malicious behavior
• Demonstration in a case study using a car racing

simulation

The paper is organized as follows: The next section elaborates
on the chip tuning attack model. Then an architecture to
recognize such attacks is presented. The subsequent sections
present the proposed monitoring and detection mechanisms
and their application in a case study. Finally, related work is
described and a conclusion is drawn.

Page 2 of 8

Attacks on Electronic Control Units

Electronic Control Units (ECU) form the backbone of a
vehicle’s computing infrastructure. Most commonly, ECUs
perform tasks related to the control of the vehicle’s physical
dynamics. A modern car deploys up to 100 ECUs [5]. The
percentage relating the cost of electronics and the production
cost of the entire vehicle highlights the rising importance of
ECUs in vehicles: it increased from 19% in 2004 to 40% in
2010 and it will eventually reach 50% in 2020 [2].

Traditional applications are, for instance, engine control, anti-
lock braking system (ABS) and electronic stability program
(ESP). Future applications will include driver assistance
systems (e.g., Autonomous Emergency Braking), advanced
energy management in hybrid and electrical vehicles, as well
as information exchange (i.e., vehicle-to-vehicle, vehicle-to-
infrastructure). These emerging services pose opportunities to
deliver new, valuable services to drivers and passengers, but
also represent new risks that have to be addressed.

Protecting the integrity of the vehicle’s E/E platform is a major
effort for cyber security in the automotive domain. Integrity and
availability directly relate to a system’s dependability, thus, a
failure in these properties might propagate to the safety
domain. Assuming that an attacker employs economic thinking,
availability is a lesser concern than integrity, because a failure
in availability caused by a manipulation usually results in
denial-of-service, which serves neither the attacker nor the
vehicle holder.

Chip Tuning

This paper focuses on chip tuning. Chip tuning has
accompanied the introduction of ECUs in vehicles right from
the beginning. The basic observations made in this study
translate, however, easily to other automotive systems.

Chip tuning attacks aim at changing the behavior of a vehicle’s
control algorithms by modifying the vehicle’s software. Control
algorithms are increasingly implemented through digital control
systems, thus, as programs stored in a vehicle’s ECU. The
critical parts of a control program are the parameters of the
control algorithm. These parameters adjust a control algorithm
to the intended behavior in a specific engine. Usually, these
parameters are stored in a table within an ECU’s flash
memory.

Definition 1: Chip tuning refers to any attempt to change the
behavior of a vehicle with respect to control. The car
tuner intrudes ECUs by illegally accessing its flash
memory and programmatically resetting parameters or
software, or the attacker adds hardware components that
act in an abnormal manner.

An exemplary chip tuning attack might be executed as follows:
The tuner reads out the ECU’s flash memory to produce a raw
binary dump of the control application’s binary image. This can
be done, for instance, using the On–Board Diagnostics (OBD)
interface [6] of an ECU. Next, the image is disassembled to
reveal the structure of the code. The next step is to locate and
modify the desired parameters. This is often done in a try–
and–error fashion. The modified image is then reprogrammed

in the original ECU’s flash memory. Various companies offer
chip tuning as a service. These companies assist vehicle
owners or they work on behalf of the owners to carry out chip
tuning. For example, a popular tuning attack is to increase the
engine’s horsepower by manipulating the engine’s ECU.

System Architecture for Intrusion Detection

Figure 1 describes the proposed system architecture. There
is a central gateway (CGW) that connects to the OBD2 port,
telematics and infotainment units, as well as one or several
communication busses (e.g. CAN) with connected ECUs. We
assume that data on the in-vehicle communication bus is not
encrypted but ideally it is authenticated. Such authentication
stops obvious packet injection attacks and reduces the attack
surface to attackers that successfully extracted cryptographic
keys or successfully compromised an ECU. We also expect
that in-vehicle authentication reduces error rates of the
intrusion detection and prevention system (IPS). Ideally ECUs
(including telematics and infotainment) are equipped with
firewalls/packet filters that only allow packets to pass that were
white-listed.

The IPS is installed at least in the CGW but additional IPS
could be deployed in dedicated or even all ECUs. A recognition
module in the IPS monitors the in-vehicle communication
packets and also the ECU status it is installed in. The IPS has
means to react to detected misbehavior. We suggest that the
IPS regularly pings all essential ECUs to notify them of a
normal status. If ECUs do not receive pings anymore for a
certain amount of time periods, they can conclude that an
anomaly was detected by the IPS. The IPS is able to provide
reports of detected abnormal behavior to a central server that
analyzes the reports and potentially updates the IPS’ detection
rules (e.g. as part of a firmware update).

