Components, Interfaces and Compositions: from SoCs to SOCs

Partha S. Roop

University of Auckland
Organization

- Significance of components and interfaces.
- Two recent frontiers – SoCs and SOCs.
- Key problems:
 - Component matching – refinement based and DES control based.
 - Component composition – converter / choreographer synthesis.
- Conclusions.
Acknowledgements

- Forced Simulation is joint work with A. Sowmya (UNSW), S. Ramesh (General Motors R&D) and the link to DES is with Robi Malik (Waikato).
- Local module checking and converter synthesis is joint work with Roopak Sinha (Postdoc) and Samik Basu (Iowa State).
- Web Services composition is joint work with Adeel Ali (PhD student), Ian Warren (Soft. Eng., Auckland) and Zeeshan Bhatti (PhD student)
“Simple? Yet, not a single person on the face of this earth knows how to make me.”

- Making of lead (graphite + clay)
- Making of body (cedar + lacquer)
- Eraser (rubber + factice + ...)
- Label (carbon + resin + ...)
- Ferrule (brass + zinc + ...)

Mass manufacturing

Structural assembly

Mechanical Assembly

Electronics

Quality control
A System-on-a-chip (SoC) Example

Consumer electronics revolution fuelled by SoCs

Embedded Systems

- Compliance to strict safety standards [IEC 61508, DO 178]

Timing/Functionality requirements

Service Oriented Computing

Internet Service Composition
Featuring The Future ...!
Related work

- Abstract Interfaces [Parnas’77]
- OO methodologies and UML
- Formal techniques:
 - IO Automata
 - Interface Automata
 - Interface Theories
 - Discrete controller synthesis
 - Module checking
 - Converter synthesis
Two key questions

- Question 1: specification matching / component adaptation (the “what” question).
- Question 2: component composition (the “how” question).
First Question:

Specification Matching –
“Can a given device automatically be adapted to implement a new function?”

Two Answers:
- Forced Simulation
- Supervisory Control
Coffee Brewer Example

Assume Given:
- Coffee Brewer device
- Can brew 4 or 8 cups of coffee
- Medium or strong

Specification F

- States: $0, 1, 2, 3$
- Transitions:
 - $0 \xrightarrow{\text{error}} 1$
 - $0 \xrightarrow{\text{ready4m}} 2$
 - $2 \xrightarrow{\text{reset}} 0$
 - $0 \xrightarrow{\text{ready8m}} 3$

Device D

- States: $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$
- Transitions:
 - $0 \xrightarrow{\text{strong} \land 8\text{cups}} 4$
 - $4 \xrightarrow{\text{breat}} 0$
 - $0 \xrightarrow{\text{default}} 1$
 - $1 \xrightarrow{\text{ready8m}} 2$
 - $2 \xrightarrow{\text{reset}} 0$
 - $0 \xrightarrow{\text{8cups}} 3$
 - $3 \xrightarrow{\text{reset}} 0$
 - $0 \xrightarrow{\text{error}} 5$
 - $5 \xrightarrow{\text{ready4m}} 6$
 - $6 \xrightarrow{\text{ready4s}} 7$
 - $7 \xrightarrow{\text{reset}} 0$
 - $0 \xrightarrow{\text{error}} 8$
 - $8 \xrightarrow{\text{ready8m}} 9$
 - $9 \xrightarrow{\text{ready8s}} 10$
 - $10 \xrightarrow{\text{replenish}} 0$
Disabling and Forcing

Assume Given:
- Coffee Brewer device
- Can brew 4 or 8 cups of coffee
- Medium or strong strength

Device D
- Brew:
 - $8_{cups} \land \neg 8_{cups}$
 - $\neg 8_{cups} \land 8_{cups}$
 - $\neg 8_{cups} \land \neg 8_{cups}$

Specifications F
- Brew:
 - 8_{cups}
- Error:
 - $\neg 8_{cups}$
- Reset:
 - $\neg 8_{cups}$

Force Brew Switch

Disable Strength Switch

Brew Switch
- $[brew]$
An Adapter for the Coffee Brewer

Specification F

Adapter A

- States:
 - 0: Ready 0
 - 1: Error
 - 2: Ready 8
 - 3: Default

- Transitions:
 - From 0 to 1: Error
 - From 0 to 2: Ready 8
 - From 0 to 3: Default
 - From 1 to 1: Default
 - From 1 to 2: Ready 8
 - From 2 to 0: Reset
 - From 2 to 1: Error
 - From 2 to 2: Ready 8
 - From 3 to 0: Reset
 - From 3 to 1: Brew
 - From 3 to 2: Brew
 - From 3 to 3: Default
 - From 5 to 0: Error
 - From 5 to 1: Brew
 - From 5 to 2: Ready 4
 - From 5 to 3: Reset
 - From 7 to 0: Error
 - From 7 to 1: Brew
 - From 7 to 2: Ready 8
 - From 7 to 3: Reset
 - From 9 to 0: Error
Forced Composition

