
PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016 1

Systems Engineering for Industrial Cyber-Physical
Systems using Aspects

Ilge Akkaya, Member IEEE, Patricia Derler, Shuhei Emoto, Edward A. Lee, Fellow IEEE

Abstract—One of the biggest challenges in cyber-physical sys-
tem (CPS) design is their intrinsic complexity, heterogeneity, and
multidisciplinary nature. Emerging distributed CPS integrate a
wide range of heterogeneous aspects such as physical dynamics,
control, machine learning, and error handling. Furthermore,
system components are often distributed over multiple physical
locations, hardware platforms and communication networks.
While model-based design (MBD) has tremendously improved
the design process, CPS design remains a difficult task. Models
are meant to improve understanding of a system, yet this quality
is often lost when models become too complicated. In this paper,
we show how to use aspect-oriented (AO) modeling techniques in
MBD as a systematic way to segregate domains of expertise and
cross-cutting concerns within the model. We demonstrate these
concepts on actor-oriented models of an industrial robotic swarm
application and illustrate the use of AO modeling techniques to
manage the complexity. We also show how to use AO modeling
for design-space exploration.

Index Terms—Actor-oriented modeling, aspect-oriented model-
ing, model-based design, cyber-physical systems, robotic swarms

I. INTRODUCTION

Cyber-physical system design integrates a wide variety
of heterogeneous disciplines, including control engineering,
mechanics, thermodynamics, sensors, electronics, network-
ing, and software engineering [1]. Engineers use domain-
specific tools and techniques in each of these disciplines,
but integration of the diverse tools and techniques remains
challenging [2]. MBD [3] has proven successful in several
of these domains, including, for example, modeling and sim-
ulation of physical dynamics using Modelica [4], design,
simulation, and code generation of control systems using
Simulink R© (by MathWorks), design of instrumentation sys-
tems using LabVIEW R© (from National Instruments), model-
ing and simulation of communication networks using OPNET
Modeler R© (by Riverbed) and ns-3 (http://www.nsnam.org/),
and modeling of software architecture using the unified mod-
eling language (UML) and the architecture analysis and design
language (AADL). Integrating these tools and techniques,
however, remains a daunting challenge [5], [6]. Accidental

Manuscript received May 30, 2015; revised October 29, 2015; accepted
December 16, 2015. This work was supported in part by TerraSwarm, one
of six centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

I. Akkaya and E.A. Lee are with the Electrical and Computer Sciences
Department, University of California at Berkeley, Berkeley, CA 94720 USA
(e-mail:ilgea@eecs.berkeley.edu; eal@eecs.berkeley.edu).

P. Derler is with National Instruments, Berkeley, USA (e-mail: patri-
cia.derler@ni.com).

S. Emoto is with IHI Corporation, Yokohama, Japan (e-mail: syu-
uhei emoto@ihi.co.jp).

complexities such as incompatible design data representations,
unpublished APIs, and vague or unspecified semantics dom-
inate, so that it is rare to achieve an effective integration.
System integration ends up happening late in the design
process, when prototypes of all components are available, and
problems that emerge at that stage can be very expensive to
fix.

In this paper, we describe an approach that focuses not
on integration of tools, but rather on integration of modeling
methods. Models improve understanding, analysis, and cer-
tifiability of systems. They can reduce the time it takes to
introduce new products, as has been very effectively demon-
strated in the automotive industry. Although CPS are intrinsi-
cally complex, simple models are more useful than complex
models, because they are more understandable, analyzable, and
certifiable. The goal in this paper is to improve the degree to
which a model can accurately reflect the complexity in system
design without making the models themselves so complex as
to degrade their utility.

A key technique for keeping models simple is abstraction.
In the 1960s, object-oriented (OO) design methodologies were
introduced with the language Simula. The main idea behind
OO programming is the separation of concerns into objects
with well-defined interfaces. Data and access to data are
encapsulated within the object, and the internal implementa-
tion is hidden. Code duplication is reduced by inheritance,
which enables common code reuse in related objects. OO
concepts enable developers to think of a problem in terms
of abstract data types and relationships between them. The
technique breaks down complex problems into simpler sub-
problems. OO programming is widely successful and enables
more effective development of complex software systems.

Software engineers, however, frequently discover that in-
heritance mechanisms are inadequate, and that leveraging
pre-existing code often requires modifications to the existing
code. Consider, for example, a new requirement in a software
engineering project that all operations of a certain kind must
be logged. It is difficult in existing OO languages to insert
such capability without making considerable changes to the
existing code base. Moreover, after making those changes, the
software design has tangled distinct, cross-cutting concerns,
the original functionality, and the logging.

In the late 1990s, Kiczales et al. introduced aspect-oriented
programming [7] to deal with such cross-cutting functionality.
For the logging problem, instead of inserting logging code in
various places of the original code base, a logging “aspect”
is automatically “woven” with the code base as part of the

0000–0000/00$00.00 c© 2015 IEEE

http://www.nsnam.org/

2 PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016

compilation process. This allows separate development and
maintenance of the original functionality and the logging
capability. Aspects have been embedded in programming
frameworks such as AspectJ [8] and Spring [9], which extend
Java with specific syntax supporting aspects.

AO programming has some clear benefits. Code tangling,
code duplication, and scattered code can be reduced through
abstraction and modularization. However, the adoption of AO
programming has been slow. Studies on fault-proneness of
aspect-oriented programs [10] show that the obliviousness
property in AO programming causes faults due to lack of
awareness among base code and aspects. Moreover, debugging
aspects can be difficult [11].