Figure 1: System architecture

Recognizing Manipulated Behavior

Manipulations of an ECU might be detected in two ways:

a. Internally by verifying the ECU’s flash memory
through checksums and other integrity protection
mechanisms

b. Externally through monitoring the ECU’s behavior
and comparing to a reference of the
intended/specified behavior

Page 3 of 8

Internal verification is a very worthwhile approach to protect an
ECU’s integrity. It is, however, often not sufficient, because
integrity protection mechanisms can fail. Researchers have
demonstrated that flash protection mechanisms can be
overridden [7]. Therefore, we advocate an external approach
by monitoring an ECU to complement the internal verification.

Challenges

A manipulated engine does not always exhibit manipulated
behavior. For example, even through the controller might be
manipulated it might not become visible at all times.
Manipulation in the control setting is not a binary property, on
the contrary to cryptography where a key can be either secret
or disclosed. Consider a manipulated engine controller that
maximizes the engine’s horsepower. In an urban driving
situation involving frequent stops, the engine will most likely
not exhibit the manipulated behavior, because quick
accelerations or similar maneuvers might not be possible.
Although, an intrusion is present in the ECU, it is not activated
and consequently it cannot be observed.

Figure 2 depicts this relationship between ‘specified’ and
‘modified’ behavior. The state space of the ECU is partitioned
in safe and unsafe states. Unsafe states refer to states that
might have catastrophic consequences like a crash or
irreversible damage. Usually, fault tolerance mediates between
safe and unsafe system states. Regarding security the
boundaries get blurred. Clearly, if a system operates within its
specified behavior, it is safe and secure. If a manipulation is
triggered, the system will transition to a modified behavior. This
modified behavior might still be in the safe partition, but it could
also cause unsafe system states. For instance, chip tuning
aims to modify a system, while still being safe. However, if the
car tuner goes over the top or works imprecise, the engine
might get damaged. Recovery mechanisms can repair the
system (e.g., by reflashing the ECU). A prerequisite for
recovery is that the manipulation has been recognized.

Figure 2: How security and safety are interacting

Learning an Engine’s Characteristics

Machine learning is the field of learning statistical models from
data. As every engine can have its own characteristics and the
characteristics are even subject to change over time, there is
no single equation that covers the entire variety of engine
behaviors. Therefore, this work employs machine learning

techniques to build a statistical model of the engine’s behavior.
Such model can be built in a controlled environment, for
instance, when the vehicle is on the test track or when it is
under maintenance. Training data is collected and used to
calibrate the statistical model. During operation the current
behavior of the vehicle is constantly checked against the model
of its accepted behavior. The IPS’ recognition module then
determines, if the actual behavior deviates from the accepted,
trained behavior. Such a deviation is then related to potential
manipulations. Note that the IPS runs in the CGW and
monitors the engine ECU externally.

Recognition Module

The recognition module encompasses all programs and data
collection and processing routines that are required to
determine manipulated behavior of an engine. Sensors provide
the recognition module with current telemetry data that the
recognition module processes to generate a report to any
interested party (e.g., the car holder, the maintenance
technician, or the OEM).

In order to recognize manipulated behavior, the recognition
module aims to detect anomalous behavior in the telemetry
data of the engine. By solving the problem of recognizing
manipulated behavior through anomaly detection, we implicitly
account for the circumstance that a manipulated engine will not
always exhibit manipulated behavior, but only under specific
conditions.

Figure 3 depicts the basic workflow of the recognition module.
At each analysis step a portion of the data is used to compute
a feature vector (i.e., an individual). The insight exploited in this
work is that the trained model will reconstruct some small
number of individuals poorly and these can be considered as
anomaly or outliers. Ranking data according to the magnitude
of the reconstruction error and thus computing an anomaly
score measures outlyingness. The recognition module
searches for bundles of anomalies in the telemetry data stream
and reports a potential manipulation, if a certain threshold is
exceeded. The manipulation detector block performs a
plausibility check by fusing the result of the anomaly detection
with other relevant data such as a diagnostic data. For
instance, if the engine is faulty, it might produce a high number
of anomalies that might lead to false positives.

Figure 3: Recognition module process flow

Features

Features represent characteristic forms or shapes of an object
under observation. Features are measurable and quantifiable.
An individual is a vector of measurements of individuals.

