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Figure 1. Robotic application in outdoor environment 
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Abstract— In this paper, we propose a distributed multi-robot 
control system working in dynamic and uncertain environments. 
Robust model predictive control (robust MPC) enables robots to 
deal with uncertainties. However, the performance of the robust 
MPC is dependent on the amount of uncertainty that derives 
from noisy measurements, communication disturbance, etc. The 
proposed system includes multiple observation robots that gather 
information cooperatively as well as a main robot controlled by 
robust MPC. Therefore, the system works for not only treating 
the uncertainty but also decreasing it. A simulation result of a 
collision avoidance shows that the information acquisition by the 
observation robots enables the main robot to move efficiently and 
arrive at the goal faster than a case without the observation 
robots. We also focus on a problem that a large number of 
observation robots will increase the frequency of inter-robot 
collision avoidances, and thus negatively affect to the 
performance of the main robot. Simulation results under various 
conditions on a disturbance level and a measurement range of 
sensors clarifies an adequate number of observation robots as 
well as the design guideline about sensors and networks. 

I. INTRODUCTION 

Robotic applications such as transportation, surveillance, 
and disaster response have received a lot of attention in recent 
years (Fig. 1). In these applications, robotic vehicles 
commonly work in dynamic environments surrounded by 
potential obstacles including other robots, human workers, 
unknown rubble, etc. Furthermore, when robots work in 
unstructured environments such as construction sites or 
disaster sites, a large set of uncertainties (e.g. noisy 
measurements, sensing error, communication disturbance, 
etc.) influences the control mechanism of robots. 

Model Predictive Control (MPC) is a popular control 
technique to deal with constrained time-variant problems 
including collision avoidance. The MPC approach predicts 
future states of robots and objects in the given environment 
and optimizes the control inputs for such robots so that any 
subsequent predicted conditions will turn out to be most 
optimal. In order to tackle uncertainties in addition to dynamic 
constraints, Robust MPC [1] and Stochastic MPC [2] are 
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proposed. The robust MPC framework predicts reachability 
sets of the future states and finds the control inputs that make 
these sets satisfy all of the given constraints even in the 
presence of some prediction errors. Although robust MPC 
enables robots to work in considerably uncertain environments, 
the performance of such robots would still heavily depend on 
the level of uncertainty, mainly due to the conservative nature 
of the robust MPC approach. This uncertainty is intrinsic to the 
relative topology of the robots and the obstacles, and in 
general, cannot be compensated for with computational 
methods alone. In order to optimize the performance of the 
robust MPC, it would be necessary to mitigate the level of 
uncertainty by cooperative exploration. 

There is extensive work on an information-theoretic 
control strategy for minimizing the uncertainties using 
multiple robots equipped with sensors. Hoffman and Tomlin 
[3] developed a control method which maximizes mutual 
information between the sensors and the state of a target in the 
environment. The mutual information is computed using a 
particle filter representation of the posterior probability 
distribution of the target state. Charrow et al. [4] propose 
approximated representation of mutual information in order to 
reduce the computational complexity. 

In this paper, we study a multi-robot system that consists of 
cooperative observation robots as well as a main robot 
operated by higher-level controller. Since all robots are 
controlled by the robust MPC, they can treat uncertainties 
properly. In addition, the proposed system has the ability to 
carry out information acquisition using the observation robots 
which have the mutual information based control objective [3], 
[4]. Our previous study demonstrated that information 
gathering behaviors of the observation robots can positively 
contribute to the control task carried out by the main robot [5]. 
This paper evaluates the performance of the main robot under 
various conditions on a disturbance level and a measurement 
range of sensors, focusing on the positive and negative impact 
of the number of the observation robots. Simulation results 
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Figure 2. Control flow of each robot 
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Figure 3. Scheme of the collision avoidance scenario 
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Figure 4. Scheme of the distributed robust MPC 

clarify the adequate number of observation robots in the 
proposed system as well providing a design guideline about 
sensors and networks. Our modeling and simulation approach 
can be also applicable to several areas in which multi-robot 
systems carry out a hybrid of multi-objective control patterns, 
for which rapid prototyping and on-line repurposing of control 
objectives become crucial. 