Although OO design provides a measure of modularity, it
contributes nothing to dealing with concurrency. A modular-
ization technique that complements objects is actor-oriented
design [12]–[14]. Actors are components (that, in fact, can also
be objects), which execute concurrently and communicate via
messages, vs. the procedure calls commonly used in object-
oriented languages. Many of the model-based design tools
discussed above, such as Modelica, Simulink, LabVIEW, and
ns-3, support actor-oriented design.

The semantics of actors and the communication between
them can vary widely across domains. A concurrency model
and communication strategy for actors form a concurrent
Model of Computation (MoC), and distinct MoCs can be
combined to create heterogeneous models [15].

This paper shows how the ideas introduced in AO program-
ming can be applied not only to OO design, but also to actor-
oriented models. We focus on models in CPS domain that are
highly heterogeneous in nature, causing them to become hard
to validate and verify due to the inherent complexity of CPS.

It is common to use the term “functional model” for a
model that describes the core intended behavior of a system.
For example, a functional model of a cooperative cruise
control system may describe the feedback control laws and
the physical dynamics of a car. So called “non-functional”
aspects might include properties of an implementation such
as communication latencies, faults, and energy consumption.
Of course, what is viewed as “core intended behavior” will
depend on who is building the model. But generally, when
an engineer builds a model, that engineer has some view
of a “core intended behavior” and some notion of other
concerns that may be important, but are distinct from the
core functionality. Our goal is to treat these “non-functional”
concerns as aspects, specifically to be able to model these
without entangling them with the core intended behavior.
Examples of such concerns that arise in CPS are as follows.

Communication. CPS applications are often distributed,
sometimes widely. Communication infrastructure is important,
and communication artifacts such as delay and losses must
be taken into account during system validation. Resource
contention and communication delays can lead to sub-optimal
system behavior that is hard to predict and is not reflected in
a purely functional model. Modeling of networks, however,
is itself a sophisticated domain, therefore, entangling net-
work models with core models is undesirable. Aspect-oriented
modeling of networks in cyber-physical energy systems is
discussed in [16].

Execution time. A model of “core intended behavior” will
typically not include execution time of software components.
At early stages of a design, this cannot be known, as it
requires considerable implementation detail. Even at later
design stages, complexity of the underlying architecture can
make it difficult to precisely account for execution time [17].
Modeling execution time is again a sophisticated domain,
and such models should not be entangled with core intended
behavior.

Architecture. Design choices such as a hardware archi-
tecture (multicore computers, centralized triple-redundant ma-
chines, distributed microcontrollers, etc.), scheduling strate-
gies (time triggered, earliest deadline first (EDF), etc.), and
mapping of software functions onto hardware resources can
profoundly affect system cost and behavior. If we can avoid
entangling architecture models with core intended behavior,
then we can facilitate design space exploration at different
levels of abstraction [18].

Error handling. Error handling is necessary in real sys-
tems, but the additional logic can clutter the core model.
Aspect-oriented modeling helps in separating error handling
logic from the core model. In addition, proper error handling
requires fault models, and testing the system under fault
conditions can also be handled through aspects.

Logging and debugging. Logging and debugging features
are often heavily used during development and less in a
deployed system. Factoring out the logging and debugging
infrastructure makes it easier to include or exclude.

Verification. Recent work on design contracts [19] for-
malizes high-level system requirements. Aspects can be used
to automatically check compliance with these requirements
during system development, and to detect fault conditions that
result in contract violations in a deployed system.

Fault modeling and anomaly detection System modeling
primarily aims at representing the nominal behavior of a
system. In many CPS domains such as automotive, aerospace,
and manufacturing, fault models are an essential part of system
development. Faults and anomalies that could occur in a sys-
tem can be factored as aspects. This naturally segregates faulty
behavior from the nominal system workflow, and enables
efficient modeling of cascading faults.

Security concerns Wasicek et. al. [20] present aspect-
oriented modeling as a model-based design technique to assess
the security of CPS. By associating attack models with the
CPS in an aspect-oriented manner, the designer can gain
insights into the behavior of the CPS under attack.

Dynamics and sensing models The foundation of many
CPS aspects such as control, machine learning, and optimiza-
tion build upon mathematical models of a physical process.
Consistency of the common mathematical models across the
system becomes prone to errors due to the composition of
components from different areas of expertise. Using aspects
enables these shared mathematical models to be explicitly
factored out, and reused by multiple parts of the CPS model.

In this paper, we describe in detail an infrastructure for
aspect-oriented modeling (AOM) that we have realized in the
Ptolemy II [15] framework. The techniques presented in this
paper should be easily implementable in many commonly
used design tools. They can thereby provide the foundation

AKKAYA et al.: SYSTEMS ENGINEERING FOR INDUSTRIAL CPS USING ASPECTS 3

for effective systems engineering of complex industrial cyber-
physical systems.

II. RELATED WORK

Since AOM is often considered an extension to object-
oriented modeling, various AOM extensions to OO languages
have been proposed. Naturally, UML-based AOM design ap-
proaches have been developed [21]. While some approaches
provide general-purpose AOM languages, others only focus
on specific aspects. Our approach is a general purpose AOM
language in that it allows the definition of arbitrary aspects.

Some work on UML AOM extensions is related in that they
focus on CPS aspects that we also explore here. For instance,
Liu and Zhang [22] present an aspect-oriented framework
that combines UML profiles and real-time logic (RTL) for
specifying QoS properties such as timing, reliability, and
safety. Recent work on using AO modeling for automation
systems is presented by Wehrmeister et al. in [23]. Espinoza et
al. [24] describe annotations of schedulability and performance
analysis data in UML models.

