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Abstract. We consider Markov decision processes (MDPs) with mul-
tiple long-run average objectives. Such MDPs occur in design problems
where one wishes to simultaneously optimize several criteria, for exam-
ple, latency and power. The possible trade-offs between the different
objectives are characterized by the Pareto curve. We show that every
Pareto optimal point can be ε-approximated by a memoryless strategy,
for all ε > 0. In contrast to the single-objective case, the memoryless
strategy may require randomization. We show that the Pareto curve can
be approximated (a) in polynomial time in the size of the MDP for irre-
ducible MDPs; and (b) in polynomial space in the size of the MDP for
all MDPs. Additionally, we study the problem if a given value vector is
realizable by any strategy, and show that it can be decided in polyno-
mial time for irreducible MDPs and in NP for all MDPs. These results
provide algorithms for design exploration in MDP models with multiple
long-run average objectives.

1 Introduction

Markov decision processes (MDPs) are standard models for dynamic systems
that exhibit both probabilistic and nondeterministic behaviors [11, 5]. An MDP
models a dynamic system that evolves through stages. In each stage, a controller
chooses one of several actions (the nondeterministic choices), and the system
stochastically evolves to a new state based on the current state and the chosen
action. In addition, one associates a cost or reward with each transition, and the
central question is to find a strategy of choosing the actions that optimizes the
rewards obtained over the run of the system. The two classical ways of combing
the rewards over the run of the system are as follows: (a) the discounted sum
of the rewards and (b) the long-run average of the rewards. In many modeling
domains, however, there is no unique objective to be optimized, but multiple,
potentially dependent and conflicting objectives. For example, in designing a
computer system, one is interested not only in maximizing performance but also
in minimizing power. Similarly, in an inventory management system, one wishes
to optimize several potentially dependent costs for maintaining each kind of
product, and in AI planning, one wishes to find a plan that optimizes several
distinct goals. These motivate the study of MDPs with multiple objectives.
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We study MDPs with multiple long-run average objectives, an extension of
the MDP model where there are several reward functions [7, 13]. In MDPs with
multiple objectives, we are interested not in a single solution that is simultane-
ously optimal in all objectives (which may not exist), but in a notion of “trade-
offs” called the Pareto curve. Informally, the Pareto curve consists of the set of
realizable value profiles (or dually, the strategies that realize them) that are not
dominated (in every dimension) by any other value profile. Pareto optimality has
been studied in co-operative game theory [9] and in multi-criterion optimization
and decision making in both economics and engineering [8, 14, 12]. Finding some
Pareto optimal point can be reduced to optimizing a single objective: optimize
a convex combination of objectives using a set of positive weights; the optimal
strategy must be Pareto optimal as well (the “weighted factor method”) [7].
In design space exploration, however, we want to find not one, but all Pareto
optimal points in order to better understand the trade-offs in the design. Unfor-
tunately, even with just two rewards, the Pareto curve may have infinitely many
points, and also contain irrational payoffs. Many previous works has focused
on constructing a sampling of the Pareto curve, either by choosing a variety of
weights in the weighted factor method, or by imposing a lexicographic ordering
on the objectives and sequentially optimizing each objective according to the or-
der [4, 5]. Unfortunately, this does not provide any guarantee about the quality
of the solutions obtained.

The study of the approximate version of the problem, the ε-approximate
Pareto curve [10] for MDPs with multiple objectives is recent: the problem was
studied for discounted sum objectives in [2] and for qualitative ω-regular objec-
tives in [3]. Informally, the ε-approximate Pareto curve for ε > 0 contains a set
of strategies (or dually, their payoff values) such that there is no other strategy
whose value dominates the values in the Pareto curve by a factor of 1 + ε.

Our results. In this work we study the complexity of approximating the Pareto
curve for MDPs with multiple long-run average objectives. For a long-run average
objective, given an infinite sequence 〈v0, v1, v2, . . .〉 of finite reward values the

payoff is lim infT→∞
1

T

∑T−1

t=0
vt. We summarize our results below.

1. We show that for all ε > 0, the value vector of a Pareto-optimal strategy can
be ε-approximated by a memoryless strategy. In the case of single objective
the definition of long-run average objective can be also alternatively defined
as lim sup instead of lim inf, and the optimal values coincide. In contrast,
in the case of multiple objectives we show that if the long-run average ob-
jectives are defined as lim sup, then the Pareto-optimal strategies cannot be
ε-approximated by memoryless strategies.

2. We show that an approximate Pareto curve can be computed in polyno-
mial time for irreducible MDPs [5]; and in polynomial space for general
MDPs. The algorithms are obtained by reduction to multi-objective linear-
programming and applying the results of [10].