Page 4 of 8

Feature selection

In order to characterize the behavior of a regular combustion
engine the three parameters speed, RPM, and torque were
selected. All three parameters were measured at the same
instant and carry therefore the same timestamp. Optionally
acceleration as a fourth feature could be computed from this
data.

This selection of features is aimed to distinguish more powerful
engine configurations from less powerful ones. In order to
recognize other manipulations (e.g., towards fuel
consumption), another set of features will most likely be
selected.

Feature extraction

The selected features are collected in the form of time series
data. Time series data cannot be directly used for the intended
machine learning approach. First, the time series is chopped in
sequences that are used as atomic input units. Then features
that can be fed to the neural network are extracted from each
sequence. Following the feature extraction approach described
in [9], following statistical moments features are computed to
characterize each sequence and to make different sequences
comparable:

• Mean value of all values in the sequence
• Standard deviations or variance measures amount

of variation or dispersion from the average
• Variance is the square of the standard deviation
• Skewness: degree of asymmetry of values around

the mean value
• Kurtosis: relative peakness or flatness

The features are computed on the original (primary) sequence
as well as on a shifted sequence. Figure 4 depicts a flow
diagram of the feature extraction method after [9].

Figure 4: Feature extraction of time series data

Feature scaling

Unity-based normalization is applied to all features X that
brings them in the range [0,1]:

𝑋!"#$ =
𝑋 − 𝑋!"#

𝑋!"# − 𝑋!"#

Normalizing values eliminates effects of different magnitudes
of single features. This facilitates the comparison of different
features in a feature vector.

Anomaly Detection Algorithm

Technically, the anticipated anomaly detection algorithm has to
solve a one-class classification problem. Since it is not known
at design time in which ways the vehicle might be tuned, only
normal data can be used to train the model. Thus, only one
label is available. This is also called semi-supervised anomaly
detection. The survey in [11] lists several possible methods to
perform this task. The proposed one-class classification
approach is based on a particular variant of artificial neural
networks (ANN), namely a bottleneck type network.
Traditionally, these ANNs were used for data compression, the
paper in [1210] suggested to use them on one-class
classification problems. The hidden layer generalizes all
trained features, thus, it stores the typical behavior of an
engine.

Like depicted in Figure 5, such a network consists of an input
layer and an output layer of equal sizes, with an intermediate
layer of smaller size in-between. For example, using the three
selected parameters speed, RPM, and torque for the feature
vector and extracting five features for each parameter, the
resulting ANN encompasses 30 input and output units.
Typically, six units are used in the hidden layer [12].

The training of a bottleneck ANN works as follows: First, a
neural network is trained on the normal training data to learn
the different normal classes. Second, each test instance is
provided as an input to the neural network. Then outputs are
combined using a Root-Mean-Square (RMS) function to
compute an anomaly score for each feature vector.

𝑆𝑐𝑜𝑟𝑒 =∥ 𝑥 − 𝑥 ∥!

The anomaly score is a measure of similarity to the trained,
normal features. If it is close to that of the training set, it is
assumed that the feature vector under consideration is normal,
otherwise it is an anomaly.

Figure 5: Bottleneck Neural Network

Case Study: Racing Simulation

The case study uses the TORCS racing simulator [8] to
simulate vehicles with different engine configurations. TORCS
provides a realistic physics environment, car models,
racetracks, and an interface to implement robots that are
computer programs steering vehicles. The simulator has a

Page 5 of 8

logging interface that was used to output time-stamped engine
data, namely speed, RPM, and torque. This datasets were
then imported and preprocessed in Matlab and feed into the
recognition module.

Simulation configuration

TORCS was configured with the standard parameters of
version 1.3.6. The simulation was executed from the command
line to shorten experiment time.

Cars

The car model ‘p406’ simulating a Peugeot 406 is the baseline
for our experiments. A car in TORCS consists of a
configuration contained in an XML file. All different kinds of
vehicle parameters are configurable, e.g., chassis size, aero
dynamical properties, wheel rigidity, axles diameter, etc. For
the purpose of emulating a manipulated engine, the ‘Engine’
parameter was modified. An RPM/torque curve characterizes
the performance of an engine. Figure 6 depicts the engine
characteristics of the employed car model. It shows two
curves, blue for the original engine, red for the manipulated
engine. The manipulated engine increased its torque by values
between 10 Nm and 30 N. The same robot was used for each
vehicle configuration.