Let A be an adapter and D be a device. Define the **forced composition** $A \parallel D$ by

\[
(q_A) \xrightarrow{\alpha} (q'_A) \quad (q_D) \xrightarrow{\alpha} (q'_D)
\]

\[
(q_A, q_D) \xrightarrow{\tau} (q'_A, q'_D)
\]

\[
(q_A) \xrightarrow{\sigma} (q'_A) \quad (q_D) \xrightarrow{\sigma} (q'_D)
\]

\[
(q_A, q_D) \xrightarrow{\sigma} (q'_A, q'_D)
\]
Specification Matching Problem

Let F be a specification and D be a device. We say that

"D can implement the function F", if there exists a well-formed and deterministic adapter A such that

$$A // D \approx F$$
Theorem
There exists a well-formed and deterministic adapter A such that

\[A \parallel D \approx F \]

if and only if

\[F \leq_{\text{fsim}} D \]
Condition for the existence of A

$R \subseteq Q_F \times Q_D \times \Sigma^*$ is a forced simulation relation between F and D provided:

1. $q_F^0 R^s q_D^0$ for some $s \in \Sigma^*$;
2. If $q_F R^\sigma q_D$ for $\sigma \in \Sigma$ and $s \in \Sigma^*$, then there exists $q_D' \in Q_D$ such that $q_D \xrightarrow{\sigma} q_D'$ and $q_F R^s q_D'$;
3. If $q_F R^\varepsilon q_D$ for all $\sigma \in \Sigma$ and all $q_F' \in Q_F$ such that $q_F \xrightarrow{\sigma} q_F'$, there exists $q_D' \in Q_D$ and $s \in \Sigma^*$ such that $q_D \xrightarrow{\sigma} q_D'$ and $q_F R^s q_D'$.

Start states must be related

Directly related

States related by a forcing sequence
Example

\[R = \{(f_0, d_0, \alpha), (f_0, d_1, \varepsilon), (f_2, d_2, \varepsilon)\} \]
Another Solution

\[R = \{(f_0, d_0, \varepsilon), (f_0, d_1, \alpha), (f_2, d_2, \varepsilon)\} \]
Supervisory Control Problem

Let F be a specification and P be a plant. We say that

“F can be achieved by control of P”
“F is controllable with respect to P”

if there exists a supervisor S such that

$$L(S \parallel P) = L(F)$$
Creating a Plant from the Device

Assume Given:
- Coffee Brewer device that can
 - brew 4 or 8 cups of coffee
 - medium or strong

\[A \parallel D = (A \parallel [D]) \setminus [\Sigma] \]
Least Restrictive vs. Well-Formed

Device D

Function F

Adapter $A_{fsim,2}$

Adapter A_{supcon}
Comparison and Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Forced simulation</th>
<th>Supervisory control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship between A and F</td>
<td>$A \parallel D \approx F$</td>
<td>$L(A \parallel D) \subseteq L(F)$</td>
</tr>
<tr>
<td>Well-formedness</td>
<td>guaranteed</td>
<td>requires additional steps</td>
</tr>
<tr>
<td>Forced cycles</td>
<td>not possible</td>
<td>may occur</td>
</tr>
<tr>
<td>Nonblocking</td>
<td>guaranteed</td>
<td>can be guaranteed</td>
</tr>
<tr>
<td>Uniqueness</td>
<td>solutions weakly bisimilar</td>
<td>unique least restrictive solution</td>
</tr>
<tr>
<td>Controllability</td>
<td>not considered</td>
<td>handled</td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(</td>
<td>Q_F</td>
</tr>
</tbody>
</table>
Second Question:

- **Composition** – Design and develop systems from multiple independently developed components

 How to effectively address protocol-mismatches during composition?

Answer:
Relationship to convertibility verification.
Motivation

- “verifying functionality and timing at the system-level is probably the most difficult and important aspect of SoC design. .. For many teams, verification takes 50%-80% of the overall design effort"

- “the low-level interfaces do not work; for example, a handshake signal inverted”
Suggested design flow

1. Requirements and Specification
 - System Specification
 - Initial Requirements (Boiler Plates)

2. Behavioural Model

3. Refine & Test

4. Hardware/Software Partitioning
 - Hardware architecture model
 - Prototype software

5. Prototype software

6. Co-simulation and protocol compatibility checking

7. Hardware (HW) specification
 - Block 1 Spec
 - Block n Spec

7. Software (SW) specification

8. System Level Formal Verification
 - SW IP Interfaces
 - HW IP Interfaces
Solution Mechanism

- Converter-based protocol conversion
 - Develop a converter: acts as a mediator between two components with mismatched protocols

Goal: Compose P_1 and P_2 to realize the Specification
Solution Mechanism

Converter-based protocol conversion
- Develop a converter: acts as a mediator between two components with mismatched protocols

Goal: Compose P_1 and P_2 to realize the Specification
Solution Mechanism

- Converter-based protocol conversion
 - Develop a converter: acts as a mediator between two components with mismatched protocols

Solution: Converter addresses mismatches
Set-top box

Challenges:
• Multi-clock
• Differing data-widths
• Control signals mismatch
Converter