3. We also study the related realizability decision problem: given a profile of
values, is there a Pareto-optimal strategy that dominates it? We show that



the realizability problem can be decided in polynomial time for irreducible
MDPs and in NP for general MDPs.
Our work is closely related to the works of [2, 3]. In [2] MDPs with multiple

discounted reward objectives was studied. It was shown that memoryless strate-
gies suffices for Pareto optimal strategies, and polynomial time algorithm was
given to approximate the Pareto curve by reduction to multi-objective linear-
programming and using the results of [10]. In [3] MDPs with multiple qualita-
tive ω-regular objectives was studied. It was shown that the Pareto curve can
be approximated in polynomial time: the algorithm first reduces the problem
to MDPs with multiple reachability objectives, and then MDPs with multiple
reachability objectives can be solved by multi-objective linear-programming. In
our case we have the undiscounted setting as well as quantitative objectives and
there are new obstacles in the proofs. For example, the notion of “discounted
frequencies” used in [2] need not be well defined in the undiscounted setting. Our
proof technique uses the results of [2] and a celebrated result Hardy-Littlewood
to obtain the result on sufficiency of memoryless strategies for Pareto optimal
strategies. Also our reduction to multi-objective linear-programming is more in-
volved: we require several multi-objective linear-programs in the general case,
it uses techniques of [3] for transient states and approaches similar to [2] for
recurrent states.

2 MDPs with Multiple Long-run Average Objectives

We denote the set of probability distributions on a set U by D(U).

Markov decision processes (MDPs). A Markov decision process (MDP)
G = (S,A, p) consists of a finite, non-empty set S of states and a finite, non-
empty set A of actions; and a probabilistic transition function p : S×A → D(S),
that given a state s ∈ S and an action a ∈ A gives the probability p(s, a)(t) of
the next state t. We denote by Dest(s, a) = Supp(p(s, a)) the set of possible
successors of s when the action a is chosen. Given an MDP G we define the set
of edges E = { (s, t) | ∃a ∈ A. t ∈ Dest(s, a) } and use E(s) = { t | (s, t) ∈ E }
for the set of possible successors of s in G.

Plays and strategies. A play of G is an infinite sequence 〈s0, s1, . . .〉 of states
such that for all i ≥ 0, (si, si+1) ∈ E. A strategy σ is a recipe that specifies
how to extend a play. Formally, a strategy σ is a function σ : S+ → D(A)
that, given a finite and non-empty sequence of states representing the history of
the play so far, chooses a probability distribution over the set A of actions. In
general, a strategy depends on the history and uses randomization. A strategy
that depends only on the current state is a memoryless or stationary strategy,
and can be represented as a function σ : S → D(A). A strategy that does not
use randomization is a pure strategy, i.e., for all histories 〈s0, s1, . . . , sk〉 there
exists a ∈ A such that σ(〈s0, s1, . . . , sk〉)(a) = 1. A pure memoryless strategy
is both pure and memoryless and can be represented as a function σ : S → A.
We denote by Σ, ΣM , ΣP and ΣPM the set of all strategies, all memoryless
strategies, all pure strategies and all pure memoryless strategies, respectively.



Outcomes. Given a strategy σ and an initial state s, we denote by
Outcome(s, σ) the set of possible plays that start from s, given strategy σ, i.e.,
Outcome(s, σ) = { 〈s0, s1, . . . , sk, . . .〉 | ∀k ≥ 0.∃ak ∈ A.σ(〈s0, s1, . . . , sk〉)(ak) >

0; and sk+1 ∈ Dest(sk, ak) }. Once the initial state and a strategy is chosen,
the MDP is reduced to a stochastic process. We denote by Xi and θi random
variables for the i-th state and the i-th chosen action in this stochastic process.
An event is a measurable subset of Outcome(s, σ), and the probabilities of the
events are uniquely defined. Given a strategy σ, an initial state s, and an event
A, we denote by Prσ

s (A) the probability that a path belongs to A, when the
MDP starts in state s and the strategy σ is used. For a measurable function f

that maps paths to reals, we write E
σ
s [f ] for the expected value of f when the

MDP starts in state s and the strategy σ is used.

Rewards and objectives. Let r : S × A → R be a reward function that asso-
ciates with every state and action a real-valued reward. For a reward function r

the inf-long-run average value is defined as follows: for a strategy σ and an ini-
tial state s we have Valσinf (r, s) = lim infT→∞

1

T

∑T−1

t=0
E

σ
s [r(Xt, θt)]. We will also

consider the sup-long-run average value that is defined as follows: for a strategy σ

and an initial state s we have Valσsup(r, s) = lim supT→∞
1

T

∑T−1

t=0
E

σ
s [r(Xt, θt)].

