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Abstract—PTIDES, a programming model for distributed real-
time systems, was proposed previously. The model captures both
the functionality of the system and the desired timing of inter-
actions with the environment. The PTIDES simulator supports
simulation of both of these aspects. In this work, we focus on the
PTIDES development environment in the context of applications
drawn from the control of electric power systems. The evaluation
is based on experiments on a system of distributed computing
platforms emulating typical power system control and monitoring
devices and an emulation of portions of the electric power grid
based on conventional micro-controller instrumentation.

I. INTRODUCTION

OST real-time software is structured either as threads

with priorities or as tasks with periods or deadlines.

Zhao et al. proposed an alternative programming model called
PTIDES [13] (Programming Temporally Integrated Distributed
Embedded Systems) that structures real-time software as an
interconnection of actors communicating with timestamped
events. PTIDES is an extension to the Ptolemy II simulation
environment [9] used as a coordination language for the
design of distributed real-time embedded systems. PTIDES
leverages network time synchronization [8], [4] to provide a
coherent global temporal semantics in distributed systems. Zou
et al. gave an execution strategy for PTIDES and introduced
feasibility analysis in [14]. Eidson et al. further described
Ptides in [5], which showed how PTIDES supports modal
behaviors and described an application to power plant control.
To design a real-time embedded system using PTIDES, the
designer first constructs a model of the system, and perhaps
the controlled plant, using PTIDES actors in the Ptolemy II
simulation environment. Once the designer is satisfied that the
simulated design meets the application’s temporal and func-
tional requirements, the designer generates code for the target
platform using the code generation facility of the Ptolemy
IT system. The next step is a schedulability and feasibility
analysis to determine whether an execution schedule exists on
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the target platform that will preserve the run-time temporal
specifications of the original PTIDES model.

The PTIDES environment has been used to model and de-
sign a number of industrial-based applications. In [6] we used
power plant emergency detection and power supply shutdown
as PTIDES application examples. The purpose of this work
is to validate the PTIDES design environment for smart grid
applications executing distributed platforms. Our goal is to
deploy some of the synchrophasor-based real-time applications
on conventional micro-controller hardware connected over a
local area network. We believe that reliable smart grid asks
for fault-tolerance at all networked devices including the low-
level embedded ones. Note that software fault-tolerance, e.g.
redundancy, requires deterministic programming models such
as PTIDES.

II. TARGET POWER GRID SYSTEM

The validation of PTIDES is based on the simplified version
of a power system as illustrated in Fig. 1. This system imple-
ments a version of the measurement and control devices and
algorithms used by the electric power industry in monitoring
and controlling the transmission grid. The experimental system
is based on papers [11], [12]. In particular, this design is
suggested for system integrity protection schemes that detect
power swings and out-of-step conditions.

The transmission grid is emulated using conventional elec-
tronic instrumentation. This emulation provides pairs of analog
signals in the range 0-5V representing the outputs of voltage
and current monitors typically found in substations or at
critical points in the transmission system. The magnitudes
and phases (essentially the power factor) of each pair can be
varied independently, as can the frequency. All frequencies
and phases are relative to a single real-time clock which is
synchronized to the real-time clocks in the monitoring and
control devices. This allows us to emulate several generators,
each with different load conditions and frequency, and to
permit the generation of synchrophasor data. In addition,
digital signals can be generated or accepted to model warning
signals from equipment or breaker closure commands and the
like.

The PMU and SVP platforms represent primary measure-
ment units and synchrophasor vector processing units used to
monitor and control the grid. Each unit executes at least two
different algorithms requiring real-time deadlines to be met
as well as network interaction with peer or supervisory units.
Within each PMU quantities such as the power factor and load
are monitored to detect trip points at which a signal is sent
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Fig. 1. Proposed validation system

to open the local breaker. Within the SVP the synchrophasors
from the several PMUs are compared to detect discrepancies
in the frequencies and phase and generate breaker signals to be
sent to the appropriate PMU. The raw data is recorded in logs.
Each unit contains a real-time clock synchronized to its peers
using the recently standardized time synchronization protocol
IEEE 1588.

