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Abstract

The Internet of Things (IoT) represents a new class
of applications that can benefit from cloud infras-
tructure. However, directly connecting smart devices
to the cloud has a number of disadvantages and is
unlikely to keep up with either the growing speed of
the IoT or the diverse needs of IoT applications.

We explore these disadvantages and argue that
fundamental properties of the IoT prevent the cur-
rent approach from scaling. What is missing is a
well-architected system extending functionality of
the cloud and providing seamless interplay among
the heterogeneous components closer to the edge
in the IoT space. We argue that raising the level
of abstraction to a data-centric design—focused
around the distribution, preservation and protection
of information—better matches the IoT. We present
early work on such a distributed platform, called
the Global Data Plane (GDP), and discuss how it
addresses the problems with the cloud-centric archi-
tecture.

1 Introduction

The market has seen an explosion in the number of
smart devices. These latest devices offer rich interac-
tivity by connecting to computing platforms and ser-
vices. Fueled by the growth of Internet connectivity
and the augmentation of everyday things, this shift is
commonly referred to as the Internet of Things (IoT).
With the ever-growing proliferation of cloud comput-
ing and storage services, even novice users can start
deploying sensors and actuators with minimal invest-

ment in infrastructure. However, issues of privacy,
security, scalability, latency, bandwidth availability,
etc.that already are a challenge for web-applications,
are exacerbated in the IoT space because of the fun-
damental differences between IoT and web services
(see Sec. 2).

In this article, we analyze the shortcomings of
existing architecture by explaining the fundamental
differences between IoT applications and web ser-
vices. Our analysis suggests a need for a new layer of
abstraction for the IoT—one that more naturally fits
the requirements of IoT applications while exploit-
ing the underlying computing platforms that enable
the IoT (like the cloud, the Fog3 and gateways). Al-
though influenced by the needs of IoT, there is no
reason this layer of abstraction can not be used for
other scenarios.

Our new abstraction is centered around data. It is
focused on the transport, replication, preservation,
and integrity of streams of data while enabling trans-
parent optimization for locality and quality of ser-
vice. We call the resulting infrastructure the Global
Data Plane (GDP). Its foundation is the concept of a
single-writer append-only log coupled with location-
independent routing, overlay multicast and higher
level interfaces such as common access APIs (see
Sec. 3). We also discuss how a communication and
storage platform can enable better security by re-
ducing attack surface of potentially vulnerable end-
devices. Since this is an ongoing effort, we focus
mainly on the design experience with GDP thus far.
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Figure 1: Although applications usually view the cloud
as the center of all connected devices (upper diagram),
in reality the cloud is usually on the edge of the Internet
backbone, just like other devices (lower diagram).

2 Pitfalls with Today’s Approach to IoT

Looking at recent trends, IoT applications fall into
two general categories:
I. Ambient data collection and analytics: These
applications involve sensors installed in buildings, in
cities, and on humans themselves. Normally, data is
not immediately inspected and the collected data is
later processed for analytics.
II. Real-time applications with low-latency re-
quirements: These applications could be ei-
ther autonomous systems with tight control loops
(e.g. robots taking actions based on sensors), or reac-
tive environments with humans in the loop. Unpre-
dictable latencies of cloud-based solutions make this
challenging.

It is not unusual to have same infrastructure be
used for both categories of IoT applications. Per-
forming actuation in real time using local sensor
data, but with global knowledge of long term trends
to optimize on various parameters is a common prac-
tice. With this context, relying entirely on the cloud
for IoT applications has the following concerns:
1. The Cloud is Suboptimal : Application devel-
opers view the cloud as an interconnection hub for
smart devices. However, from a networking point
of view, the cloud is on the edge of the network,
leading to unpredictable latencies (see Fig. 1). For

web-applications, a centralized hub enables amorti-
zation of resources and enables economies of scale
(e.g. by caching popular resources, reduced manage-
ment overhead, etc.), and occasional latencies are
often ignored in favor of such cost benefits. IoT ap-
plications, on the other hand, are highly specific in
their execution pattern and do not necessarily benefit
from such centralization.

2. Security and Privacy: Sensors implanted in
our surrounding environment may collect extremely
sensitive information. As a centralized resource out
of users’ control, the cloud presents an ever-present
opportunity to violate privacy, already a luxury, and
threatened further by the IoT. With appropriate en-
cryption techniques, data stored in cloud can be pro-
tected from unauthorized use. However, an end-to-
end secure data flow is hard to achieve because most
applications can’t process encrypted data. Further,
there is information leak from side-channels based
on access patterns. Even with the state of the art (ho-
momorphic encryption, secure hardware containers,
etc.), absolute end-to-end security is a challenging
technical problem. Giving users some control over
where applications execute is a more general solu-
tion, especially when low latency requirements also
dictate so.