We consider MDPs with k-different reward functions r1, r2, . . . , rk. Given
an initial state s, a strategy σ, the inf-long-run average value vec-
tor at s for σ, for r = 〈r1, r2, . . . , rk〉 is defined as Valσinf (r, s) =
〈Valσinf (r1, s),Valσinf (r2, s), . . . ,Valσinf (rk, s)〉. The notation for sup-long-run av-
erage objectives is similar.

Comparison operators on vectors are interpreted in a point-wise fashion, i.e.,
given two real-valued vectors v1 = 〈v1

1 , v2
1 , . . . , v

k
1 〉 and v2 = 〈v1

2 , v2
2 , . . . , vk

2 〉, and
⊲⊳∈ {<,≤, = } we write v1 ⊲⊳ v2 if and only if for all 1 ≤ i ≤ k we have vi

1 ⊲⊳ vi
2.

We write v1 6= v2 to denote that vector v1 is not equal to v2, i.e., it is not the
case that v1 = v2.

Pareto-optimal strategies. Given an MDP G and reward functions
r1, r2, . . . , rk, a strategy σ is a Pareto-optimal strategy [9] for inf-long-run av-
erage objective from a state s, if there is no σ′ ∈ Σ such that Valσinf (r, s) ≤

Valσ
′

inf (r, s), and Valσinf (r, s) 6= Valσ
′

inf (r, s), i.e., there is no strategy σ′ such

that for all 1 ≤ j ≤ k, we have Valσinf (rj , s) ≤ Valσ
′

inf (rj , s) and exists 1 ≤ j ≤ k,

with Valσinf (rj , s) < Valσ
′

inf (rj , s). The definition for sup-long-run average objec-
tives is similar. In case k = 1, the class of Pareto-optimal strategies are called
optimal strategies.

Sufficiency of strategies. Given reward functions r1, r2, . . . , rk, a family ΣC

of strategies suffices for ε-Pareto optimality for inf-long-run average objectives
if for all ε > 0, for every Pareto-optimal strategy σ ∈ Σ, there is a strategy
σc ∈ ΣC such that for all j = 1, 2, . . . , k and all s ∈ S we have Valσinf (rj , s) ≤
Valσc

inf (rj , s)+ε. The notion of sufficiency for Pareto optimality is obtained if the
above inequality is satisfied for ε = 0. The definition is similar for sup-long-run
average objectives.



Theorem 1 (Strategies for optimality [5]). In MDPs with one reward func-
tion r1, the family ΣPM of pure memoryless strategies suffices for optimality
for inf-long-run average and sup-long-run average objectives, i.e., there exists
a pure memoryless strategy σ∗ ∈ ΣPM , such that for all strategies σ ∈ Σ, the
following conditions hold: (a) Valσinf (r1, s) ≤ Valσ

∗

inf (r1, s); (b) Valσsup(r1, s) ≤

Valσ
∗

sup(r1, s); and (c) Valσ
∗

inf (r1, s) = Valσ
∗

sup(r1, s).

3 Memoryless Strategies Suffice for Pareto Optimality

In this section we study the properties of the family of strategies that suffices for
Pareto optimality. It can be shown that ε-Pareto optimal strategies, for ε > 0,
require randomization for both sup-long-run average and inf-long-run average
objectives; and for sup-long-run average objectives the family of memoryless
strategies does not suffice for ε-Pareto optimality (see [1] for details). We present
the main result of this section that shows the family of memoryless strategies
suffices for ε-Pareto optimality for inf-long-run average objectives.

Markov chains. A Markov chain G = (S, p) consists of a finite set S of states,
and a stochastic transition matrix p, i.e., p(s, t) ≥ 0 denotes the transition
probability from s to t, and for all s ∈ S we have

∑

t∈S p(s, t) = 1. Given
an MDP G = (S, A, p) and a memoryless strategy σ ∈ ΣM we obtain a Markov
chain Gσ = (S, pσ) obtained as follows: pσ(s, t) =

∑

a∈A p(s, a)(t) ·σ(s)(a). From
Theorem 1 it follows that the values for inf-long-run average and sup-long-run
average objectives coincide for Markov chains.

Corollary 1. For all MDPs G, for all reward functions r1, for all memoryless
strategies σ ∈ ΣM , and for all s ∈ S, we have Valσinf (r1, s) = Valσsup(r1, s).

We now state a result of Hardy-Littlewood (see Appendix H of [5] for proof).