The main differentiating factor between our work and UML
based AOM extensions is the purpose of the models. We de-
sign executable models, i.e. models have a clear, deterministic,
and concurrent semantics, whereas UML models usually do
not have execution semantics.

Mechanisms similar to the ones we use to weave aspects
in model-based design environments are introduced in Gray
et al. [25], where AOM is used for domain specific, cross-
cutting constraints.

Our work is influenced by Metropolis [26]. Here, so-called
“quantity managers” assign quantities to events, which in turn
are scheduled by the framework. The concept is similar to
ours in that common aspects are abstracted away from the
functional model and added later via quantity managers and
schedulers. The Metropolis project facilitates platform-based
design [18], which allows for co-design of functional and
architecture models that are evaluated as a whole.

AADL, the architecture analysis and design language (for-
merly known as avionics architecture description language)
[27] aims at modeling and analyzing complex architecture
models. Architectural descriptions can be extended with an-
nexes, such as the behavior annex that allows a state machine
description of component implementations, or the error annex,
which supports fault modeling. De Niz et al. discuss different
aspects and the separation of concerns, in particular nonfunc-
tional concerns, in AADL [28]. AO4AADL [29] is an aspect-
oriented extension to AADL to master complexity and ensure
scalability.

III. ASPECT-ORIENTED MODELING ON AN EXAMPLE

Industrial applications, including factory automation, assem-
bly, monitoring, and disaster response rely on cooperative
behavior of humans and machines. Robotic swarms, which
extend the concept of cooperative machine intelligence, fit well
into this framework. “Swarm intelligence” is defined as a sys-
tem property that arises from the interaction of non-intelligent
mechanical robots to collectively form an “intelligent” system
[30].

One example in an industrial setting is a disaster response
scenario, where the consequences of a disaster may have
rendered a physical space hazardous for humans to explore. In
addition, parts of the site may not have ground access at all,
due to debris caused by the disaster. Collaborative mapping
of earthquake-damaged buildings is an example of this, where
ground and aerial robots need to work together to create a map
of the hazardous site [31].

In addition to exploration and risk assessment, robots can
also perform mechanical tasks in sites that are inaccessible to
humans. The Fukushima Daiichi nuclear reactor cleanup and
investigation effort Japan provides such a scenario. Robots are
currently being deployed inside the reactors to collect critical
information on radiation levels, as well as on safe paths to
be taken in subsequent missions [32]. Larger robots are being
employed to carry out mechanical tasks within the reactor,
such as to deploy vacuum and filtration systems that reduce
nuclear contamination and allow human operators to safely
enter the site [33].

Motivated by such scenarios, we illustrate the concept
of aspect-oriented modeling on the design of such robotic
swarms. A simplified top-level model is shown in Figure 1,
where two sets of robots are deployed: (i) a team of lightweight
observation robots that are equipped with sensors whose task
is to cooperate to assess an environment in order to locate a
target in the presence of potential hazards, and (ii) a heavy-
duty main robot, with limited maneuvering abilities, whose
task is to retrieve a target from an unfamiliar environment.

In the model, a hierarchical control strategy is be-
ing deployed to fully enable swarm intelligence. First, an
observation-optimizing controller receives sensor measure-
ments from observation robots, estimates the position of the
target based on the robot dynamics and sensor readings, and
steers the observation robots, subject to dynamics and safety
constraints, to reduce uncertainty in target position in the
subsequent control steps. Meanwhile, a higher level controller
receives the estimated target position, and steers the main robot
towards the target. The sensors, of course, have limited sensing
capability. For example, in our model, we assume that they can
only make imperfect measurements of their distance from the
target.

The modeling environment used here is Ptolemy II [15],
which is a framework for building and simulating actor-
oriented models of heterogeneous systems. A Ptolemy model
consists of actors that communicate via ports. The semantics
of the communication, also referred to as the model of compu-
tation, is given by so-called directors. Different MoCs can be
combined hierarchically to represent heterogeneous systems.

The robots and controllers are composite components,
where a single icon represents a potentially complex submodel.
The components communicate via time-stamped events, using
the discrete-event MoC, represented in the model by the DE
Director.

Such a model, which captures component interactions alone,
is often created by a system designer for evaluation of func-
tional behavior and timing analysis of the application. Once
the behavior has been evaluated and deemed suitable, the
next step is deployment, during which the timing behavior
of the application might change. For example, in deployment,

4 PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016

Fig. 1: A model of a robotic swarm, cooperating to carry out
a target retrieval task within an unfamiliar environment

the communication between controller and the robots will be
subject to context-dependent latency, packet losses, and re-
ordering of messages.

Fig. 2: A poor model of a robotic swarm with network
specifications.

One possible model that includes the communication as-
pects is given in Figure 2. In this model, the Network
actor represents the shared communication resource. It is a

hierarchical component that can include delays, losses, and re-
ordering. Such a hierarchical component could include sophis-
ticated models of specific networking technologies, including,
for example, WiFi interference and MAC (media access)
protocols.

The model in Figure 2, however, is awkward. In order for the
communication aspects to affect all relevant communication
paths, the model builder is forced to model the construction of
packets that include addressing information and to multiplex
these packets through a single model of the communication
fabric. The designer is often not interested in such low
level modeling details but only in the high-level effect of
the network on application behavior. Moreover, the logical
communication paths of the original models have been lost,
eliminating many of the advantages of a visual modeling
syntax.