Generation of synchrophasor data in each PMU is based on
sampling the voltage and current signal inputs to the PMU
and processing these relative to the local real-time clock.
The raw data is forwarded to the SVP using the IEC 61850
process bus. The synchrophasor data is forwarded by the
synchrophasor message transmission block. Today in practice
this would use the C37.118 synchrophasor protocol since



standard committees are in the process of mapping this onto
IEC 61850. Control messages use the IEC 61850 GOOSE
protocol blocks.

III. PTIDES BAsICS

PTIDES is based on the semantics of discrete-event (DE)
systems [1], [2], which provides a model of time and con-
currency. PTIDES actors are concurrent components that ex-
change time-stamped events via input and output ports. The
event time stamps are a formal part of the model referred to as
model time. Model time may or may not bear any relationship
to time in the physical world, i.e., real time. In typical
DE semantics, each actor processes input events in time-
stamp order but without constraints on the real time at which
events are processed. PTIDES extends DE by establishing the
correspondence between model time and real time at sensors,
actuators, and network interfaces.

PTIDES assumes that each local platform contains a real-
time clock synchronized with similar clocks in the other
platforms. These clocks are used to ensure global time stamp
order of execution and facilitate local scheduling without
recourse to message passing between platforms. Note that with
the exception of actual testing in a distributed environment,
most features of PTIDES have been designed and simulated
on numerous distributed applications. Likewise, generated
code has been tested and timing verified in single platform
situations.

The specific features of the PTIDES implementation that
are validated in this project are as follows:

1) Safe-to-process semantics. DE semantics requires that
events be presented to actors with state in global time
stamp order. In an execution (as opposed to simulation)
environment, each port of a multiport actor is assigned a
safe-to-process attribute § indicating that an event with
time stamp 7 appearing on one port will not be executed
before real time 7 + § which guarantees that no event
with a time stamp earlier than 7 will appear at another
port of the same actor. This is enforced locally in each
platform by observing the real-time clock on the local
platform, but the attribute itself involves computation
of maximum delays along all causal paths between the
actor ports and the source of an event, usually a sensor.

2) Time stamp semantics at sensors, actuators, and network
interfaces. We need to ensure that PTIDES temporal
semantics are rich enough to handle the complexity of
real sensor, actuator and network interfaces.

3) Timing support. We need to evaluate conditions for
which support for enforcing correspondence between
model and real-time require hardware support external
to the microprocessor environment, e.g. support based
on the National Semiconductor DP83640 IEEE 1588
enabled PHY chip.

An example of a PTIDES model is shown in Fig. 2. The
model is rendered visually in the Ptolemy II environment,
which allows for hierarchical composition of component mod-
els as depicted by dashed lines in the figure. This model rep-
resents a distributed application that runs on three processors

PMU1, PMU2 and SVP. The power grid and network are
modeled by components Power Grid and Network Model
respectively.

The model illustrates a system that monitors relative phases
of two power signals and outputs a control signal whenever
the phase difference exceeds 7/3 radians. Power grid signals
are sampled at 500 samples/second. Processors PMU1 and
PMU2 deliver phase values to SVP every 10 ms. The first
power signal has a constant phase of 7/18 radians. The second
signal has the same phase initially, but at ¢=0.5 s, a phase
disturbance starts occuring. The upper right corner of Fig. 2
shows the plots of input and output signals.

The lower left part of the figure is a PTIDES model for the
code that executes on PMU2 (and PMU1). This illustrates the
dataflow implementation of a phase-measurement unit. The
input signal is multiplied by real and imaginary parts of a
complex sinusoid at the same frequency and then filtered.
The finite impulse response (FIR) filter coefficients for this
implementation are designed for a sampling rate of 500
samples/second and a cut-off frequency of 30 Hz. The infinite
impulse response (IIR) filter actors are used in the design
to allow IIR implementations of the same functionality. An
arctangent actor is used to calculate the angle between the
two filter outputs, which represents the relative phase of the
input signal with respect to the reference complex sinusoid.