Lemma 1 (Hardy-Littlewood result). Let {dt }∞t=0 be an arbitrary sequence
of bounded real-numbers. Then the following assertions hold:

lim inf
T→∞

1

T

T−1
∑

t=0

dt ≤ lim inf
β→1−

(1 − β) ·
∞
∑

t=0

βt · dt

≤ lim sup
β→1−

(1 − β) ·
∞
∑

t=0

βt · dt ≤ lim sup
T→∞

1

T

T−1
∑

t=0

dt.

Lemma 2. Let G = (S, A, p) be an MDP with k reward functions r1, r2, . . . , rk.
For all ε > 0, for all s ∈ S, for all σ ∈ Σ, there exists a memoryless strategy
σ ∈ ΣM such that for all i = 1, 2, . . . , k, we have Valσinf (ri, s) ≤ Valσinf (ri, s)+ε.

Proof. Given a strategy σ and an initial state s, for j = 1, 2, . . . , k define a
sequence { d

j
t }

∞
t=0 as follows: d

j
t = E

σ
s [rj(Xt, θt)]; i.e., d

j
t is the expected reward

of the t-th stage for the reward function rj . The sequence { d
j
t }

∞
t=0 is bounded

as follows: mins∈S,a∈A rj(s, a) ≤ d
j
t ≤ maxs∈S,a∈A rj(s, a), for all t ≥ 0 and



for all j = 1, 2, . . . , k. By Lemma 1 we obtain that for all ε > 0, there exists
0 < β < 1 such that for all j = 1, 2, . . . , k we have lim infT→∞

1

T

∑T−1

t=0
d

j
t ≤

(1 − β) ·
∑∞

t=0
βt · d

j
t + ε; i.e., in other words, for all j = 1, 2, . . . , k we have

Valσinf (rj , s) ≤ E
σ
s [

∑∞
t=0

(1−β) ·βt ·rj(Xt, θt)]+ε. By Theorem 2 of [2] for every

strategy σ, there is a memoryless strategy σ ∈ ΣM such that for all j = 1, 2, . . . , k

we have E
σ
s [

∑∞
t=0

(1−β)·βt ·rj(Xt, θt)] = E
σ
s [

∑∞
t=0

(1−β)·βt ·rj(Xt, θt)]. Consider
a memoryless strategy σ that satisfies the above equalities for j = 1, 2, . . . , k.

For j = 1, 2, . . . , k define a sequence { d
j

t }∞t=0 as follows: d
j

t = E
σ
s [rj(Xt, θt)].

Again the sequence { d
j

t }
∞
t=0 is bounded as follows: mins∈S,a∈A rj(s, a) ≤ d

j

t ≤
maxs∈S,a∈A rj(s, a), for all t ≥ 0 and for all j = 1, 2, . . . , k. By Lemma 1 for all

j = 1, 2, . . . , k we obtain that (1−β)·
∑∞

t=0
βt ·d

j

t ≤ lim supT→∞
1

T

∑T−1

t=0
d

j

t ; i.e.,

for all j = 1, 2, . . . , k we have E
σ
s [

∑∞
t=0

(1−β)·βt·rj(Xt, θt)] ≤ Valσsup(rj , s). Since
σ is a memoryless strategy, by Corollary 1 we obtain that for all j = 1, 2, . . . , k

we have Valσsup(rj , s) = Valσinf (rj , s). Hence it follows that for all j = 1, 2, . . . , k

we have Valσinf (rj , s) ≤ Valσinf (rj , s) + ε. The desired result follows.

Theorem 2. The family of ΣM of memoryless strategies suffices for ε-Pareto
optimality for inf-long-run average objectives.

4 Approximating the Pareto Curve

Pareto curve. Let G be an MDP with reward functions r = 〈r1, . . . , rk〉. The
Pareto curve P inf(G, s, r) of the MDP G at state s with respect to inf-long-
run average objectives is the set of all k-vector of values such that for each
v ∈ P inf(G, s, r), there is a Pareto-optimal strategy σ such that Valσinf (r, s) = v.
We are interested not only in the values, but also the Pareto-optimal strategies.
We often blur the distinction and refer to the Pareto curve P inf(G, s, r) as a set
of strategies which achieve the Pareto-optimal values (if there is more than one
strategy that achieves the same value vector, P inf(G, s, r) contains at least one
of them). For an MDP G, and ε > 0, an ε-approximate Pareto curve, denoted
P inf

ε (G, s, r), is a set of strategies σ such that there is no other strategy σ′ such

that for all σ ∈ P inf
ε (G, s, r), we have Valσ

′

inf (ri, s) ≥ (1 + ε)Valσinf (ri, s), for
all rewards ri. That is, the ε-approximate Pareto curve contains strategies such
that any Pareto-optimal strategy is “almost” dominated by some strategy in
P inf

ε (G, s, r).