Tracks

The simulation was executed on a set of 41 racing tracks. The
standard as well as the expansion pack was used for the
experiments. Some tracks were discarded, because robot
could not solve all. The tracks are a representative sample to
accommodate for many different driving situations and
maneuvers. Figure 7 depicts an overview of the driving
performance on all tracks with the two engine configurations. It
shows that the employed manipulation resulted in lower track
times, thus, increased the overall speed performance.

Recognition of Manipulated Behavior

An ANN was trained according to the parameters described in
Table 1 using the MATLAB Neural Network Toolbox. Figure 8
shows the training performance for each of the three datasets
(i.e., 5 s, 1 s, 0.5 s sampling periods) for six nodes in the
hidden layer. The ANNs are converging after a few iterations.

The trained ANN was then validated using traces from the
manipulated engine. Figure XX shows the performance of
different numbers of nodes in the hidden layer.

The Manipulation detector contains a threshold parameter for
the anomaly score to determine, if a current sample represents
an anomaly or not. Depending on the selected threshold
different anomaly rates are resulting. Figure 9 shows the
relation between the anomaly rate for original and manipulated
behavior. Receiver Operating Characteristic (ROC) curves is a
standard means used to represent the performance of a
particular recognition mechanism. It shows the relation
between true positives and false positives under a varying
parameter that is this case the threshold in the Manipulation
detector. The figure reveals that the True positive rate is larger

than the False positive rate, thus, the recognition works. Figure
10 compares the ROC curve for different numbers of hidden
units in the ANN. We read out of the graph that eight seems to
be the best choice.

Table 1: Neural Network parameters

ANN
Structure Feedforward Inputs:

30
Hidden:
8

Outputs
: 30

Training
function Levenberg-Marquardt backpropagation

Performance
function Mean-square-error

Regularization Automated Regularization (trainbr)

Figure 6: Engine characteristics

Figure 7: Speed of manipulated engine on different tracks

Figure 8: Neural Network training performance

Page 6 of 8

Figure 9: ROC of the anomaly detector with 8 hidden units

Figure 10: ROC for a varying number of hidden units

Related Work

Automotive security is a research field emerging at a high
speed. Several surveys and overview papers are available [15]
[17] [18]. Automotive intrusion detection systems (IDS) have
been proposed in [16]. An approach to IDS using the entropy
of messages on the automotive bus is in [19]. First commercial
IDS are appearing on the market1. Chip tuning and IP
protection in automotive environments has been extensively
discussed in the literature [15].

Diagnostics of machinery is a large application field for
machine learning [1]. ANNs have been used to diagnose faults
in combustion engines [10]. Other variants of bottleneck ANNs
are Replicator Neural Networks (RNN) [13], and autoencoder

1 Online, http://www.tower-sec.com/ [accessed Oct. 2014]

neural networks [14], which have been used in [20] to analyze
(electrical) engine behavior.

Conclusion

This paper presents a method based on Neural Networks to
differentiate between original and manipulated behavior of an
engine. Studies have shown that the selected approach is
feasible. The results look promising, however, there is still
some room for improving the anomaly detection algorithms.
Future work has to include adaptive learning to accommodate
for ageing and repair effects of the engine. Moreover, faulty
behavior has to be considered as well. Fusing the recognition
module with diagnostic data can enable a powerful approach to
assess the state of the vehicle and the applications will go far
beyond that of recognizing manipulations.

References

1. Kankar, P.K., Sharma, S.C., Harsha, S.P., “Fault
Diagnosis of Ball Bearings using Machine Learning
Methods”, In Elsevier, Expert Systems with Applications
38. pages 1876–1886, 2011

2. Wallentowitz, H., Freialdenhoven, A., Olschewski, I.,
“Strategien in der Automobilindustrie: Technologietrends
und Marktentwicklungen.” Teubner Verlag / GWV
Fachverlage GmbH, 2009
doi:10.1007/978-3-8348-9311-6

3. Wasicek, A., “Copy protection for automotive electronic
control units using authenticity heartbeat signals.” 10th
IEEE International Conference on Industrial Informatics
(INDIN), 2012, doi: 10.1109/INDIN.2012.6301060.

4. Wasicek, A, El-Salloum, C., Kopetz, H., “Authentication in
Time-Triggered Systems Using Time-Delayed Release of
Keys”, In 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), pp. 31-39, 2011
doi:10.1109/ISORC.2011.14

5. Broy, M., Kruger, I.H., Pretschner, A., Salzmann, C.,
“Engineering Automotive Software,” Proceedings of the
IEEE , vol.95, no.2, pp.356,373, Feb. 2007
doi: 10.1109/JPROC.2006.888386

6. SAE. E/E Diagnostic Test Modes. Standard J1979,
Vehicle E/E System Diagnostic Standards Committee,
September 2010.

7. Sergei P. Skorobogatov. Copy Protection in Modern
Microcontrollers. Online. http://www.cl.cam.ac.uk/
sps32/mcu lock.html.