II. FRAMEWORK OF MULTI-ROBOT SYSTEM 

A. Main Framework 
One example in the aforementioned applications is a 

disaster response scenario, in which a team of robotic vehicles 
is to carry out removal of rubble and search and rescue 
missions, as depicted in Fig. 1. In this scenario, manipulators 
and transporters, which have specific duties, are labeled as the 
“Main robots”. Aside from these, we consider a team of 
“Observation robots,” which cooperatively observe the 
environment. The controller for each robot consists of 
“Estimator” and “Optimizer” as depicted in Fig. 2. The main 
robots and the observation robots are subject to the same 
control flow, but they use robot-specific control objective 
functions in the optimizer. 

B. Measurement and Estimation 
Robots can be equipped with one or many sensors such as 

cameras, lasers, and ultra-sonic sensors. In the proposed 
system, the measurements of these sensors are broadcast 
among all robots. The estimator receives measurements from 
all other robots as well as on-board sensors and performs target 
state estimation using an Unscented Kalman Filtering (UKF). 

In this paper, we consider a collision avoidance scenario 
shown in Fig. 3 that would happen frequently while the main 
robot performs transportation tasks. In that scenario, a robot 
equipped with a range-only sensor is to estimate the position 
and velocity of a moving obstacle and try to move from a 
starting point in 2-D space to a final target point, respectively 
chosen to be (30, 0) and (0, 0), keeping the distance to the 
obstacle larger than 2 m. For the target state estimation, we use 
the state-space model given by 
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where tPo , tVo  are the 2-D position and velocity of the 
obstacle, respectively, and tPr  is a position of the robot given 
by its localizer (e.g. GPS, Dead reckoning). tZ  and tK  are 
assumptions of process noise and measurement noise, 
respectively. t'  is a time interval of measurement and control. 

C. Distributed Robust MPC for the Main Robot 
The control input to the main robot is acceleration input, 

computed according to distributed robust MPC [6] depicted in 
Fig. 4. The rationale of distributed MPC is that each robot 
transmits to the others a planned reachability set of trajectory 

over the prediction horizon and guarantees that its actual 
trajectory lies in the reachability set. In the proposed system, 
planned control inputs U over the prediction horizon are 
broadcasted as shown in Fig. 2 so that each robot can predict 
the reachability sets of other robots using received messages. 

The reachability sets of all robots and the obstacle are 
determined as a normal distribution at each time step as shown 
in Fig. 4. Using these predicted states, the acceleration input of 



  

the main robot is obtained by solving an optimization problem 
given by 
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(i = 1, � , n   n: the number of the observation robots) 

where tV and tU  are the velocity and the acceleration of the 
main robot, respectively. tRs  is a planned trajectory (future 
position) of the main robot calculated using the control input 
calculated at previous time step � �1,, ��stt UU � . tRoi  is 
predicted trajectory of the observation robot i calculated using 
the control input received from robot i. Note that if _5 is 
defined for each observation robot. In this paper, a set of if _5 , 
^ `ni ,,1� , is denoted by 5f . 

The equality constraint in (2) is a dynamics model of an 
omnidirectional mobile robot. Since the future states of the 
main robot ( W�tPr , W�tV ) obey the dynamics model, 0f ~ 5f are 
functions of optimization variables stt UU �� ,,1 � . 0f  is the 
squared Euclidean distance from the robot to the goal. 1f ~ 5f  
are inequality constraints that are required to be satisfied. 1f  
and 2f  are the constraints on the velocity and acceleration of 
the main robot, respectively. Vmax is the maximum velocity, 
and Amax is the maximum acceleration, are chosen in 
accordance with the hardware configuration of the robot. 3f  
makes the actual trajectory of the main robot lie in the planned 
reachability set. WV �tr is a radius of the reachability set at time 

W�t  calculated by 

� ,0 WEVV W �� � rrt � ����

where 0rV  and E  are a predetermined parameters (initial 
radius and an additive margin). 4f  and 5f  are collision 
avoidance constraints. For example, when the robot is within a 
distance Dmin to the obstacle, 4f  is positive. Current position 
of the obstacle tPo  is provided by the estimator at each time 
step. Dmin is a predetermined safety margin on distance to the 
obstacles. 