3. Quality of Service: Guarantees on latency and
availability are hard to realize. Web users tolerate
variable latency and occasional loss of web services.
In contrast, the temporary unavailability of sensors or
actuators within IoT applications will directly impact
the physical world. While significant engineering ef-
fort has been put into improving the availability and
latency profile of the cloud, such efforts are stymied
by operator error, software bugs, DDoS attacks, and
normal packet-to-packet variations from wide-area
routing. Further, the Internet connection to peoples’
homes is far from perfect even in developed world;
this situation is worse in developing countries.

4. Durability Management: Some sensor data
is ephemeral, while other data should be durable
against global disasters. For ephemeral data, there
is no effective way of verifying the data has been
completely destroyed because the cloud is out of
the user’s control. Control over durability is closely
related to control over data in general: making sure
that users retain the control and ownership over their
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* SDN: Software Define Networking 
* TSN: Time-Sensitive NetworkingFigure 2: The Global Data Plane (GDP) operates above the network level and offers Common Access APIs (CAAPIs)

to applications rather than raw packet routing. We argue that this abstraction is appropriate for IoT applications both in
the cloud and in distributed infrastructure.

data rather than service providers.

3 GDP: A Data-Centric Proposal

In contrast to the existing cloud-centric model, we ar-
gue for the Global Data Plane (GDP), a data-centric
abstraction focused around the distribution, preser-
vation, and protection of information. It supports
the same application model as the cloud, while bet-
ter matching the needs and characteristics of the
IoT by utilizing heterogeneous computing platforms
such as small gateway devices, moderately power-
ful nodes in the environment and the cloud, in a
distributed manner. The key mechanism for data
storage and communication in GDP is the secure,
single-writer log, which we describe in more detail
later. As shown in Fig. 2, this log interface of the
GDP provides a new “narrow waist” upon which
applications are constructed.

3.1 System Overview

The concept of a log is central to the GDP. As the
name suggests, a log is a time-series append-only
data-structure addressed using a flat 256-bit identi-
fier, called a GDP-name. A log is an authenticated
data structure10 stored on potentially untrusted in-
frastructure. Logs are lightweight, durable, poten-
tially distributed over multiple physical machines,

and don’t have a fixed location but rather are mi-
grated as necessary to meet the locality, privacy, or
QoS needs of applications. Logs are single-writer
but support multiple simultaneous readers—either
through random access (pull-based) or subscription
(push-based). Not only logs, but other entities in
the GDP (clients, log-servers, etc) have flat 256-bit
GDP-names.

Clients in the GDP are entities that read from or
write to logs—this includes sensors that generate
data, actuators that consume data, gateway devices,
and various software entities in-between that pro-
cess data by reading it from an input log and writ-
ing it to an output log (see Fig. 3). We provide an
event-driven communication library for interaction
with logs. Moderately powerful gateway devices
(smartphones, Raspberry Pi, etc.) are a particularly
important case: they connect to the GDP on behalf
of sensors/actuators limited in computation or com-
munication capabilities and enable wide adoption
with minimal changes in end-devices. We assume
that clients have cryptographic capabilities, includ-
ing key-storage (for encryption/decryption and sig-
natures). Signatures are used for verifying the origin,
authenticity and integrity of data flow and control
commands. Encryption is used wherever necessary
to provide data secrecy. We describe this in more
detail in Sec. 3.4.1.

Logs are physically stored on log-servers—these
log-servers can be small ubiquitous devices in homes,
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local servers in an enterprise, or powerful cloud
based servers backed by existing cloud storage sys-
tems. GDP-routers are the routing elements that
provide location-independent routing in this large,
256-bit address space using an overlay network. We
have a preliminary version of GDP-router imple-
mented in Click6 on top of TCP/IP.

Our design is guided by the goal that a client
should be able to operate without a single-point of
trust in log-servers and GDP-routers. We hope to
achieve this using a combination of cryptographic
operations, trusted hardware and secure multi-party
computation.