Nevertheless, a Monte Carlo simulation, yielding results
such as that in Figure 3, can be used to study the behavior
of the system with and without network models. These results
illustrate the detrimental effects of packet losses and latency,
and an engineer can determine thresholds on networking
behavior that would put the target retrieval mission at risk.

x
-50 -40 -30 -20 -10 0 10 20 30 40 50

y

-5

0

5

10

15

20

25

shortest path
no network model
network with latency
network with 5% packet drop
initial position
target

Fig. 3: Simulated effect of network aspects on main robot
trajectory.

It is important to observe that the network fabric used to
enable communication between components is not an intrinsic
part of the system design; it is only an implementation choice.
Therefore, the communication via a shared resource can be
considered an aspect of the system and can be modeled as
such. An aspect-oriented alternative that uses our Ptolemy
II extensions is shown in Figure 4. The network aspect,
represented by an icon at the top, models the delay and
resource contention of communication; connections that use
the network, namely, the channels between robots and con-
trollers, are annotated with textual parameters that bind those
communication links to the network model. This preserves
the benefits of the visual syntax, in that, the new model still
visually represents logical communication paths. But more
importantly, it abstracts away the low-level details of the net-
work implementation, such as packet structure and addressing.
These were needed in Figure 2 as an accident of the modeling
technique, whereas in the aspect-oriented alternative, the low-

AKKAYA et al.: SYSTEMS ENGINEERING FOR INDUSTRIAL CPS USING ASPECTS 5

level routing functionality is handled internally by the aspect.
The aspect illustrated here is a Communication aspect. There
are many more aspects that can be modularly incorporated into
a model in a similar way, as will be explained next.

Fig. 4: A model of a robotic swarm with network specifications
modeled as aspects

IV. ASPECT-ORIENTED ACTOR-ORIENTED MODELING

First, let us review the basic ideas of actor-oriented pro-
gramming. Actor-oriented programs compose concurrent com-
ponents that communicate via messages. This complements
object-oriented languages, where components are abstract data
structures that interact via procedure calls. An actor has a set
of input ports, a set of output ports, and state. Actors commu-
nicate by sending messages through ports. The semantics of
this communication is defined by an MoC that is implemented
by an execution engine.

An actor model can be annotated with additional informa-
tion that is orthogonal to the information in the model. This
information can be used to statically evaluate the model or to
modify execution. An example would be evaluation of the cost
of implementing a system. By annotating each model element
with a price, the cost of the entire system can be computed
in design time. The cost can be compared to a constraint, for
instance an upper bound on cost.

With aspect-oriented modeling we go a step further and
annotate models with information that is evaluated dynami-
cally and can change the system behavior. An example is the
communication aspect described above. In order to explain the
concepts further, we introduce some terminology.
• Join point. A point during the execution where the

program interacts with an aspect. In AO programming
languages, this often refers to a method execution.

• Advice. Action taken by an aspect at a particular join
point. An advice can be configured around, before, or
after the join point.

• Pointcut. The point during the execution where an advice
should be executed. Pointcuts might depend on runtime
information.

• Aspect. The advice together with the pointcut.
• Weaving. Linking aspects with the application, which can

happen at compile time or at run time.

An advice, in the scope of this paper, represents an actor that
implements the cross-cutting concern. In the previous example,
the advice is the Network actor.

A join point is the execution of an actor or the transmission
of a token. While advice actors do not encode any information
about the model they are used in, they know at which join
points they can be used. For instance, the Network can only
be associated with connections between actors. We generalize
this to input ports on actors, meaning that if the Network
is associated with an input port, the incoming connection is
enhanced by the advice. The fact that advice actors can only
be used on certain join points can be utilized to guide the
model builder. In Ptolemy II, upon dropping an advice actor
into a model, parameters are added to all the possible join
points in the model, at which the use of the advice can either
be enabled or disabled by the model builder.

A pointcut is a join point where the use of the advice is
enabled. An aspect is then all enabled join points together
with the advice.

Ptolemy II handles the weaving at run time. A simulation
framework where code is generated before simulation would
need to include the weaving in the generated code.

In many AO programming languages, pointcuts rely on
naming conventions to find the places in the program where
aspects should be executed. Thus changes in the program can
break the AO program, a problem often referred to as the
fragile pointcut problem [34] or “unintended consequences” in
AOP. In our implementation, advices need not be aware of the
model and pointcuts that are defined. Deleting an advice from
the model automatically results in a deletion of all pointcuts.

In this work, we investigate aspects with two types of
pointcuts: on input ports of actors and on actor executions. An
aspect with a pointcut on an input port of an actor executes
the advice whenever a token is sent to this input port. The
advice can modify the token (e.g., probabilistically dropping
it) or perform other operations. In the previous example, the
Network advice implements resource contention and packet
drops on tokens.

Figure 5 illustrates the concepts introduced on an abstract
example. The model contains 5 actors, A1,A2,A3,c and e,
where c and e are advice actors. Actors A1 and A2 commu-
nicate as illustrated by their connections. The advice c can
be enabled on communications between actors, thus the com-
munication between A1 and A2 as well as the communication
between A1 and A3 form join points. In the example, the advice
is only enabled on the communication between A1 and A2,
which describes a pointcut. Advice actor e can be enabled on
actor executions, so its join points are actors. In this example,
e is enabled on actor A1 and actor A3, but not on A2. In the
figure, enabled join points are illustrated by highlighting.