Multi-objective linear programming and Pareto curve. A multi-objective
linear program L consists of a set k of objective functions o1, o2, . . . , ok, where
oi(x) = cT

i · x, for a vector ci and a vector x of variables; and a set of lin-
ear constraints specified as A · x ≥ b, for a matrix A and a vector b. A
valuation of x is feasible if it satisfies the set of linear constraints. A fea-
sible solution x is a Pareto-optimal point if there is no other feasible so-
lution x′ such that (o1(x), o2(x), . . . , ok(x)) ≤ (o1(x

′), o2(x
′), . . . , ok(x′)) and

(o1(x), o2(x), . . . , ok(x)) 6= (o1(x
′), o2(x

′), . . . , ok(x′)). Given a multi-objective
linear program L, the Pareto curve for L consists of the k-vector of values



such that for each v ∈ P (L) there is a Pareto-optimal point x such that
v = (o1(x), o2(x), . . . , ok(x)). The definition of ε-approximate Pareto curve
Pε(L) for L is similar to the definitions of the curves as defined above. The
following theorem is a direct consequence of the corresponding theorems in [10].

Theorem 3 ([10]). Given a multi-objective linear program L with k-objective
functions, the following assertions hold:
1. For all ε > 0, there exists an approximate Pareto curve Pε(L) consisting of

a number of feasible solution that is polynomial in |L| and 1

ε
, but exponential

in the number of objective functions.
2. For all ε > 0, there is an algorithm to construct Pε(L) in time polynomial

in |L| and 1

ε
and exponential in the number of objective functions.

4.1 Irreducible MDPs

In this subsection we consider a special class of MDPs, namely, irreducible
MDPs1 and present algorithm to approximate the Pareto curve by reduction
to multi-objective linear-programming.

Irreducible MDPs. An MDP G is irreducible if for every pure memoryless
strategy σ ∈ ΣPM the Markov chain Gσ is completely ergodic (or irreducible),
i.e., the graph of Gσ is a strongly connected component. Observe that if G is an
irreducible MDP, then for all memoryless strategy σ ∈ ΣM , the Markov chain
Gσ is completely ergodic.

Long-run frequency. Let G = (S, A, p) be an irreducible MDP, and σ ∈ ΣM

be a memoryless strategy. Let q(s, σ)(u) = limT→∞
1

T
·
∑T−1

t=0
E

σ
s [1Xt=u], where

1Xt=u is the indicator function denoting if the t-th state is u, denote the “long-
run average frequency” of state u, and let xua = q(s, σ)(u) · σ(u)(a) be the
“long-run average frequency” of the state action pair (u, a). It follows from the
results of [5] (see section 2.4) that q(s, σ)(u) exists and is positive for all states
u ∈ S, and xua satisfies the following set of linear-constraints: let δ(u, u′) be the
Kronecker delta, and we have the following constraints

(i)
∑

u∈S

∑

a∈A

(

δ(u, u′) − p(u, a)(u′)
)

· xua = 0; u′ ∈ S;

(ii)
∑

u∈S

∑

a∈A

xua = 1; (iii) xua ≥ 0; a ∈ A, u ∈ S.

We denote the above set of constraints by Cirr(G).

Multi-objective linear-program. Let G be an irreducible MDP with k reward
functions r1, r2, . . . , rk. We consider the following multi-objective linear-program
over the variables xua for u ∈ S and a ∈ A. The k-objectives are as follows:
max

∑

u∈S

∑

a∈A rj(u, a)·xua; for j = 1, 2, . . . , k; and the set of linear-constraints
are specified as Cirr(G). We denote the above multi-objective linear-program as
Lirr(G, r).

1 see section 2.4 of [5] for irreducible MDPs with a single reward function.



Lemma 3. Let G be an irreducible MDP, with k reward functions r1, r2, . . . , rk.
Let v ∈ R

k be a vector of real-values. The following statements are equivalent.
1. There is a memoryless strategy σ ∈ ΣM such that ∧k

j=1

(

Valσinf (rj , s) ≥ vj

)

.

2. There is a feasible solution xua for multi-objective linear-program Lirr(G, r)
such that ∧k

j=1

(
∑

u∈S

∑

a∈A rj(u, a) · xua ≥ vj

)

.

Proof. 1. [(1). ⇒ (2).] Given a memoryless strategy σ, let xua = σ(u)(a) ·

limT→∞
1

T
·
∑T−1

t=0
E

σ
s [1Xt=u]. Then xua is a feasible solution to Lirr(G, r).