We also have a notion of a Control Plane—a set of
services and applications that provide policy enforce-
ment using mechanisms provided by the GDP. As an
example, GDP makes sure that the logs are durable
by ensuring replication across domains guided by a
control plane replication service. The control plane
and the GDP are closely integrated, yet have well
specified boundaries.

3.2 The Log Interface

The majority of sensors and actuators in IoT can
easily be represented by a stream of data, hence a
queue-like interface for storing this streaming data
seems to be the most obvious choice. However, the
life-span of this data is application dependent. A
log interface provides a wide range of options: logs
could potentially be truncated for ephemeral data, or
replicated widely for long lived data.

3.2.1 Properties of a Log

Logs are append-only; already existing data in a log
is read-only and can be securely replicated and vali-
dated through cryptographic hashes and signatures.
A record is the unit of read/write to a log; a log is
essentially an ordered list of records. In addition,
each log has immutable metadata created at the time
of log-creation. For each log, our current design ex-
poses append, read and subscribe APIs. Logs are
single-writer, thus enabling serialization of records
at client side. This implies that each sensor has its
own log, however, aggregated logs representing more
than one sensor can be created by reading multiple
logs and writing back to another log. A single-writer

log is minimal but complete interface that could be
used to build richer interfaces.

Even though a log is append-only, log-truncation
policies can be specified on a per log basis. Log-
truncation marks the data older than a specific thresh-
old safe to delete by the infrastructure. Guaranteed
destruction of data by a remote entity is practically
impossible. However, since the GDP allows clients
to specify where data is stored, it is much easier to
control the longevity of data than in an exclusively
cloud-based approach. Further, a client can encrypt
a range of data with a unique key, and destroy the
decryption key for data older than a certain threshold
while maintaining data-integrity related invariants of
the log data-structure.

A log is created by a client by issuing a signed
create-request, which contains metadata including
the public signature key of the designated writer. The
create-request gets routed through a series of control
plane services, the control plane checks whether the
client is authorized to create a new log or not, allo-
cates resources for this newly created log, sets up
replication, etc.

Write access control is performed by the log-
servers by validating signature on append opera-
tions against the designated writer’s public signature
key, while read access control is implemented by
encrypting the payload and selectively sharing the
decryption key. Since signatures remain with data, a
malfunctioning or malicious log server is unable to
fabricate data. More details on this are in Sec. 3.4.1.

In addition, a variety of basic control plane ser-
vices could be used for making a log more functional.
A replication service could set up multiple replicas of
a log based on higher level policy decisions, such as
level of durability, geographic span, log-truncation
policies, etc. on a per log basis. A directory service
could be used to associate human-readable names to
256-bit GDP-names on an organization level, or at a
user level.

3.2.2 Benefits of a Log Interface

A log interface makes dumb sensors and actuators
significantly more functional. Low-power sensors
usually only generate data, but can not answer any
queries. If data values are written to a log by such
sensors, the log can be used as a proxy that supports
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a much richer set of queries, especially for historical
data. A subscription to such a log provides latest
sensor values in almost real time, thus virtualizing
the sensor in some sense.

Actuators, on the other hand, usually need to main-
tain some kind of access control—by physical isola-
tion, some authentication method, or a combination
of both. Instead, if an actuator were to subscribe
to an actuation log to read the actuation commands,
access control can be implemented at the log level.
This makes actuator design simpler and avoids the
pitfalls of ad-hoc authentication mechanisms hastily
put together by hardware vendors.

Further, there is no need to expose the physical
devices with potentially questionable standards of
software security to the entire world, while still being
able to connect things together. This is especially
important since it takes the burden of implementing
security off the device vendors’ shoulders. All a
device manufacturer has to do is publish data to a log
(in case of a sensor), or subscribe to a log (in case of
an actuator). This greatly reduces the attack surface,
because GDP as a platform implements security best
practices.

Representing sensors and actuators with logs sep-
arates policy decisions from mechanisms, enabling
cleaner application designs. Applications can be
built on top of GDP by interconnecting globally ad-
dressable log streams, rather than by addressing de-
vices or services via IP addresses. Further, with ap-
plications running inside containers (Docker, Uniker-
nels, Intel SGX enclaves, etc.), forcing data-flows
in and out of the container through logs enables any
filtering at the log-level (e.g. access-control).

And last, but not the least, the “narrow waist”
provided by globally addressable logs avoids stove-
piped solutions and provides for a heterogeneous
hardware infrastructure.