V. ASPECT-ORIENTED MODELING IN PTOLEMY II

To implement join points and pointcuts in Ptolemy II, we
use the decorator pattern [35], which allows adding behavior
to an individual object without affecting the behavior of other
objects of the same class. We implement advices as decorators
that decorate join points with additional attributes.

6 PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016

A1

join point e:
advice enabled
→ pointcut

A2

join point e:
advice not
enabled

A3

join point e:
advice enabled
→ pointcut

c

advice

e

advice

join point c:
advice enabled
→ pointcut

join point c:
advice not
enabled

Fig. 5: Aspects in actor-oriented models.

Figure 6 illustrates the implementation of advices that
decorate communication between actors in Ptolemy. A com-
munication advice decorates all ports with a boolean attribute
enable. If this enable flag is true, the receiver in the port
is wrapped by an intermediate receiver, which intervenes in
the communication and coordinates with the aspect actor.
Communication advices can be composed serially. In this
case, the original receiver is wrapped by multiple intermediate
receivers, providing associations with multiple advices. The
order in which communication aspects are enabled can be
controlled by the model builder.

send
to aspect

A1 A2p1 Port

Communication Advice
CA

send
token

put token
to receiver get

token

send to
wrapped
receiver

p2

Intermediate Receiver Receiver

Fig. 6: Advice with join points on actor communication

The implementation of an execution advice (vs. a commu-
nication advice) is illustrated in Figure 7. Similarly to the
communication aspect, an execution aspect decorates actors
(vs. ports) in a model with an enable flag. If this flag is set
to true, the advice actor will be consulted each time the actor
is executed. This is implemented by modifying the director.
The director (a) selects the next actor to be executed and (b)
executes the actor by calling its fire function. Between (a) and
(b), a call to the advice is inserted. In case the advice decides
that the actor cannot be executed, the director can choose
another actor to be fired. Weaving, the process of linking
aspects with the application, is performed by the Ptolemy II
runtime. Part of the weaving is implemented by the director
that executes this model.

VI. OTHER APPLICATION AREAS OF AOM

In section III we showed how to use aspects to model
network fabrics. In this section, we will present a set of other
essential modeling concerns addressed by aspects.

Director

A1 A2p1
Actor

Port

3. fire
actor

p2

Actor
Execution

Advice

EA1. request execution
of actor

2. grant execution

Fig. 7: Advice with join points on actor execution

A. Sensor Models and Robot Dynamics

In industrial settings, mathematical models of component
dynamics, kinematics, as well as models of uncertainty and
noise are key to building complex systems. Moreover, these
mathematical models are often shared between different pieces
of the functional model. Consider the observation team in the
context of the robotics disaster response scenario. Here, robot
dynamics, often given by a state-space representation, are used
to model the behavior of observation robots in a physical
environment. Also, noise characteristics of on-board sensors
are required for accurate quantification of the information con-
tent of sensor measurements. Clearly, these dynamics models
need to interact with one another for cooperative inference and
control algorithms.

As an example, consider the target estimation prob-
lem carried out by the Observation-optimizing
Controller in Figure 4. An implementation of this hier-
archical component is given by the submodel in Figure 8. In
this model, robot dynamics are modeled as aspects, which
contain the state space representations and process noise of
components. Also, the range sensors on board each robot are
modeled as aspects, which specify sensor measurement models
and noise. The component annotated as “mutual information
based optimization” contains an internal workflow consisting
of state estimation and optimization actors that estimate target
position given noisy range measurements, and by taking the
models of robot dynamics into account, optimize future robot
trajectories. The objective function for such a control strategy
often uses a mutual-information metric, such that the set of
future trajectories is optimized and the collective set of robot
observations provides as much information as possible about
target location. Design and implementation of such control
strategies are described as part of a case study in [36].

In general, the “mutual information based optimization”
component would be designed by a specialist in machine
learning and control, who would reuse dynamics and sensor
models inherited from other system components to populate
learning and optimization tasks. Using aspects to represent
mathematical models of such system properties therefore
increases modularity and simplifies the design of control
strategies. It also ensures that a re-design of one of the
robot dynamics, or replacement of a sensor does not require
any changes to the inference and optimization components.
Therefore, separation of concerns is ensured during design and
development.

AKKAYA et al.: SYSTEMS ENGINEERING FOR INDUSTRIAL CPS USING ASPECTS 7

Fig. 8: The Observation-Optimizing Controller
demonstrates AO modeling of sensors and robot dynamics

B. Execution

In many embedded control applications, execution time of
software influences the behavior of the application. Design
space exploration is necessary to evaluate the behavior of
different implementations. To this day, tool support for this
activity is very limited. In this next example, we illustrate
how one could build simple models of CPUs as advices, and
associate actor executions with these advices using AOM.

actor1

actor2

actor1

actor2

executedActor

executedActor1

executedActor2

Fig. 9: Mapping of functional models onto architecture models
using aspects

In cooperative control applications, an execution bottleneck
is often caused by on-line control algorithms. In the running
example, it would be of interest to model execution times for
the two controller models to ensure that application require-
ments are met at runtime. As an example, suppose we want
to evaluate two alternative architectural designs. In the model
depicted in Figure 9, two execution advices are implemented
as composite actors. In the figure, the two advices represent

two alternative architectures, one with a single core and one
with two cores. In the figure, the 1Processor advice is en-
abled on the Observation-Optimizing Controller
and the Main Robot Control actors. The 1-processor
model merges incoming execution requests and schedules
them on a server that delays the actors for a specified amount
of time, emulating execution time. A more elaborate model
could include a scheduling policy such as EDF. In addition
to the enable flag, an execution time parameter is added to
all join points by an execution advice. As a result, every
actor can be simulated to have a different execution time.
As this parameter is read every time the actor is executed,
it is possible to provide execution times that differ in between
iterations. The join points are also extended with an execution
request port, which is a special actor inside the advice that
receives execution request tokens when the actor is scheduled
to be fired. In the example, these execution request ports are
actor1 and actor2. The execution request token contains
an object reference of the actor to be fired and the execution
time for the current firing. Before firing an actor that is
decorated with a processor advice, the director triggers a firing
of the advice and generates an execution request token for the
actor in the appropriate execution request port.