For the purpose of treating the uncertainty properly, all 
constraints in (2) are enlarged by given margins mVD � , where 

^ `nmm _5,,1_5,,1, �� V , are standard deviations of the 
constraint functions mf .  WV �t4  and

W
V

�ti_5 are calculated by 
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where W�tC  is a covariance matrix of W�tPo  , which can be 
calculated using current covariance tC given by UKF, and di is 
the number of elapsed steps since the latest message of robot i 
was received. If the obstacle’s position tPo  is unknown, then 

t4V  is large so that the constraint 4f  is tightened. Similarly, if 
the packet loss of communication occurs frequently, 

ti_5V  is 

large. As illustrated in Fig. 4, t4V  and 
ti_5V  represent radii of 

the reachability sets of the obstacle and the other robots, 
respectively. Therefore, the main robot will move away from 
the others proportionally to the scaling factor α. In this paper, 

WV �t1  ~ WV �t3  are set to zero at all times, assuming that 1f  ~ 

3f  don’t include any uncertain variables. 

Optimization problem (2) can be solved using general 
constrained optimization theory. Specifically, we use the 
interior point barrier-method [7] to solve it.  

D. Optimal Control for the Observation Robots 
Unlike the case for the main robot, the control objective of 

the observation robots is not set to be a pursuit goal. The 
objective instead is to provide as much information as possible 
about the unknown environment to the main robots by utilizing 
their on-board sensors and dynamic capabilities (Fig. 5). For 
the control of observation robots, we use (5) as the objective 
function instead of (2). 
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subject to the same constraints in (2). tI  is the approximated 
mutual information between the estimated state of the obstacle 
and the future measurement of the observation robots 
described in [4]. PDF is a conditional probability density 
function. itz ,  and jtz ,  are the prediction of measurements if 
the robot measures the sigma point i and j, respectively, and tK  
is the assumption of measurement noise in (1). More details 
about information gathering theory using mutual information 
are described in [3], [4]. 6f  is a soft constraint on the distance 
to the measurement target. If a distance to the obstacle is more 
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Figure 5. Scheme of the mutual information based control 

than Dmax, 6f  is positive so that the observation robot likely 
moves closer to the obstacle. J  is a predetermined penalty 
parameter. Dmax is chosen in accordance with the 
measurement range of the sensor on board the observation 
robot.  

Using the objective function given by (5), observation 
robots can maximize the mutual information while keeping the 
distance to the obstacle. As shown in Fig. 5, the behavior of the 
observation robot minimizes the expected future uncertainty of 
the obstacle’s position estimate. 

III. EVALUATION OF THE MULTI-ROBOT SYSTEM 

A. Experimental Setup 
In order to analyze the effect of the observation robots, the 

proposed system needs to be evaluated under dynamic and 
uncertain environments. In this paper, we use Ptolemy II [8], 
the modeling and simulation environment, to build a test 
environment in which various disturbances such as sensor 
noise, sensor errors, and communication errors are simulated. 
Ptolemy II is a framework for building and simulating 
actor-oriented models of heterogeneous systems. Furthermore, 
Ptolemy II offers aspect-oriented modeling environment that 
enables us to build disturbance models [9] as well as actor 
libraries for machine learning and optimization tools [10]. In 
this paper, we build a disturbance model in which the sensor 
error and the communication error occur with a fixed 
probability determined as “Disturbance level”. 