The component model in the lower right part of the figure
illustrates the code that executes on SVP, i.e., the code
that calculates the phase difference between the phase values
received from the two platforms. Whenever phase difference
exceeds 7/3 radians, the control output is set to high. The
multiple mode operation is implemented through Ptolemy II
multi-modal modeling features.

IV. VALIDATION SYSTEM IMPLEMENTATION

A simplified version of the target power grid application
described in Sec. II has been built and deployed. The emulator
to generate the needed application input signals is based on
the National Instruments LabVIEW hardware platform. This
platform contains reconfigurable I/O chip that enables custom
timing, inline processing and control. The voltage accuracy of
each 0-5V signal is better than S5mV, and the frequency is
adjustable from 59.5 to 60.5 to an accuracy of 0.001 H z. The
PMU and SVP units use the Renesas SH7216 Demonstration
Kit as the execution platform. The embedded micro-controller
runs at up to 200M H z clock, and has 1MB of Flash, 128MB
of RAM and an integrated floating-point unit. This platform
also uses the National Semiconductor DP83640 PHY as the
Ethernet controller. Beside enabling precise time synchroniza-
tion between processors, the DP83640 allows the evaluation of
external timing support in enforcing correspondence between
model time and real time. Note that in the first implementation
of this project all message marshaling and demarshaling are
based on simple data structures and UDP rather than the actual
power industry protocols. In the future if we want to interact
with actual commercial devices, these blocks will be converted
to adhere to the relevant protocols.

This validation system allows us to evaluate supporting,
in real-time, network and clock synchronization protocols in
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Simplified PTIDES model of the target smart grid application. Hierarchical composition of model composite actors. Simulation plot (upper right

parallel with the application code in a PTIDES generated
environment. For the purposes of the validation we focus on

two grid protection points.

the distributed code that monitors phase difference between

A. Time Synchronization Protocol Implementation

The IEEE 1588-2008 [4] standard defines a Precision Time
Protocol (PTP) over a network to synchronize distributed
real-time clocks to the sub-microsecond range. The proto-
col was developed to meet requirements not achievable by
existing common methods of clock synchronization, where
the millisecond accuracy of Network Time Protocol (NTP) is
not accurate enough and a Global Positioning System (GPS)
receiver at each node is not feasible due to cost or signal
availability.

The protocol operates on a hierarchical master-slave struc-
ture where all clocks synchronize their time to the grand-
master clock at the top of the hierarchy. In a basic network

configuration, all clocks in the network exchange information

about their accuracy and stability, and the best master clock
(BMC) algorithm dynamically selects the master clock and
slave clocks. Synchronization is primarily achieved by slave
clocks adjusting their frequency based on the calculated time

offset from the master clock. The offset is calculated by
exchanging timestamped messages over the network.

The implementation of the protocol developed for this
application can be viewed as an actor with discrete event

semantics, allowing easier integration with PTIDES. Code
is only executed when provided with an input event and it
executes to completion without blocking. A modified version

of the open-source network protocol stack pIP [3] is used to
provide UDP support for both PTP and data communication.

A controller is used to adjust the frequency of the slave clock
to maintain a zero offset between the master and slave clock.

One proportional-integral (PI) controller is used to adjust the

frequency to match that of the master clock, and another

PI controller is used to temporarily adjust the frequency to
maintain a zero offset.
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Emulated signals at two grid protection points. Two vertical lines represent zero time instants at two PMUs
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Fig. 4. Experiment 1. Effects of synchronization on phase difference detection

The Renesas 7216 Demonstration Kit utilizes a DP83640
Precision PHYTER from National Semiconductor. This
PHYTER provides IEEE 1588 hardware support with a fre-
quency adjustable real-time clock, packet detection and times-
tamping with 8ns precision, and event timestamping and trig-
gering through GPIO ports. Hardware support allows for much
better accuracy and precision, and reduces software execution
time required for running the protocol. When deployed on a
three platform system with one master clock and two slave
clocks, the slave clocks were able to synchronize to within
100ns. Variable packet delays through a typical router reduce
synchronization accuracy, so using a router with IEEE 1588
support would allow for even better synchronization accuracy.

