
	
 	
	


1	


User interface modeling���
Model-based UI design	


Hallvard Trætteberg, Associate Professor 
Dept. of Computer and Information Sciences 
Norwegian Univ. of Science and Technology 



	
 	
	


2	


Trondheim, Norway	




	
 	
	


3	


User interface modeling���
Model-based UI design	


1.  Background and���
framework for classifying design representations	


2.  (Examples of) Models for development of UIs	

3.  Diamodl	

4.  ptui – ptolemy-based tool for development of UIs	




	
 	
	


4	


Many models capture our knowledge 
about the world	


Information 

Actions 

Tools 

People 



	
 	
	


5	


Roles representations play	


•  Semantic	

–  accurately and completely capture knowledge	


•  Communicative	

–  support communication among designer and end-users	


•  Constructive	

–  stimulate, guide and constrain further design	


•  Analytic	

–  support interpretation and evaluation	


•  Engineers and designers focus on different roles	




	
 	
	


6	


From informal���
representations...	


... to models	




	
 	
	


7	


Canonical Abstract Prototypes 
[Constantine] – semi-formal sketching	




	
 	
	


8	


What aspects of a UI do we want to capture?	


•  Structure	

–  hierarchical structure of interaction elements	


•  Information	

–  what information is accessible in which parts of the UI	

–  what is the relationsship between information in various parts of 

the UI	

•  Behavior	


–  when are the various interaction elements active	

–  how are changes in the UI triggered by the user	


•  Style	

–  non-functional aspects, like layout, use of colors, fonts etc.	




	
 	
	


9	


Four phases of MBDUI	

1.  Model and generate	


–  model your domain	

–  generate UI from canned knowledge and pre-compiled rules	


2.  Computer-Aided Design of UI	

–  abstract models/representations of UI	

–  explicitly represent design knowledge	

–  model editors and tools for applying design knowledge	


3.  Task-based UI design	

–  can’t design usable interfaces without knowing the user and tasks	

–  base design of UI on task model (goals, structure and dependencies)	


4.  Contextualizing and adapting design models	

–  focus on context of use	

–  target multiple devices	




	
 	
	


10	


Design representation���
classification framework	


perspective 

formality 

granularity 

level of formality 

problem vs. solution 
abstract vs. concrete 

level of detail 



	
 	
	


11	


Perspective and granularity dimensions	




	
 	
	


12	


Dutch [van der Veer] -���
task models as activity charts	




	
 	
	


13	


ConcurTaskTrees [Paternò] – task 
hierarchies with temporal operators	




	
 	
	


14	


Dialog graphs [Forbrig] –���
Relating tasks to dialog	




	
 	
	


15	


UsiXML [Vanderdonckt] – A family of 
XML-based notations for UI elements	




	
 	
	


16	


Pet shop [Palanque] – Modeling safety 
critical UIs with ICO PetriNets	




	
 	
	


17	


Cameleon framework – targeting 
multiple devices	




	
 	
	


18	


Lots of pragmatic approaches ���
(read: non-academic and useful)	

•  XML-based formats for describing user interface layout and style	


–  XHTML (W3C) , XAML (Microsoft), JavaFX (Oracle), XUL (Mozilla)	

–  template languages for web pages	


•  DSLs	

–  Ecore-based: Eclipse 4’s workbench model, Wazaabi	

–  Xtext-based: APPlause, MOBL, Agentry	


•  Application modeling	

–  Esito’s Genova – business applications for the desktop and web	

–  WebRatio - business applications for the web	


•  Standardization	

–  WebML	

–  IFML (in progress)	

–  Model-Based User Interfaces (MBUI) Working Group	




	
 	
	


19	


IFML – Interaction Flow Modeling Language	

•  OMG RFP	

•  Proposal by 

WebRatio++	

•  Abstract UI model	

•  Functional units and���

view containers	

•  Dataflow and���

control/activation 
signals	




	
 	
	


20	


Dialog modelling with DiaMODL	


•  Based on Pisa���
interactors and���
Harel’s Statecharts	

–  interactors, gates and 

connections	

–  hierarchical states	

–  transitions, events/actions, 

conditions	

•  Abstraction of IO function	

•  Composition in terms of	


–  interactor structure	

–  state hierarchy (and, or)	




	
 	
	


21	


Generic interactor abstraction	


•  Notation for generic input 
og output components	


•  Dataflow-oriented	

•  Interactor mediates 

information in two 
directions:	

–  output: system to user	

–  input: user to system	




	
 	
	


22	


Scalable notation	


•  Specification of concrete 
interaction object’s 
functionality	

–  output and input interface	


•  Description of construction 
of concrete interaction 
objects	

–  composition of sub-interactors	

–  string input combined with���

parsing and unparsing	


•  Same abstract description,���
many alternatives	




	
 	
	


23	


More complex interaction objects	


•  Functionality defined in 
terms of configuration of 
domain objects	


•  Utilise power of���
domain modelling 
language	

–  Output: set	

–  Input: subset	


Alternative 
implementation 



	
 	
	


24	


Configuration of larger elements	


folder list mailbox content single message 



	
 	
	


25	


Interactor-���
based���
GUI-builder	




	
 	
	


26	


Integrating domain and dialog modeling	

•  Eclipse-based editor [CADUI’06]	




	
 	
	


27	


Prototyping with Diamodl	




	
 	
	


28	


Prototyping with Diamodl	




	
 	
	


29	


Application architecture	


•  The whole runtime state is captured as coordinated graphs of data	

•  The widget hierarchy is continuously rendered on a device	


Domain data Widgets 

events, bindings, actions & 
activation logic 

Interactors 



	
 	
	


30	


Rendering widgets	

•  Ecore model of toolkit, with instances rendered in Eclipse view	




	
 	
	


31	


Rendering widgets across platforms	




	
 	
	


32	


Moveable application	




	
 	
	


33	


Shareable application	


updates 



	
 	
	


34	


Distributed application	


?	




	
 	
	


35	


ptui –���
ptolemy-based tool for UI development	

•  Diamodl	


–  concepts are very close to Ptolemy’s	

–  interactors, computations and variables can all be modeled as actors	

–  its weakness, the (lack of) semantics, is Ptolemy’s strength	


•  Ptolemy can provide	

–  a (set of possible) semantics	

–  a solid runtime platform	


•  Ptolemy	

–  describes the behavior of a cyber-physical system, but	

–  has poor support for modeling user interaction	


•  Diamodl can provide	

–  an approach to integrating UI elements	

–  runtime support for rendering widgets locally or in a browser	