Moreover, the value for the inf-long-run average objective can be ex-
pressed as follows: Valσinf (rj , s) =

∑

u∈S

∑

a∈A σ(u)(a) ·rj(u, a) · limT→∞
1

T
·

∑T−1

t=0
E

σ
s [1Xt=u]. The desired result follows.

2. [(2). ⇒ (1).] Let xua be a feasible solution to Lirr(G, r). Consider the memo-
ryless strategy σ defined as follows: σ(u)(a) = xua

P

a′∈A
x

ua′
. Given the memo-

ryless strategy σ, it follows from Lemma 2.4.2 and Theorem 2.4.3 of [5] that

xua = σ(u)(a) · limT→∞
1

T
·
∑T−1

t=0
E

σ
s [1Xt=u]. The desired result follows.

It follows from Lemma 3 that the Pareto curve P (Lirr(G, r)) characterizes
the set of memoryless Pareto-optimal points for the MDP with k inf-long-run
average objectives. Since memoryless strategies suffices of ε-Pareto optimality
for inf-long-run average objectives (Theorem 2), the following result follows from
Theorem 3.

Theorem 4. Given an irreducible MDP G with k reward functions r, for all
ε > 0, there is an algorithm to construct a P inf

ε (G, s, r) in time polynomial in
|G| and 1

ε
and exponential in the number of reward functions.

4.2 General MDPs

In the case of general MDPs, if we fix a memoryless strategy σ ∈ ΣM , then in
the resulting Markov chain Gσ, in general, we have both recurrent states and
transient states. For recurrent states the “long-run-average frequency” is positive
and for transient states the “long-run-average frequency” is zero. For the tran-
sient states the strategy determines the probabilities to reach the various closed
connected set of recurrent states. We will obtain several multi-objective linear-
programs to approximate the Pareto curve: the set of constraints for recurrent
states will be obtained similar to the one of Cirr(G), and the set of constraints
for the transient states will be obtained from the results of [3] on multi-objective
reachability objectives. We first define a partition of the set ΣM of memoryless
strategies.

Partition of strategies. Given an MDP G = (S, A, p), consider the following
set of functions: F = { f : S → 2A \ ∅ }. The set F is finite, since |F| ≤ 2|A|·|S|.
Given f ∈ F we denote by ΣM ↾ f = { σ ∈ ΣM | f(s) = Supp(σ(s)), ∀s ∈ S }
the set of memoryless strategies σ such that support of σ(s) is f(s) for all states
s ∈ S.

Multi-objective linear program for f ∈ F . Let G be an MDP with reward
functions r1, r2, . . . , rk. Let f ∈ F , and we will present a multi-objective linear-
program for memoryless strategies in ΣM ↾ f . We first observe that for all



σ1, σ2 ∈ ΣM ↾ f , the underlying graph structures of the Markov chains Gσ1
and

Gσ2
are the same, i.e., the recurrent set of states and transient set of states in

Gσ1
and Gσ2

are the same. Hence the computation of the recurrent states and
transient states for all strategies in ΣM ↾ f can be achieved by computing it for
an arbitrary strategy in ΣM ↾ f . Given G, the reward functions, an initial state
s, and f ∈ F , the multi-objective linear program is obtained by applying the
following steps.
1. Consider the memoryless strategy σ ∈ ΣM ↾ f that plays at u all actions

in f(u) uniformly at random, for all u ∈ S. Let U be the reachable subset
of states in Gσ from s, and let R = { R1, R2, . . . , Rl } be the set of closed
connected recurrent set of states in Gσ, i.e., Ri is a bottom strongly con-
nected component in the graph of Gσ. The set U and R can be computed in
linear-time. Let R =

⋃l

i=1
Ri, and the set U \R consists of transient states.

2. If s ∈ R, then consider Ri such that s ∈ Ri. In the present case, consider
the multi-objective linear-program of subsection 4.1 with the additional con-
straint that xua > 0, for all u ∈ Ri and a ∈ f(u), and xua = 0 for all u ∈ Ri

and a 6∈ f(u). The Pareto curve of the above multi-objective linear-program
coincides with the Pareto curve for memoryless strategies in ΣM ↾ f . The
proof essentially mimics the proof of Lemma 3 restricted to the set Ri.