B. Phase Filter Implementation

The distributed PMU implementation in the emulated grid
focuses on extracting precise-time phasor information from
power signals. The emulated 60H z power grid signals, sam-
pled with a period of 2ms, are converted into phasor form
by quadrature mixing with a reference quadrature oscillator at
the same sampling period. This step is followed by low-pass
filtering to obtain the real and imaginary components of the
grid signal (V,I). These components are then used to determine
the phase with respect to the reference oscillators.

In the filtering stage, both FIR and Butterworth (IIR) im-
plementations have been explored, both of which are efficient
in terms of run-time and frequency response characteristics.
For a low-ripple and accurate implementation, at the operating
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Fig. 5. Experiment 2. Phase change detection latency

sampling period, a 20-tap FIR or a third order IIR filter is
sufficient. On the described validation platform these filters
take less than 10us of the processor time per sample.

Filtering is carried out at a sampling period of 2 ms, how-
ever the reporting rate varies. Typically, PMUs report the phase
values at 10-60 frames/second to the Synchrophasor Vector
Processor (SVP), which is the processing unit that receives
phase values from the distributed PMU system and calculates
phase gradients. Once the relative phasors are calculated in
the distributed PMU system, SVP receives the individual
phase values and calculates the phase difference between two
platforms. Phase difference can be used to calculate other
parameters such as slip frequency and acceleration, which
are fundamental parameters for determining the power system
operating state [11].

V. EXPERIMENTAL EVALUATION
A. Experiment 1: Time synchronization

In the first performed experiment we demonstrate the need
for time synchronization between the processors in detection
of voltage phase difference between two grid protection points.
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Each of the two PMU processors samples a voltage input
signal with period of Ts = 200us, computes and stores its
phase with respect to a local time reference. In an offline
analysis, samples from the two processors that correspond to
T. = 10ms time instants are used to compute phase difference.
SVP processor is not used and there is no networking involved
(besides PTP). Note that the 12-bit analog-to-digital converters
are previously calibrated so that the same signal input value
results in the same readings on the two processors. In the
experiment, the voltage input signal on one of the processors
has a constant phase. On the other processor every quarter of
a second the input signal phase is alternatively increased or
decreased for 60°. If the processors are perfectly synchronized,
the phase difference will alternate between 0 and 60°.

The time synchronization error e is emulated by running
the PTP protocol and setting the initial zero time instants
with offset ¢ on two processors. Fig. 3 shows an example
for ¢ = 1ms with two vertical lines representing zero time
instants at two PMUs. The same figure shows the moment
when the phase of signal sines at the input of processor
PMU2 is increased for 60°. The experiment is repeated for
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Fig. 6. Experiment 3. Phase change: PTIDES vs. traditional event programming

different values of the synchronization error € and the phase
difference plots are shown in Fig. 4. The numbers shown
to the right of the plots denote the average estimated phase
difference when the two applied signals are exactly in phase,
i.e., when the actual phase difference is zero. For instance, as
shown in Fig. 4b), when € = 1ms, the average estimated phase
difference is 21.48°, whereas it should be 0. This value is close
to the theoretical value of 360°- f -e = 360°-60Hz-10"3s =
21.6°, where f represents the frequency of the input signal.
Fig. 4c) shows phase difference during the same experiment
but when the synchronization protocol is not running. In the
intervals when the two input signals are in phase the estimated
phase difference of -102.2° is clearly an error. Overall, the
experiment shows that time synchronization is necessary with
required synchronization error in the sub-microsecond range.