Figure 10 shows an execution of the main robot controller
and the observation-optimizing controller in the single and
two processor cases, respectively. The illustrated execution
monitor is part of the advice implementation. The execution
simulations are obtained with a global sampling period of
250 ms, and worst-case execution times for Observation-
OptimizingController and MainRobotController set to 250 and
50 ms, respectively. It is seen that this particular execution
model is not schedulable on the single core architecture for
the given execution time and sampling period parameters.

2.0

0.0 0.2 0.4 0.6 0.8 1.0

2Processors2.0

0.0 0.2 0.4 0.6 0.8 1.0

Observation-
Optimizing
Controller

MainRobot
Controller

1Processor

platform time platform time

Fig. 10: Controller execution times on different architectures

To keep the illustration simple, the model shown here is
naı̈ve. Execution times of the components are difficult to know
precisely, and may need to be modeled probabilistically or to
rely on sophisticated program analysis tools. Similarly, models
of scheduling policies can get quite sophisticated, and the
effects of resource contention in the processor architecture
can get complex. But because of the effective separation of
concerns, an expert on modeling and simulation of real-time
software systems can focus on the design of the aspect model,
while the expert on machine learning and optimization focuses
on the control design. Very little coordination is required
between the two.

To further demonstrate the interaction of an enabled ex-
ecution aspect with the functional model, consider Figure
11, which illustrates the impact of a slow processor on the

8 PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016

time(s)
0 5 10 15 20 25 30 35 40M

S
E

of
ta
rg
et

lo
ca
ti
on

es
ti
m
at
e
(m

et
er
s)

0

10

20

30

40

50

60

1Processor
2Processors

Fig. 11: Effect of processor architecture on target estimation
timing and functionality

target-estimation accuracy, as obtained by the Observation-
Optimizing Controller. Although information from the obser-
vation team is still processed in order, the processing delay
causes a slower convergence to the true target state, impacting
the real-time performance, which, by an execution aspect, has
been detected before deployment.

C. Fault Modeling
Fault models are among the most natural aspects in a multi-

view system. By definition, faults are not part of the system
specification itself. An orthogonal modeling paradigm helps
fault models to be integrated with the system design in a way
that preserves separation of concerns. In many standardized
architecture description languages, error models are part of
the native system specification. For instance, AADL features
an error annex describing numerous fault models [37].

Faults are orthogonal concerns that can be modeled as
aspects. Figure 12 demonstrates the top-level model of our
running example, which has been decorated by two fault
models: (i) a stuck-at component fault model that affects the
range sensor readings of one of the observation robots, (ii)
a packet drop fault model that affects the controller-to-robot
communication for one of the observation robots.

Figure 13 illustrates the implementation of the
StuckAtFault aspect shown to affect the output values
of the RangeSensor component. A stuck-at fault occurs
when the individual signals and pins are stuck at a fixed
value on an integrated circuit. As an abstraction, such faults
can be modeled to occur on a single input or output of a
component. With the addition of this aspect to the functional
model of Observation Robot 2, the sensor output
values produced on board this robot will get stuck at a fixed
value with some probability during execution.

A packet-drop fault, as the name suggests, models a
dropped packet over a network link, often mimicking a packet
erasure channel with an assigned packet erasure probabil-
ity, applying independently to each transmitted packet. The
PacketDropFault aspect that affects transmission of con-
trol inputs to Observation Robot 2 is shown in Figure
14.

D. Fault and error handling
Errors can occur due to software and hardware failures.

While most software errors are eliminated through validation

measurement (Aspects: StuckAtFault)

measuredSelfPosition packet

PacketDropFaultAspects: PacketDropFault

RangeSensor

Fig. 12: Aspect-oriented component and communication fault
models

Fig. 13: Fault model of a stuck signal.

Fig. 14: Packet Drop Fault model that drops packets with a
probability.

AKKAYA et al.: SYSTEMS ENGINEERING FOR INDUSTRIAL CPS USING ASPECTS 9

Fig. 15: Aspect-oriented heartbeat detection

and verification, hardware errors cannot be eliminated easily,
thus precautions have to be taken. Error handling code must
be inserted to catch possible failure situations. Because errors
can occur in many different places, mixing error handling
functionality with the system functionality can make the model
difficult to understand. Also, error handling strategies might
depend on the operating conditions, and therefore might need
to exhibit modal behavior.

Figure 15 shows a model of a heartbeat detector which im-
plements a mechanism for detecting a missed sensor reading. It
uses a state machine that expects time stamped sensor readings
at its input. In our running example, this input is connected to
the robotMeasurements port. The clock input reads time
stamped inputs from a local clock. The state machine keeps
track of whether the most recent event was a sensor message
or a message from the local clock. It issues a missed event
if two consecutive local clock messages were received. See
also [38] for a use of the HeartBeatDetector in a power plant
control system. This heartbeat detector can be used on signals
that come from unreliable sources.