3. We now consider the case when s ∈ U \ R. In this case we will have three
kinds of variables: (a) variables xua for u ∈ R and a ∈ A; (b) variables yua

for u ∈ U \R and a ∈ A (c) variables yu for u ∈ R. Intuitively, the variables
xua will denote the “long-run average frequency” of the state action pair
xua, and the variables yua and yu will play the same role as the variables
of the multi-objective linear-program of [3] for reachability objectives (see
Fig 3 of [3]). We now specify the multi-objective linear-program

Objectives (j = 1, 2, . . . , k) : max
∑

u∈S

∑

a∈A

rj(u, a) · xua;

Subject to

(i)
∑

u∈Ri

∑

a∈A

(

δ(u, u′) − p(u, a)(u′)
)

· xua = 0; u′ ∈ Ri;

(ii)
∑

u∈R

∑

a∈A

xua = 1; (iii) xua ≥ 0; a ∈ A, u ∈ R;

(iv) xua > 0; a ∈ f(u), u ∈ R; (v) xua = 0; a 6∈ f(u), u ∈ R;

(vi)
∑

a∈A

yua −
∑

u′∈U

∑

a′∈A

p(u′, a′)(u) · yu′a′ = α(u); u ∈ U \ R;

(vii) yu −
∑

u′∈U\R

∑

a′∈A

p(u′, a′)(u) · yu′a′ = 0; u ∈ R;

(viii) yua ≥ 0; u ∈ U \ R, a ∈ A; (ix) yu ≥ 0; u ∈ R;
(x) yua > 0; u ∈ U \ R, a ∈ f(u); (xi) yua = 0; u ∈ U \ R, a 6∈ f(u);

(xii)
∑

u∈Ri

∑

a∈A

xua =
∑

u∈Ri

yu; i = 1, 2, . . . , l;

where α(u) = 1 if u = s and 0 otherwise. We refer the above set of con-
straints as Cgen(G, r, f) and the above multi-objective linear-program as



Lgen(G, r, f). We now explain the role of each constraint: the constraints
(i) − (iii) coincides with constraints Cirr(G) for the subset Ri, and the ad-
ditional constraints (iv) − (v) are required to ensure that we have witness
strategies such that they belong to ΣM ↾ f . The constraints (vi) − (ix) are
essentially the constraints of the multi-objective linear-program for reacha-
bility objectives defined in Fig 3 of [3]. The additional constraints (x)− (xi)
are again required to ensure that witness strategies satisfy that they belong
to ΣM ↾ f . Intuitively, for u ∈ Ri, the variables yu stands for the probability
to hit u before hitting any other state in Ri. The last constraint specify that
the sum total of “long-run average frequency” in a closed connected recur-
rent set Ri coincides with the probability to reach Ri. We remark that the
above constraints can be simplified; e.g., the (iv) and (v) implies (iii), but
we present the set constraints in a way such that it can be understood that
what new constraints are introduced.

Lemma 4. Let G = (S, A, p) be an MDP, with k reward functions r1, r2, . . . , rk.
Let v ∈ R

k be a vector of real-values. The following statements are equivalent.
1. There is a memoryless strategy σ ∈ ΣM ↾ f such that ∧k

j=1

(

Valσinf (rj , s) ≥

vj

)

.

2. There is a feasible solution for the multi-objective linear-program
Lgen(G, r, f) such that ∧k

j=1

(
∑

u∈S

∑

a∈A rj(u, a) · xua ≥ vj

)

.

Proof. The case when the starting s is a member of the set R of recurrent states,
the result follows from Lemma 3. We consider the case when s ∈ U \R. We prove
both the directions as follows.
1. [(1). ⇒ (2).] Let σ ∈ ΣM ↾ f be a memoryless strategy. We now construct a

feasible solution for Lgen(G, r, f). For u ∈ R, let x′
ua = σ(u)(a) · limT→∞

1

T
·

∑T−1

t=0
E

σ
s [1Xt=u]. Consider a square matrix P σ of size |U \ R| × |U \ R|,

defined as follows: P σ
u,u′ =

∑

a∈A σ(u)(a) ·p(u, a)(u′), i.e., P σ is the one-step
transition matrix under p and σ. For all u ∈ U \ R, let y′

ua = σ(u)(a) ·
∑∞

n=0
(P σ)n

s,u. In other words, y′
ua denotes “the expected number of times

of visiting u and upon doing so choosing action a, given the strategy σ and
starting state s”. Since states in U \R are transient states, the values y′

ua are
finite (see Lemma 1 of [3]). For u ∈ R, let y′

u =
∑

u′∈U\R

∑

a′∈A p(u′, a′)(u) ·

y′
u′a′ , i.e., y′

u is the “expected number of times that we will transition into
state u for the first time”. It follows from arguments similar to Lemma 3
and the results in [3] that above solution is feasible solution to the linear-
program Lgen(G, r, f). Moreover,

∑

u∈Ri
y′

u = Prσ
s (3Ri), for all Ri, where

3Ri denotes the event of reaching Ri. It follows that for all j = 1, 2, . . . , k

we have Valσinf (rj , s) =
∑

u∈R

∑

a∈A rj(u, a) ·x′
ua. The desired result follows.