The simulation conditions are summarized in Table I. In 
this paper, each condition is simulated 100 times and the 
amount of time required by the main robot to reach the goal is 
evaluated as a performance indicator. We focus on the 
performance of the main robot under various conditions on the 
number of the observation robots, the measurement range and 
the disturbance level. If the measurement range is short, the 
observation robots have to be close to measurement target in 
order to continuously measure it. Consequently, observation 
robots tend to be deployed in the path of the main robot, 
forcing the main robot to travel farther in order to avoid the 
observation robots. The sensor errors and communication 
errors enlarge the size of the reachability sets, resulting in the 
decrease of the performance of the main robot. By increasing 
the number of the observation robots, information about the 
obstacle would be gathered more effectively. On the other 
hand, since the observation robots themselves are potential 
obstacles, too many robots would decrease the performance of 
the main robot. Simulation results of these conditions can 
provide an adequate number of the observation robots as well 
as the design guideline about sensors and networks. 

Common parameter settings are summarized in Tables II 
and III. Even though the obstacle is moving in a circular orbit 
with constant speed, this is unknown to the robots. The robots 
estimate the obstacle’s position and velocity with linear 
uniform motion model in (1). To simulate a range-only 
measurement sensor, the position of the obstacle is calculated 
with additive Gaussian noise tK  at each time step. bV  is set as 
a large value so that the uncertainty of the obstacle will be an 
ellipse as illustrated in Fig. 5. 

TABLE I.  SIMULATION CONDITIONS 

Simulation Parameter Value 

Measurement range Dmax = 5m, 10m, 15m, 30m 

Disturbance level a (0%, 0%), (25%, 25%), (50%, 50%) 

No. of the observation robots 0, 1, 2, 3, 4 

a. Disturbance level = (probability of packet loss %, probability of failure to measure %) 

TABLE II.  PARAMETER SETTINGS FOR ESTIMATION 

Simulation Parameter Value 

Process noise in obstacle’s 
state-space model 
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TABLE III.  PARAMETER SETTINGS FOR SIMULATION SCENARIOS 

Simulation Parameter Value 

Obstacle’s dyanamics 

Circular Motion 
Start: (x, y) = (12 m, 2m) 
Velocity: 1.26 m/s 
Angular velocity: 0.628 rad/s 

Constraints on the control of robots 

 

Maximum velocity Main robot: Vmax = 8/m/s 
Observation robot: Vmax = 16 m/s 

Maximum acceleration Main robot: Amax = 8/m/s2 

Observation robot: Amax = 16 m/s2 

Minimum distance to the 
obstacle and other robots Dmin = 2 m 

Size of reachability set D = 2, 0rV = 0.2m, E = 0.4 m 

Penalty parameter of f6 J  = 0.001 

Time interval t' = 0.1 [s] 

Prediction time horizon N = 10 steps ( = 1.0 s) 
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(a) Number of observation robots: 0 
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(b) Number of observation robots: 1 
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(c) Number of observation robots: 2 
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(d) Number of observation robots: 3 
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(e) Number of observation robots: 4 

Figure 6. Trajectories of the main robot 
(Disturbance level = 0%, Measurement range = 30 m) 

B. Simulation Results 
The trajectories of first 10 cases in cases of Dmax = 30m 

are illustrated in Fig. 6. Average times for the main robot to 
move to goal are shown in Fig. 7. As shown in Fig. 6, the main 
robot in every case can safely avoid the obstacle. Comparing 
Fig. 6(a) and Fig. 6(b), we notice that the trajectories of the 
main robot with at least one observation robot are shorter than 
those of the single robot. As shown in Fig. 8, separate 
trajectories of the observation robots would allow for obstacle 
observation from different locations. As a result, the obstacle’s 
position is estimated with a high degree of accuracy, in other 
words, the uncertainty of the obstacle’s position estimate is 
reduced. This could directly lead to a form of constraint 
relaxation on the main robot, and in turn, allows the main robot 
to follow a less conservative yet safe trajectory around the 
obstacle. Consequently, the results in cases with at least one 
observation robot were better than the condition without the 
observation robot (See Fig. 7(a), average times in case with the 
observation robots were shorter than W/O obs. robot). 