3.2.3 Beyond a Log Interface: Common Access
APIs (CAAPIs)

Although a log abstraction shelters developers from
low-level machine and communication primitives,
many applications are likely to need more common
APIs or data structures. In fact, logs are sufficient
to implement any convenient, mutable data storage
repository. Thus, Fig. 2 shows a Common Access

API (CAAPI) layer on top of the GDP. A CAAPI can
present a key-value store, file system or database in-
terface. Since logs serve as the ground truth, the ben-
efit of consistency, durability, scalability and avail-
ability are carried over to CAAPIs for free.

3.3 Flat Address Space

As mentioned earlier, we use 256-bit long flat ad-
dresses for naming things in the GDP. This is true
not only for logs, clients, log-servers, but also for
control plane services and applications. In particular,
logs are named with a 256-bit identifier which may
be derived from a cryptographic hash of the owner’s
public key and meta-data.

This large address space allows us to employ
location-independent routing that can better match
the goals of flexible placement, controllable replica-
tion and mobility to optimize for latency, QoS, pri-
vacy and durability. Following a variety of placement
and replication policies, GDP places logs within the
infrastructure and advertises the location of these
logs to the underlying routing layer.

GDP-routers take the burden of performing and
optimizing this location-independent routing through
an overlay network that uses a combination of Dis-
tributed Hash Table (DHT) technology and selective
routing. DHT addresses the challenges of scalability
with the sacrifice of an increased number of overlay
hops. Important routes can be optimized by push-
ing routing entries into an underlying routing layer,
possibly using Software-Defined Networking (SDN)
routers when available. Fig. 2 shows this layering.

Based on the interaction between GDP-routers and
control-plane, logs could be migrated and routing
topology altered dynamically. In addition, multicast
trees can be built on top of the overlay network2, 12

to efficiently serve multiple subscribers. Not only
migration, but location-independent flat-addressing
also enables replication; a log (or service) can have
multiple read-only copies spread throughout the net-
work. Single-writer append-only design makes a log
mostly read-only (except for the active head), which
makes for easy replication with simpler concurrency
issues. These read-only replicas act very much like
a Content Delivery Network (CDN) and provide for
fault-tolerance. In case of network events such as
flash crowds or targeted bandwidth saturation attacks,
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Figure 3: An IoT application uses GDP to combine heterogeneous data-streams from local environmental sensors and
from a cloud source to actuate a device. Instead of direct communication with devices, the application uses the “narrow
waist” (logs) provided by the GDP. Even though a log is represented as a single data-stream to an application, internally
it can be distributed and replicated over multiple physical log servers to achieve locality and durability.

the traffic is distributed over multiple replicas rather
than a single point of failure. In addition, since low-
power devices (sensors/actuators) are exposed to the
world as a virtual device as a log, any potential band-
width saturation is limited to the GDP and does not
turn into a battery exhaustion attack.

3.4 Challenges

In this section, we describe the major challenges
that we faced in the design of GDP, and that are of
concern to a general IoT framework.

3.4.1 Security and Privacy

As we have outlined in Sec. 2, data security and
privacy is more important than ever, given the per-
vasive nature of devices and actuators. In the GDP,
we design our security and privacy mechanisms and
policies by focusing on the “narrow waist” provided
by the logs.

Logs are stored on potentially untrusted log-
servers. Hence it is important that we do not rely on
a single log-server to provide data-integrity. An ad-
versarial log-server could try to tamper with existing
data in the logs it stores, or may not perform appro-
priate checks on access-control and accept writes
from unauthorized writers, or maliciously re-order
append operations received from a legitimate writer.

We address data-integrity and write-access control
challenges using a combination of signatures and
Merkle trees in our single-writer log model; a writer
signs each append operation with a signature key
and performs record-ordering on the client side by
including a hash-pointer to the previous record in
the signed content. The public signature key for the
writer is included at the time of creation in the create-
request, which itself is signed. All that a log-server
has to do is to perform a signature-validation against
this well-specified public key for any new append
operation it receives. Any accidental or malicious be-
havior by a log-server results in invalid signatures or
a broken chain of hash-pointers, and can be detected
by a reader.

Globally addressable logs are a significant privacy
concern if any unauthorized reader could read data
at will. We envision encryption to be the mechanism
for providing data secrecy. GDP does not assume
any structure on the data being written to a log, en-
abling applications to encrypt data before handing it
to GDP. This enforces the minimum trust philosophy
by putting trust in cryptographic constructs rather
than potentially buggy software running on untrusted
servers. Read access-control is managed by the ap-
plication by appropriate sharing of the decryption
keys.

