
	

 	

	



1	



User interface modeling���
Model-based UI design	



Hallvard Trætteberg, Associate Professor 
Dept. of Computer and Information Sciences 
Norwegian Univ. of Science and Technology 



	

 	

	



2	



Trondheim, Norway	





	

 	

	



3	



User interface modeling���
Model-based UI design	



1.  Background and���
framework for classifying design representations	



2.  (Examples of) Models for development of UIs	


3.  Diamodl	


4.  ptui – ptolemy-based tool for development of UIs	





	

 	

	



4	



Many models capture our knowledge 
about the world	



Information 

Actions 

Tools 

People 



	

 	

	



5	



Roles representations play	



•  Semantic	


–  accurately and completely capture knowledge	



•  Communicative	


–  support communication among designer and end-users	



•  Constructive	


–  stimulate, guide and constrain further design	



•  Analytic	


–  support interpretation and evaluation	



•  Engineers and designers focus on different roles	





	

 	

	



6	



From informal���
representations...	



... to models	





	

 	

	



7	



Canonical Abstract Prototypes 
[Constantine] – semi-formal sketching	





	

 	

	



8	



What aspects of a UI do we want to capture?	



•  Structure	


–  hierarchical structure of interaction elements	



•  Information	


–  what information is accessible in which parts of the UI	


–  what is the relationsship between information in various parts of 

the UI	


•  Behavior	



–  when are the various interaction elements active	


–  how are changes in the UI triggered by the user	



•  Style	


–  non-functional aspects, like layout, use of colors, fonts etc.	





	

 	

	



9	



Four phases of MBDUI	


1.  Model and generate	



–  model your domain	


–  generate UI from canned knowledge and pre-compiled rules	



2.  Computer-Aided Design of UI	


–  abstract models/representations of UI	


–  explicitly represent design knowledge	


–  model editors and tools for applying design knowledge	



3.  Task-based UI design	


–  can’t design usable interfaces without knowing the user and tasks	


–  base design of UI on task model (goals, structure and dependencies)	



4.  Contextualizing and adapting design models	


–  focus on context of use	


–  target multiple devices	





	

 	

	



10	



Design representation���
classification framework	



perspective 

formality 

granularity 

level of formality 

problem vs. solution 
abstract vs. concrete 

level of detail 



	

 	

	



11	



Perspective and granularity dimensions	





	

 	

	



12	



Dutch [van der Veer] -���
task models as activity charts	





	

 	

	



13	



ConcurTaskTrees [Paternò] – task 
hierarchies with temporal operators	





	

 	

	



14	



Dialog graphs [Forbrig] –���
Relating tasks to dialog	





	

 	

	



15	



UsiXML [Vanderdonckt] – A family of 
XML-based notations for UI elements	





	

 	

	



16	



Pet shop [Palanque] – Modeling safety 
critical UIs with ICO PetriNets	





	

 	

	



17	



Cameleon framework – targeting 
multiple devices	





	

 	

	



18	



Lots of pragmatic approaches ���
(read: non-academic and useful)	


•  XML-based formats for describing user interface layout and style	



–  XHTML (W3C) , XAML (Microsoft), JavaFX (Oracle), XUL (Mozilla)	


–  template languages for web pages	



•  DSLs	


–  Ecore-based: Eclipse 4’s workbench model, Wazaabi	


–  Xtext-based: APPlause, MOBL, Agentry	



•  Application modeling	


–  Esito’s Genova – business applications for the desktop and web	


–  WebRatio - business applications for the web	



•  Standardization	


–  WebML	


–  IFML (in progress)	


–  Model-Based User Interfaces (MBUI) Working Group	





	

 	

	



19	



IFML – Interaction Flow Modeling Language	


•  OMG RFP	


•  Proposal by 

WebRatio++	


•  Abstract UI model	


•  Functional units and���

view containers	


•  Dataflow and���

control/activation 
signals	





	

 	

	



20	



Dialog modelling with DiaMODL	



•  Based on Pisa���
interactors and���
Harel’s Statecharts	


–  interactors, gates and 

connections	


–  hierarchical states	


–  transitions, events/actions, 

conditions	


•  Abstraction of IO function	


•  Composition in terms of	



–  interactor structure	


–  state hierarchy (and, or)	





	

 	

	



21	



Generic interactor abstraction	



•  Notation for generic input 
og output components	



•  Dataflow-oriented	


•  Interactor mediates 

information in two 
directions:	


–  output: system to user	


–  input: user to system	





	

 	

	



22	



Scalable notation	



•  Specification of concrete 
interaction object’s 
functionality	


–  output and input interface	



•  Description of construction 
of concrete interaction 
objects	


–  composition of sub-interactors	


–  string input combined with���

parsing and unparsing	



•  Same abstract description,���
many alternatives	





	

 	

	



23	



More complex interaction objects	



•  Functionality defined in 
terms of configuration of 
domain objects	



•  Utilise power of���
domain modelling 
language	


–  Output: set	


–  Input: subset	



Alternative 
implementation 



	

 	

	



24	



Configuration of larger elements	



folder list mailbox content single message 



	

 	

	



25	



Interactor-���
based���
GUI-builder	





	

 	

	



26	



Integrating domain and dialog modeling	


•  Eclipse-based editor [CADUI’06]	





	

 	

	



27	



Prototyping with Diamodl	





	

 	

	



28	



Prototyping with Diamodl	





	

 	

	



29	



Application architecture	



•  The whole runtime state is captured as coordinated graphs of data	


•  The widget hierarchy is continuously rendered on a device	



Domain data Widgets 

events, bindings, actions & 
activation logic 

Interactors 



	

 	

	



30	



Rendering widgets	


•  Ecore model of toolkit, with instances rendered in Eclipse view	





	

 	

	



31	



Rendering widgets across platforms	





	

 	

	



32	



Moveable application	





	

 	

	



33	



Shareable application	



updates 



	

 	

	



34	



Distributed application	



?	





	

 	

	



35	



ptui –���
ptolemy-based tool for UI development	


•  Diamodl	



–  concepts are very close to Ptolemy’s	


–  interactors, computations and variables can all be modeled as actors	


–  its weakness, the (lack of) semantics, is Ptolemy’s strength	



•  Ptolemy can provide	


–  a (set of possible) semantics	


–  a solid runtime platform	



•  Ptolemy	


–  describes the behavior of a cyber-physical system, but	


–  has poor support for modeling user interaction	



•  Diamodl can provide	


–  an approach to integrating UI elements	


–  runtime support for rendering widgets locally or in a browser	