E. Contract Modeling

Formal contracts [39] can be useful in CPS design to
clarify interfaces and enforce documented interaction behavior
between components. In such contracts, high-level system
specifications are formalized as assume-guarantee formulas.
Some work has been dedicated to correct-by-construction
synthesis of control protocols based on temporal logic for-
malization of these contracts [40]. In cases where such a
controller design is not possible due to complexity, when
dealing with legacy systems, or to detect runtime faults that
cause contract violations, one might want runtime components
that monitor contract compliance. Aspect-oriented modeling
enables addition of design contracts to an existing system
model. If design requirements are violated in runtime, this
can be detected by an aspect-oriented contract monitor.

Consider, as part of our running example, a collision avoid-
ance contract defined on the main robot to ensure that the
robot does not collide with a detected target or obstacle on
the map. The informal contract specification is that “whenever
a proximity alert flag has been raised, the robot must come
to a full stop within X seconds, and wait for the resolved
signal from the operator before proceeding with its mission.”1

This contract needs to be monitored on the the main robot
controller. Figure 16 implements a contract monitor that, upon

1This contract can formally be represented by the Signal Temporal Logic
(STL) formula: G(proximityAlert→ F[0,Xs]G(idle U resolved)).

guard: idle

idle

guard: ! idle
output: violation = true

proximityAlert

resolved

idle

proximityAlert

robotIdle

resolved

Speci�cation
Monitor violation

safe

hazard

recovery

contractViolation

Fig. 16: A collision avoidance contract defined as an aspect
on the main robot controller

detecting a violation, raises a flag. This aspect can be easily
and unobtrusively woven with a model of this robot system.

F. Logging and Debugging

Logging is a common example for aspect-oriented pro-
gramming. Adding logging code to functional code or models
can unnecessarily make the model more complex. Also, at
different stages of the design, different information is logged.
For deployment, logging is usually completely removed or
disabled. Using aspects to perform logging and plotting signals
is a much cleaner way to evaluate simulation results. We
can modify the previously introduced network model to just
log incoming messages and forward them immediately, thus
implementing a message logger. An execution logger can be
implemented by modifying the 1 or 2 processor models by
adding a logging component and removing time delays.

With similar mechanisms as used for logging, breakpoints
can be inserted into the execution of a model by using a special
actor that pauses the execution (see Figure 17 for a potential
collision-avoidance breakpoint).

Fig. 17: Model breakpoints as aspects

VII. CONCLUSION

This paper discusses how aspect-oriented modeling helps
manage the complexity of actor-oriented models of cyber-
physical systems. Aspects enable separate development of
models for cross-cutting concerns. We show how AOM can
cleanly model communication network effects, the execution
time of software, hardware design choices, faults, and schedul-
ing policies. We also show how aspects can be used to integrate
contract monitoring and logging in models. These cross cutting
models enable design-space exploration and facilitate separate
development of models for different aspects. All of these

10 PROCEEDINGS OF THE IEEE, VOL . PP, NO. 99, JANUARY 2016

capabilities have been prototyped in the open-source Ptolemy
II modeling and simulation framework, and all models shown
in this paper are executable. Models in this paper are simplified
for illustration purposes and use hierarchy to abstract away
orthogonal details. Nonetheless, a more comprehensive case
study which illustrates the use of aspects in an industry scale
application is given in [16].

During this work, we have built up a library of aspects
for common cross-cutting concerns in industrial cyber-physical
system designs. These models are all available for download
at http://ptolemy.org.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC). Orlando, Florida: IEEE, 2008.

[2] A. Fisher, C. Jacobson, E. A. Lee, R. Murray, A. Sangiovanni-
Vincentelli, and E. Scholte, “Industrial cyber-physical systems — iCy-
Phy,” in Complex Systems Design & Management (CSD&M). Paris,
France: Springer, 2013.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE, vol. 91,
no. 1, 2003.

[4] M. M. Tiller, Introduction to Physical Modeling with Modelica. Kluwer
Academic Publishers, 2001.

[5] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens,
“Composability and predictability for independent application develop-
ment, verification, and execution,” in Multiprocessor System-on-Chip:
Hardware Design and Tool Integration, M. Hübner and J. Becker, Eds.
Springer, 2011.

[6] G. Karsai, A. Lang, and S. Neema, “Design patterns for open tool
integration,” Software and Systems Modeling, vol. 4, no. 2, 2005.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in European
Conference in Object-Oriented Programming (ECOOP), vol. LNCS
1241. Finland: Springer-Verlag, 1997.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming, ser. ECOOP ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 327–353.

[9] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, and C. Sampaleanu,
Professional Java Development with the Spring Framework. Wiley,
2005.

[10] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E. Figueiredo, N. Cacho,
F. Lopes, N. Temudo, L. Silva, S. Soares, A. Rashid, P. Masiero,
T. Batista, and J. Maldonado, “An exploratory study of fault-proneness
in evolving aspect-oriented programs,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 65–74.

[11] H. Yin, C. Bockisch, and M. Aksit, “A fine-grained debugger for aspect-
oriented programming,” in Proceedings of the 11th annual international
conference on Aspect-oriented Software Development, ser. AOSD ’12.
New York, NY, USA: ACM, 2012.

[12] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Journal of Artificial Intelligence, vol. 8, no. 3, 1977.

[13] G. Agha, “Concurrent object-oriented programming,” Communications
of the ACM, vol. 33, no. 9, 1990.

[14] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented design of
embedded hardware and software systems,” Journal of Circuits, Systems,
and Computers, vol. 12, no. 3, 2003.