As shown in Fig. 7, an increase of the disturbance level has 
a negative effect over all conditions. Because the disturbances 
enlarge the reachability sets, the main robot needed to be more 
conservative under higher levels of disturbance. Comparing 
among 50% of the disturbance level in Fig. 7(a), we realize 
that the case with 3 observation robots achieved the best 
performance, while the case with 2 observation robots was the 
best in 0% and 25% of the disturbance level. These results 
imply that a system with the large number of observation 
robots has redundancies of sensing and communication so that 
the system is robust over the disturbances. 

Focusing on the case of 4 observation robots, we realize 
that the average times were longer than the case with 2 or 3 
observation robots in almost all cases. These performance 
degradations are caused by collision avoidance behaviors 
frequently occurred between the main robot and the 
observation robots. For example, as shown in Fig. 6(d), the 
main robot of 9th trial traveled the longest way because it 
needed to avoid the observation robot 2 at the beginning of the 
test (Fig. 8). These results indicate that the system with 3 
observation robots has enough redundancy to tackle with the 
disturbances inserted in this examination. Therefore, the 
system with 4 or more robots wouldn't have advantages, 
because too many observation robots frequently force 
collision avoidance behaviors of the main robot. 

The collision avoidance between robots tends to take place 
in the case of short measurement range. As shown in Fig. 7(b) 
~ (d), the performance of the main robot deteriorates as more 
observation robots are added to the system, due to stricter 
collision constraints. The decline in performance becomes 
more significant for shorter measurement range. This means 
that the path of the main robot was likely blocked by the 
observation robots in the case with 4 observation robots. 

C. Discussion on the Design Guideline 
When we develop the actual hardware of robotic 

application, we will face various kinds of tradeoffs. In this 
paper, we focus on achieving design guidelines for actual 
applications, as those aforementioned. From the results shown 

in Fig. 7, we can find an adequate number of observation 
robots and sensors that provide suitable measurement range 
under the given disturbance level. If we can use a long range 
sensor such as laser, the multi-robot system of 3 observation 
robots is the best solution against the high level (50%) of 
disturbance. Additionally, if we can assume the lower levels of 
disturbance, 2 observation robots would be the best. If the 
measurement range is from 10m to 15m, the best solution is 2 
observation robots, assuming 50% of disturbances. If we can 
use only short range sensors like as ultra-sonic, whose range is 
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(a) Measurement range = 30 m 
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(b) Measurement range = 15 m 

4

6

8

10

12

W/O obs.
robot

1 2 3 4

Ti
m

e
 [

s]

The number of observation robots

0% 25% 50%

 
(c) Measurement range = 10 m 
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(d) Measurement range = 5 m 

Figure 7. Average time taken to move to the goal 
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Figure 8. Trajectories of all robots (9th trial in Fig 6(d)) 

around 5m, only one observation robot is enough and too many 
observation robots will decrease the performance.  

The aforementioned design guidelines depend on 
simulation conditions. For example, in this paper, the 
observation robots are controlled within 2D space. However, 
if they can move in 3D space, those negative impacts would be 
decreased. By improving the simulation models, our approach 
can achieve design guidelines for the actual applications.  

IV. CONCLUSION 

In this paper, we propose a new multi-robot control system 
that works in dynamic and uncertain environments. The 
proposed system uses multiple robots to decrease the amount 
of uncertainty in the environment and achieve high 
performance. Simulation results under various conditions on 
the disturbance level and the measurement range have clarified 
effects of the observation robots. The observation robots play 
a positive role in enhancing the capabilities of the main robots 
in order to avoid obstacles and arrive at the target points in 
shorter times. By increasing the number of the observation 

robots, the proposed system has shown its robustness against 
disturbances in sensing and communication. However, too 
many observation robots undermine performance by creating 
obstacles for the main robot. We find that the system with 2 or 
3 observation robots achieves the best performance in almost 
all cases. 

The simulation results in this paper suggest an optimal 
number of the observation robots as well as providing design 
guidelines for sensors and networks of the proposed system. 
Future work includes detailed modeling of disturbances in 
actual networks and sensors in order to evaluate performance 
of the proposed system in specific applications. Even though 
this paper addresses only one obstacle, this framework can be 
extended to track multiple objects using estimation methods 
such as JPDAF [11]. 
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