B. Experiment 2: Latency

This experiment serves as a performance test for the
PTIDES based code. In particular, it estimates latency of
phase difference computation. The experiment is similar to
the Experiment 1 in that each PMU processor samples a

voltage input signal and computes its phase with the period
Ts = 200us. However, the two computed phases are trans-
mitted to the SVP processor with the period 7. = 10ms,
where the phase difference is computed. The network consists
of the three processor boards directly connected through a
standard router. An open source implementation of a UDP
stack is used for phase data communication, and the PTP
implementation described in the previous section was used for
time synchronization. The total latency, including the protocol
stack latency, of an individual packet transmission over such
a network is measured to be in the range 1-5ms. This timing
variability mostly comes from packet processing in the router
and reception protocol stack. No packet loss has been noticed
at the value of phase period communication of 7, = 10ms.

Similar to the Experiment 1, the phase of the voltage input
signal on PMU1 is kept constant, whereas the phase of the
input signal on PMU2 is increased or decreased for 60° every
250ms (Fig. 5a). Fig. 5 shows time diagrams from a typical
run of the experiment, with the plots on the left side zoomed
in to show system behavior around the phase transition time
instant. On Fig. 5b), note that the detected phase PMU1 is



not constant, but has a small constant phase decline. This is
explained by the fact that although real-time clocks in the three
processors are synchronized using PTP protocol, the voltage
input sinewaves are generated on the grid emulator that has
its own independent clock. The plots on Fig. 5d) show that
the stepwise change in the phase of one of the input signals is
detected on the SVP processor with the maximum total latency
of 50ms (green line). As shown with the blue line, the phase
filtering algorithm described in the previous section introduces
itself the latency of about 20ms.

C. Experiment 3: PTIDES vs. traditional event programming

In the third experiment we show a benefit of the code
generated using the PTIDES programming model over the
code written in a traditional event programming style. The ex-
periment is similar to the Experiment 2 in that each PMU pro-
cessor samples a voltage input signal and computes its phase
with the period Ty, = 200us. However, the two computed
phases are sent to the SVP processor with a period T, = 6ms.
In this experiment the two voltage input signals always have
phase difference of 30°, but every 250ms both phases are
alternatively increased or decreased for 60° (Fig. 6a).

In the traditional event programming style each packet with
the phase data is processed on the SVP processor as soon
as it is received. Thus, the phase difference is computed as
soon as a new phase data for one of the signals is received.
In Fig. 6 the outcome of such code execution is shown in
red color. As the network introduces different delays for
different packets, and might even reorder the packets, the
computed phase difference might not correspond to the actual
phase difference between two signals. In addition, with the
communication period of T, = 6ms up to 4% of packets
might be lost due to the protocol stack overload. This results
in more frequent phase difference errors. On the other hand,
in the PTIDES programming approach the data timestamp
is also communicated together with the phase data value.
So, on the receiving SVP platform only the corresponding
pairs of packets are matched and the difference between the
corresponding phase data values is computed. In Fig. 6 the
outcome of PTIDES code execution is shown in green color.
As shown in Fig. 6d) the phase difference error for the PTIDES
approach remains less than 5° which is about the same value as
for the phase difference computation without communication
(blue line). On the other hand, the error in the traditional
approach can be as large as 30°. Note that in more complex
applications such glitches may result in serious faults.

VI. CONCLUSION AND FUTURE WORK

In this paper we applied PTIDES programming methodol-
ogy in the context of smart grid real-time applications. Our
evaluation of the methodology was based on experiments
performed on a system of distributed micro-controllers time-
synchronized over a local network. On an example application
that computes phase difference between two grid points we
first demonstrated the importance of time synchronization. For
the application code generated using the PTIDES method-
ology we estimated latency in phase difference estimation

and showed that the methodology results in better estimates
compared to those obtained using a traditional programming
methodology.

For our future work, we see the potential of the same setup
being used for more complicated distributed applications such
as those suggested for networked cooperative control in power
systems. In such applications functional and timing correctness
that PTIDES offers might be critical. Also, our efforts will be
directed to automatic code generation from high-level Ptolemy
I models such as the one discussed in Sec. III.
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