2. [(2). ⇒ (1).] Given a feasible solution to Lgen(G, r, f) we construct a mem-
oryless strategy σ ∈ ΣM ↾ f as follows:

σ(u)(a) =

{

xua
P

a′∈A
xua′

u ∈ R;
yua

P

a′∈A
yua′

u ∈ U \ R;



Observe the constraints (iv) − (v) and (x) − (xi) ensure that the strategy
σ ∈ ΣM ↾ f . The strategy constructed satisfies the following equalities: for
all Ri we have Prσ

s (3Ri) =
∑

u∈Ri
yu (this follows from Lemma 2 of [3]);

and for all u ∈ Ri we have xua = σ(u)(a) · limT→∞
1

T
·
∑T−1

t=0
E

σ
s [1Xt=u].

The above equality follows from arguments similar to Lemma 3. The desired
result follows.

Theorem 5. Given an MDP G with k reward functions r, for all ε > 0, there
is an algorithm to construct a P inf

ε (G, s, r) in (a) time polynomial in 1

ε
, and ex-

ponential in |G| and the number of reward functions; (b) using space polynomial
in 1

ε
and |G|, and exponential in the number of reward functions.

Proof. It follows from Lemma 4 that the Pareto curve P (Lgen(G, r, f)) character-
izes the set of memoryless Pareto-optimal points for the MDP with k inf-long-run
average objectives for all memoryless strategies in ΣM ↾ f . We can generate all
f ∈ F in space polynomial in |G| and time exponential in |G|. Since memory-
less strategies suffices of ε-Pareto optimality for inf-long-run average objectives
(Theorem 2), the desired result follows from Theorem 3.

4.3 Realizability

In this section we study the realizability problem for multi-objective MDPs: the
realizability problem asks, given a multi-objective MDP G with rewards r1, . . .,
rk (collectively, r) and a state s of G, and a value profile w = (w1, . . . wk) of
k rational values, whether there exists a strategy σ such that Valσinf (r, s) ≥ w.
Observe that such a strategy exists if and only if there is a Pareto-optimal strat-

egy σ′ such that Valσ
′

inf (r, s) ≥ w. Also observe that it follows from Theorem 2
that if a value profile w is realizable, then it is realizable within ε by a memory-
less strategy, for all ε > 0. Hence we study the memoryless realizability problem
that asks, given a multi-objective MDP G with rewards r1, . . ., rk (collectively,
r) and a state s of G, and a value profile w = (w1, . . . wk) of k rational values,
whether there exists a memoryless strategy σ such that Valσinf (r, s) ≥ w. The
realizability problem arises when certain target behaviors are required, and one
wishes to check if they can be attained on the model.

Theorem 6. The memoryless realizability problem for multi-objective MDPs
with inf-long-run average objectives can be (a) decided in polynomial time for
irreducible MDPs; (b) decided in NP for MDPs.

Proof. The result is obtained as follows.
1. For an irreducible MDP G with k reward functions r1, r2, . . . , rk, the answer

to the memoryless realizability problem is “Yes” iff the following set of linear
constraints has a solution. The set of constraints consists of the constraints
Cirr(G) along with the constraints ∧k

j=1

(
∑

s∈S

∑

a∈A rj(s, a) · xua ≥ wj

)

.
Hence we obtain a polynomial time algorithm for the memoryless realizabil-
ity problem.



2. For an MDP G with k reward functions r1, r2, . . . , rk, the answer to the
memoryless realizability problem is “Yes” iff there exists f ∈ F such
that the following set of linear constraints has a solution. The set of con-
straints consists of the constraints Cgen(G, r, f) along with the constraints
∧k

j=1

(
∑

s∈S

∑

a∈A rj(s, a) · xua ≥ wj

)

. Hence given the guess f , we have a
polynomial time algorithm for verification. Hence the result follows.

Concluding remarks. In this work we studied MDPs with multiple long-run
average objectives: we proved ε-Pareto optimality of memoryless strategies for
inf-long-run average objectives, and presented algorithms to approximate the
Pareto-curve and decide realizability for MDPs with multiple inf-long-run av-
erage objectives. The problem of approximating the Pareto curve and deciding
the realizability problem for sup-long-run average objectives remain open. The
other interesting open problems are as follows: (a) whether memoryless strategies
suffices for Pareto optimality, rather than ε-Pareto optimality, for inf-long-run
average objectives; (b) whether the problem of approximating the Pareto curve
and deciding the realizability problem for general MDPs with inf-long-run aver-
age objectives can be solved in polynomial time.
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