A secondary concern is exposing encrypted data
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to adversaries who may analyze timing or data size
at will. To address these concerns, we envision a
collaboration between policy (at the control plane)
and routing (within the GDP) to help mitigate this
problem by controlling the placement of data logs
and path of updates.

3.4.2 Key-management

Since security and privacy in the GDP relies upon
encryption, key management will be of paramount
importance. Although advanced schemes for key
management are still under consideration, we sup-
port a basic key management scheme as follows.

Each user maintains an encrypted wallet and an
unencrypted public-key registry, both backed by logs.
The user-supplied root key is used to decrypt the
wallet, which contains the secret keys necessary to
sign requests and secret or symmetric keys necessary
to decrypt log entries.

Granting read access amounts to sending a bit-
string over a tamper-proof channel (a log) to a re-
mote entity; this bit string is the necessary decryption
key that is in turn encrypted using the public key of
the remote entity. As a very simple example: Alice
wants to share a log L with a set of users. Alice
creates the log L including the name of an ”access
control log” A in L’s metadata. Alice then encrypts
the contents of L with a symmetric key K and ap-
pends versions of K to A, each encrypted using the
public key of the users who should have access.

This scheme works for simple and static data shar-
ing scenarios. Slightly complicated but efficient hi-
erarchical key management schemes can be created
based on application requirements. In the extreme
case, a compute service in a trusted environment
could be designated as the only reader, with that
service managing read access control lists in more
traditional ways.

3.4.3 Routing Overhead

A flat address space offers several benefits, but a
naı̈ve overlay implementation can severely affect the
performance, especially round-trip latencies. How-
ever, reasonably dense locality-aware distributing
routing frameworks limit relative delay penalty (ra-
tio between the distance traveled between two points

using an overlay and the minimum distance between
the two points) of using a DHT to 2 − 3.12 We
propose to use locality to overcome the overlay
performance penalty; e.g. round-trip latency to a
close-by/local node via overlay (10−20ms) is still
better than round-trip latency to a cloud-datacenter
(> 50ms). Further, as mentioned in Sec. 3.3, with
support for optimizing flows from the underlying net-
works (SDN, AVB, etc.), long term communication
to/from logs can achieve better performance.

4 Related Work

Other efforts exist to address the challenges of IoT.
Ericsson’s Capillary networks1 and Cisco’s Fog
Computing3 provide computing resources closer to
the edge of the network. We believe that our argu-
ments strengthen the need for fog-like computing
platforms and our GDP architecture can both lever-
age and simultaneously enable such platforms. Also
relevant are systems such as EdgeComputing from
Akamai,4 and Cloudlet.8 In these architectures, the
role of servers is to be intelligent gateways or proxies
for data flowing into and from the cloud. Support for
an entirely decentralized data storage and delivery
platform is apparently absent.

Our data-centric design hails from Oceanstore7

and shares a number of goals with Named Data Net-
working (NDN)11and MobilityFirst,9 but our focus
on the IoT application space leads to a number of im-
portant design differences. Among other things, push
based communication—such as from sensors to logs
and from logs to consumers—represents a communi-
cation style utilized extensively in the IoT space and
deemphasized in NDN. MobilityFirst shares the fun-
damental design principle of a flat-address (GUID),
however the emphasis is primarily on communica-
tion. In contrast, GDP provides a higher level log
abstraction supported by underlying communication
primitives.

A few of our design decisions are similar to Bolt:5

single-writer time-series data, chunking for perfor-
mance, efficient data sharing, policy-driven storage
and data confidentiality/integrity. However, Bolt
takes the cloud approach where the pitfalls in Sec. 2
are unavoidable.
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5 Conclusions

A prototype version of the GDP has been deployed
within our own environment and has been running
on a few servers since early 2015, however it is
still a work in progress. Our design for the GDP
is not yet bullet-proof and our initial implementation
has not withstood the test of wide-scale deployment.
Nonetheless, we believe that the core concepts of
GDP overcome the pitfalls mentioned in Sec. 2 in
the following way: the single-writer, append-only
log models sensor data more accurately; integrity
and authentication by design provides better privacy
and security; the distributed nature with peer-to-peer
technology makes scalability possible; explicit sepa-
ration of policy from mechanism enables better con-
trol on level of durability for end users; and finally,
latency, bandwidth and QoS guarantees are enabled
by the integration of the cloud and the local infras-
tructure.
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