[15] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation using
Ptolemy II. Berkeley, CA: Ptolemy.org, 2014. [Online]. Available:
http://ptolemy.org/books/Systems

[16] I. Akkaya, Y. Liu, and E. A. Lee, “Modeling and simulation of network
aspects for distributed cyber-physical energy systems,” in Cyber Physical
Systems Approach to Smart Electric Power Grid. Springer, 2015.

[17] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstr, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM TECS, vol. 7, no. 3, 2008.

[18] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? reasoning about the
trends and challenges of system level design,” Proceedings of IEEE,
vol. 95, no. 3, 2007.

[19] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donze, and S. A. Seshia, “A contract-based method-
ology for aircraft electric power system design,” IEEE Access, 2014.

[20] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of
attacks in automotive cyber-physical systems,” in Proceedings of the
51st Design Automation Conference (DAC), June 2014.

[21] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, and E. Kapsammer, “A survey on UML-based aspect-
oriented design modeling,” ACM Comput. Surv., vol. 43, 2011.

[22] J. Liu and L. Zhang, “QoS modeling for cyber-physical systems using
aspect-oriented approach,” in ICNDC ’11. Washington, DC, USA: IEEE
Computer Society, 2011.

[23] M. Wehrmeister, C. Pereira, and F. Rammig, “Aspect-oriented model-
driven engineering for embedded systems applied to automation sys-
tems,” Industrial Informatics, IEEE Transactions on, vol. 9, no. 4, 2013.

[24] H. Espinoza, H. Dubois, S. Gérard, J. Medina, D. C. Petriu, and
M. Woodside, “Annotating UML models with non-functional properties
for quantitative analysis,” in MoDELS, ser. Lecture Notes in Computer
Science, vol. LNCS 3844. Springer-Verlag, 2005.

[25] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale, and B. Natara-
jan, “An approach for supporting aspect-oriented domain modeling,”
in Proceedings of the 2nd International Conference on Generative
Programming and Component Engineering, ser. GPCE ’03. New York,
NY, USA: Springer-Verlag New York, Inc., 2003.

[26] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. L. Sangiovanni-
Vincentelli, and Y. Watanabe, “Metropolis: an integrated electronic
system design environment,” Computer, vol. 36, no. 4, 2003.

[27] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[28] D. de Niz and P. H. Feiler, “Aspects in the industry standard AADL,”
in Proceedings of the 10th international workshop on Aspect-oriented
modeling, ser. AOM ’07. New York, NY, USA: ACM, 2007.

[29] S. Loukil, S. Kallel, B. Zalila, and M. Jmaiel, “AO4AADL: Aspect
oriented extension for AADL,” Central European Journal of Computer
Science, vol. 3, no. 2, pp. 43–68, 2013.

[30] Y. U. Cao, A. S. Fukunaga, and A. Kahng, “Cooperative mobile robotics:
Antecedents and directions,” Autonomous robots, vol. 4, no. 1, 1997.

[31] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani,
Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida et al., “Collaborative
mapping of an earthquake-damaged building via ground and aerial
robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 832–841, 2012.

[32] Tokyo Electric Power Company (TEPCO). (2015, April) An unprece-
dented challenge: Robots obtain crucial information on conditions
inside the Fukushima Reactor. [Online]. Available: http://www.tepco.
co.jp/en/news/library/archive-e.html?video uuid=o9fi533l&catid=69631

[33] ——. (2011, July) Cleanup work by using a robot in Unit
3 Reactor Building at Fukushima Daiichi Power Station. [Online].
Available: http://www.tepco.co.jp/en/news/library/archive-e.html?video
uuid=j18842aw&catid=61793

[34] M. Störzer and C. Koppen, “Pcdiff: Attacking the fragile pointcut
problem, abstract,” in European Interactive Workshop on Aspects in
Software, Berlin, Germany, Sep. 2004.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[36] I. Akkaya, S. Emoto, and E. A. Lee, “PILOT: An Actor-oriented
Learning and Optimization Toolkit for Robotic Swarm Applications,”
in Second International Workshop on Robotic Sensor Networks, part of
CPSWeek (RSN’15). ACM, 2015.

[37] S. Vestal, “An overview of the architecture analysis & design language
(AADL) error model annex,” in AADL Workshop, 2005.

[38] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “A time-
centric model for cyber-physical applications,” in Proceedings of 3rd
International Workshop on Model Based Architecting and Construction
of Embedded System (ACESMB 2010), October 2010, pp. 21–35.

[39] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, 2012, in press.

[40] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Automatic synthesis
of robust embedded control software.” in AAAI Spring Symposium:
Embedded Reasoning. AAAI, 2010.

http://ptolemy.org
http://ptolemy.org/books/Systems
http://www.tepco.co.jp/en/news/library/archive-e.html?video_uuid=o9fi533l&catid=69631
http://www.tepco.co.jp/en/news/library/archive-e.html?video_uuid=o9fi533l&catid=69631
http://www.tepco.co.jp/en/news/library/archive-e.html?video_uuid=j18842aw&catid=61793
http://www.tepco.co.jp/en/news/library/archive-e.html?video_uuid=j18842aw&catid=61793

	Introduction
	Related Work
	Aspect-oriented modeling on an example
	Aspect-Oriented Actor-Oriented Modeling
	Aspect-oriented modeling in Ptolemy II
	Other application Areas of AOM
	Sensor Models and Robot Dynamics
	Execution
	Fault Modeling
	Fault and error handling
	Contract Modeling
	Logging and Debugging

	Conclusion
	References

