Impact: Fault Tolerance and High Confidence Embedded Systems Design

Edited and presented by Gabor Karsai
Vanderbilt University, ISIS

Chess Review
October 4, 2006
Alexandria, VA
Center impact (1): New Start Research Project

- **Multi-University Research Initiative:**
 - Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems
 - Participants: Berkeley, CMU, Stanford, VU

- **Objectives:**
 - Development of a theory of deep composition of hybrid control systems with attributes of computational and communication platforms
 - Development of foundations for model-based software design for high-confidence, networked embedded systems applications.
 - Support of high-level reusability of tools in domain-specific tool chains

- **Web:** https://wiki.isis.vanderbilt.edu/hcddes/
Embedded Control System Design Flow

Requirement Specification

Control Design

Software Architecture

Component Design

HW Arch. Design

System Arch. Design

SW Deployment

"Impact: HCDES/MICTES", Karsai
Design Flow: Tools and Analysis

Requirement Specification

Control Design

Functional Mod/Sim

Software Architecture

Arch Mod/Sim

Component Design

Code Gen. Verif.

HW Arch. Design

System Arch. Design

Latency/RT Analysis

SW Deployment

HW Pwr/Perf Est

Alloc./Sched. Analysis

EVIDENCE
Overall Undertaking

- Development of component technologies in all areas (theory/design/tools)
- Incrementally building a tool chain for a selected domain (UAV flight and mission control)
- Demonstration of control software development with the tool chain
- Experiments
Objective: Define the control laws to meet requirements
Platform: SL/SF-like modeling language, (Ptolemy 2; GME)
Tools: SL/SF Model Builder+Simulator (Ptolemy 2)

Requirement Specification

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensor image must be partitioned into chips to extract potential regions of interest</td>
</tr>
<tr>
<td>2</td>
<td>Regions of interest must be matched with target images and classified within 30 ms of arrival</td>
</tr>
<tr>
<td>3</td>
<td>The classification must be adaptively configured according to number of sensor images arriving per second</td>
</tr>
<tr>
<td>4</td>
<td>The number of target classes must be adaptively configurable to support rapid deployment in theater</td>
</tr>
</tbody>
</table>

Requirement - Functional Design Mapping (DSMLSL/SF)
Control Design: Approaches

Goal: Design controller behavior satisfying all requirements

- **Plant Model**
- **Controller Design**
- **Robust Control Design**
- **Comp/Comm Platform Model**

- **Mathematical model of the Plant**
- **Design of a lin. or non-lin. controller satisfying stability/performance requirements**
- **Simulations/refinement**

- **Uncertain dynamics, unknown non-linearities**
- **Fault effects, sensing errors**
- **Fault adaptive control**
- **Robust analysis, (SDP, LMI), Simulations**

- **Embedded Systems Modeling and Deep Compositionality**
- **Hierarchies of Robust Hybrid and Embedded Systems**
- **Verification and Validation of Conservative Approximations**
- **Adaptive Control Architectures for Uncertainty Handling**

- **Quantization, finite word length, round-off errors**
- **Modality**
- **Limited resources, resource sharing**
- **Concurrency models, scheduling**
- **Limited communication bandwidth, networking**

"Impact: HCDES/MICTES", Karsai
Objective: Optimize the SW architecture by selecting a component model and by allocating functions to components.

Platform: MoC-s

Tools: GME, GReAT, DESERT, Ptolemy-2,...
Goal: design software architecture using well understood composition platforms that allow verification of properties using analysis or “correct-by-construction” property guarantees.

Embedded Software Composition Platforms
- Heterogeneous MoC-s
- Actor Models
- Ptolemy-II based runtime support
- Formally specified semantics
- Compositional semantics for heterogeneous systems

"Impact: HCDES/MICTES", Karsai
Addition to the Design Flow

Requirement Specification

RA

Control Design

FD

Component Design

SwA

Software Architecture

CD

HW Arch. Design

DPL

System Arch. Design

HW Pwr/Perf Est

SysY

Latency/RT Analysis

Alloc./Sched. Analysis

Arch Mod/Sim

Code Gen. Verif.

Functional Mod/Sim
Objective: Design and implement SW for components satisfying behavior defined by control laws.

Platform: Component Implementation Languages (Java, C++, Other..)

Tools: Generators (RT-Workshop; GReAT), Compilers, WCET Analyzers

Functional blocks - SW Component Mapping
Software Component Verification

Goal: prove that the component software behaves as intended under all foreseeable operating conditions.

- **Model refinement**
- **Model verification**
- **Model compilation or hand coding**
- **Static analysis**
- **Test-based verification**

"Impact: HCDES/MICTES", Karsai
System Configuration Design

Objective: Design System configuration that meets cost/reliability/power requirements.

Platform: Comm-links; RTOS, Comp. Middleware

Tools: GME, RTOS, Comp. Middleware tools

System Modeling: HW-Comm-RTOS mapping

"Impact: HCDES/MICTES", Karsai
Objective: Optimize System architecture by allocating SW components to RTOS Tasks and Communication Channels.

Platform: Composition Model

Tools: GME, DESERT, Timing Analysis, ...
Guaranteed behavior of distributed control software using the following approaches:
(1) extension of robust controller design to selected implementation error categories
(2) providing “certificate of correctness” for the controller implementation
(3) development of semantic foundation for tool chain composition
(4) introducing safe computation models that provide behavior guarantees
Expected Deliverables

• Composable tool architecture
 - New generation of Open Tool Integration Framework
 - Prototype Tool Chain

• Testing and Experimental Validation
 - Software fully built and validated by tools
 • Avionics for small UAVs
 • Mission Management
 • COP for C2
Computing Platforms:
Design/Verification Tools, Embedded Devices

"Impact: HCDES/MICTES", Karsai
Transition Approach

• Tools are disseminated through the ESCHER Repository (Open Source)
• Government: AFRL connections
 - AFRL/IF, AFRL/VACC, AFRL/VACA, AFRL/CSD
• CerTA Project (Boeing/UCB)
• Future Combat Systems Program (Boeing/VU)
Center Impact (2): Collaborative Research with NASA/ARC

Goal: Assured Development of Flight Control Software for Spacecraft Applications

- Front-end Modeling: Simulink/Stateflow
- Code generation using a GReAT-based model transformation tool
- CG output includes annotated code (verification conditions)
- Model checker/theorem prover is used to prove code properties (ARC)
- Expected result: Integrated code generator/code verifier tool for Simulink/Stateflow-based Embedded Software Development