8. B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R.
Coulom, A. Sumner. TORCS: The Open Racing Car
Simulator, v1.3.6, 2014.

9. Nanopoulos, A., Alcock, R., Manolopoulos, Y., ”Feature-
based Classification of Time-series Data,” International
Journal of Computer Research, Vol. 10, pp 49-61, 2001

10. Wu, J-D., Liu, C.H., “An expert system for fault diagnosis
in internal combustion engines using wavelet packet
transform and neural network,“ In Expert Systems with
Applications, Vol. 36(3), pp. 4278–4286, April, 2009
doi: 10.1016/j.eswa.2008.03.008

11. Chandola, V., Banerjee, A., Kumar, V., "Anomaly
Detection : A Survey", ACM Computing Surveys, Vol.
41(3), Article 15, July 2009
doi: 10.1145/1541880.1541882

Page 7 of 8

12. Manevitz, L., Yousef, M., "One-class document
classification via Neural Networks", In Elsevier,
Neurocomputing, Vol. 70(7–9), pp. 1466–1481, 2007
doi: 10.1016/j.neucom.2006.05.013

13. Hawkins, S., He,H., Williams, G., Baxter, R., "Outlier
Detection Using Replicator Neural Networks", Springer
LCNS 2454, Data Warehousing and Knowledge
Discovery, pp 170-180, 2002

14. Markou, M., Singh, S., "Novelty detection: a review—part
2: neural network based approaches", In Elsevier, Signal
Processing, Vol. 83(12), pp. 2499–2521, 2003
doi: 10.1016/j.sigpro.2003.07.019

15. Wasicek, A., "Protection of Intellectual Property Rights in
Automotive Control Units", In SAE Int. J. Passeng. Cars &
Electron. Electr. Syst., Vol. 7, pp 201-212, 2014
doi: 10.4271/2014-01-0338

16. Hoppe, T., Kiltz, S., Dittmann, J., “Security threats to
automotive CAN networks – practical examples and
selected short-term countermeasures,” Proceedings of the
27th international conference on Computer Safety,
Reliability, and Security (SAFECOMP), 2008, pages 235-
248, doi:10.1007/978-3-540-87698-4_21

17. Studnia, I., Nicomette, V., Alata, E., Deswarte, Y.,
Kaâniche, M., Laarouchi, Y., “Survey on Security Threats
and Protection Mechanisms in Embedded Automotive
Networks,” The 2nd Workshop on Open Resilient human-
aware Cyber-physical Systems (WORCS-2013), 2013

18. Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., Savage, S., Koscher, K., Czeskis, A.,
Roesner, F., Kohno, T., et al., “Comprehensive
experimental analyses of automotive attack surfaces,” In
Proc. 20th USENIX Security, San Francisco, CA, 2011

19. Muter, M., Asaj, N., "Entropy-based anomaly detection for
in-vehicle networks", Porc. of IEEE Intelligent Vehicles
Symposium (IV), pp. 1110 - 1115, 2011
doi: 10.1109/IVS.2011.5940552

20. Petsche, T., Marcantonio, A., Darken, C., Hanson, S.J.,
Kuhn, G.M., Santoso, I., "A Neural Network
Autoassociator for Induction Motor Failure Prediction", In
NIPS, MIT Press, pp. 924--930, 1996

Contact Information

The corresponding author is Armin Wasicek
(arminw@berkeley.edu).

Acknowledgments

This research was in part supported by a Marie Curie IOF
Action within the 7th Framework Programme under the funding
ID PIOF-GA-2012-326604 (MODESEC). The responsibility for
the content rests with the authors.

Page 8 of 8

Definitions/Abbreviations

ABS Anti-lock Braking System

ANN Artificial Neural Network

CAN Controller Area Network

CGW Central Gateway

ECU Electronic Control Unit

ESP Electronic Stability
Program

IDS Intrusion Detection
System

IPS Intrusion Detection and
Prevention System

OEM Original Equipment
Manufacturer

RMS Root-Mean-Square

ROC Receiver Operating
Characteristic

XML eXtensible Markup
Language

