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User interface modeling���
Model-based UI design	



1.  Background and���
framework for classifying design representations	



2.  (Examples of) Models for development of UIs	


3.  Diamodl	


4.  ptui – ptolemy-based tool for development of UIs	
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Many models capture our knowledge 
about the world	



Information 

Actions 

Tools 

People 
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Roles representations play	



•  Semantic	


–  accurately and completely capture knowledge	



•  Communicative	


–  support communication among designer and end-users	



•  Constructive	


–  stimulate, guide and constrain further design	



•  Analytic	


–  support interpretation and evaluation	



•  Engineers and designers focus on different roles	
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From informal���
representations...	



... to models	
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Canonical Abstract Prototypes 
[Constantine] – semi-formal sketching	
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What aspects of a UI do we want to capture?	



•  Structure	


–  hierarchical structure of interaction elements	



•  Information	


–  what information is accessible in which parts of the UI	


–  what is the relationsship between information in various parts of 

the UI	


•  Behavior	



–  when are the various interaction elements active	


–  how are changes in the UI triggered by the user	



•  Style	


–  non-functional aspects, like layout, use of colors, fonts etc.	
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Four phases of MBDUI	


1.  Model and generate	



–  model your domain	


–  generate UI from canned knowledge and pre-compiled rules	



2.  Computer-Aided Design of UI	


–  abstract models/representations of UI	


–  explicitly represent design knowledge	


–  model editors and tools for applying design knowledge	



3.  Task-based UI design	


–  can’t design usable interfaces without knowing the user and tasks	


–  base design of UI on task model (goals, structure and dependencies)	



4.  Contextualizing and adapting design models	


–  focus on context of use	


–  target multiple devices	
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Design representation���
classification framework	



perspective 

formality 

granularity 

level of formality 

problem vs. solution 
abstract vs. concrete 

level of detail 
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Perspective and granularity dimensions	





	

 	

	



12	



Dutch [van der Veer] -���
task models as activity charts	
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ConcurTaskTrees [Paternò] – task 
hierarchies with temporal operators	





	

 	

	



14	



Dialog graphs [Forbrig] –���
Relating tasks to dialog	
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UsiXML [Vanderdonckt] – A family of 
XML-based notations for UI elements	
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Pet shop [Palanque] – Modeling safety 
critical UIs with ICO PetriNets	
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Cameleon framework – targeting 
multiple devices	
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Lots of pragmatic approaches ���
(read: non-academic and useful)	


•  XML-based formats for describing user interface layout and style	



–  XHTML (W3C) , XAML (Microsoft), JavaFX (Oracle), XUL (Mozilla)	


–  template languages for web pages	



•  DSLs	


–  Ecore-based: Eclipse 4’s workbench model, Wazaabi	


–  Xtext-based: APPlause, MOBL, Agentry	



•  Application modeling	


–  Esito’s Genova – business applications for the desktop and web	


–  WebRatio - business applications for the web	



•  Standardization	


–  WebML	


–  IFML (in progress)	


–  Model-Based User Interfaces (MBUI) Working Group	
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IFML – Interaction Flow Modeling Language	


•  OMG RFP	


•  Proposal by 

WebRatio++	


•  Abstract UI model	


•  Functional units and���

view containers	


•  Dataflow and���

control/activation 
signals	
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Dialog modelling with DiaMODL	



•  Based on Pisa���
interactors and���
Harel’s Statecharts	


–  interactors, gates and 

connections	


–  hierarchical states	


–  transitions, events/actions, 

conditions	


•  Abstraction of IO function	


•  Composition in terms of	



–  interactor structure	


–  state hierarchy (and, or)	
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Generic interactor abstraction	



•  Notation for generic input 
og output components	



•  Dataflow-oriented	


•  Interactor mediates 

information in two 
directions:	


–  output: system to user	


–  input: user to system	
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Scalable notation	



•  Specification of concrete 
interaction object’s 
functionality	


–  output and input interface	



•  Description of construction 
of concrete interaction 
objects	


–  composition of sub-interactors	


–  string input combined with���

parsing and unparsing	



•  Same abstract description,���
many alternatives	
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More complex interaction objects	



•  Functionality defined in 
terms of configuration of 
domain objects	



•  Utilise power of���
domain modelling 
language	


–  Output: set	


–  Input: subset	



Alternative 
implementation 
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Configuration of larger elements	



folder list mailbox content single message 
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Interactor-���
based���
GUI-builder	
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Integrating domain and dialog modeling	


•  Eclipse-based editor [CADUI’06]	
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Prototyping with Diamodl	
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Prototyping with Diamodl	
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Application architecture	



•  The whole runtime state is captured as coordinated graphs of data	


•  The widget hierarchy is continuously rendered on a device	



Domain data Widgets 

events, bindings, actions & 
activation logic 

Interactors 
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Rendering widgets	


•  Ecore model of toolkit, with instances rendered in Eclipse view	
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Rendering widgets across platforms	
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Moveable application	
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Shareable application	



updates 
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Distributed application	



?	
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ptui –���
ptolemy-based tool for UI development	


•  Diamodl	



–  concepts are very close to Ptolemy’s	


–  interactors, computations and variables can all be modeled as actors	


–  its weakness, the (lack of) semantics, is Ptolemy’s strength	



•  Ptolemy can provide	


–  a (set of possible) semantics	


–  a solid runtime platform	



•  Ptolemy	


–  describes the behavior of a cyber-physical system, but	


–  has poor support for modeling user interaction	



•  Diamodl can provide	


–  an approach to integrating UI elements	


–  runtime support for rendering widgets locally or in a browser	