Key control

Video decoder

PAL/NTSC Encoder

Converter

SoC

(Uncontrollable Inputs)
How about service composition?
Composition Framework

- WSDL Generator
- LTS Encapsulated Service Models
- User Guided Data Connections
- Goal Specification
- Composite Service

Parallel Composition
Related Work

<table>
<thead>
<tr>
<th>Approach</th>
<th>Model</th>
<th>Spec</th>
<th>Multiple Protocols</th>
<th>Algorithm</th>
<th>UE</th>
<th>Buffering</th>
<th>Data</th>
<th>Multiclock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avnit et al.’08</td>
<td>SPA</td>
<td>nil</td>
<td>no</td>
<td>refinement</td>
<td>no</td>
<td>yes</td>
<td>limited</td>
<td>yes</td>
</tr>
<tr>
<td>D’Silva et al.’04</td>
<td>SPA</td>
<td>Nil</td>
<td>no</td>
<td>Refinement</td>
<td>no</td>
<td>yes</td>
<td>limited</td>
<td>yes</td>
</tr>
<tr>
<td>Passerone et al.’02</td>
<td>LTS</td>
<td>LTS</td>
<td>no</td>
<td>Game-theoretic</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Kumar et al.’97</td>
<td>LTS</td>
<td>LTS</td>
<td>no</td>
<td>Supervisory Control</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Tivoli et al.’08</td>
<td>LTS</td>
<td>Nil</td>
<td>Yes</td>
<td>Coverability-analysis</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Our Approach</td>
<td>LTS</td>
<td>CTL</td>
<td>yes</td>
<td>Model checking</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Related Work – Service Composition

<table>
<thead>
<tr>
<th>Approach</th>
<th>Input Services</th>
<th>Data</th>
<th>Behaviour</th>
<th>Composition Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Auto Model</td>
<td>Model</td>
<td>Flow</td>
</tr>
<tr>
<td>Mitra et al.</td>
<td>Syntactic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASTRO</td>
<td>Syntactic</td>
<td>-</td>
<td>DataNet</td>
<td>+</td>
</tr>
<tr>
<td>Berardi et al.</td>
<td>Syntactic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lecue et al.</td>
<td>Semantic</td>
<td>-</td>
<td>Schema Graph</td>
<td>+</td>
</tr>
<tr>
<td>Proposed</td>
<td>Syntactic</td>
<td>+</td>
<td>Schema Graph</td>
<td>+</td>
</tr>
</tbody>
</table>
Types of Protocol Mismatch

- **Control-signal mismatch**
- Data mismatch
- Clock mismatch
Ref: Convertibility Verification and Converter Synthesis: Two Faces of the Same Coin
Passerone, Luca de Alfaro, Thomas A. Henzinger and Alberto L. Sangiovanni-Vincentelli, ICCAD’02

Protocol Model

- **KS** = (AP, S, s₀, Σ, R, L)
 - AP: atomic propositions, S: set of states,
 - s₀ ∈ S: start state, Σ: transition labels,
 - R: Transitions, L: labels states to propositions.

Handshake Producer

Serial Consumer

primed: input signal
unprimed: output signal
Protocol Model Composition

Ref: Convertibility Verification and Converter Synthesis: Two Faces of the Same Coin
Passerone, Luca de Alfaro, Thomas A. Henzinger and Alberto L. Sangiovanni-Vincentelli, ICCAD’02
Specification Language

- **CTL Syntax**

\[\Phi \rightarrow \text{tt} \mid P \mid \neg P \mid \Phi \lor \Phi \]

- All/some successors satisfy \(\Phi \)

- All/some reachable states satisfy \(\Phi \)

- Along all paths \(\Phi \) is satisfied until \(\Psi \)

- Along some path \(\Phi \) is satisfied until \(\Psi \)
Protocol Model Properties

Input cannot be made before corresponding output:

1. $AG[s_0,t_0 \Rightarrow AX(\neg s_1,t_1)]$
2. $AG[s_1,t_1 \Rightarrow AX(\neg s_0,t_0)]$

(s_0,t_0): for a action
(s_1,t_1): for b action
Protocol Model Properties

Input cannot be made before corresponding output:

1. $\text{AG}[s_0, t_0 \Rightarrow \text{AX} \neg(\neg s_1, t_1)]$
2. $\text{AG}[s_1, t_1 \Rightarrow \text{AX} \neg(\neg s_0, t_0)]$

Output of b/a is not allowed before a/b is received:

1. $\text{AG}[s_1, t_0 \Rightarrow \text{AX} \neg(s_0t_0)]$
2. $\text{AG}[s_0, t_1 \Rightarrow \text{AX} \neg(s_1t_1)]$

Ref: *Convertibility Verification and Converter Synthesis: Two Faces of the Same Coin*
Passerone, Luca de Alfaro, Thomas A. Henzinger and Alberto L. Sangiovanni-Vincentelli, ICCAD’02
Protocol Model Properties

Input cannot be made before corresponding output:

1. \(\text{AG}[s_0, t_0 \Rightarrow \text{AX}\neg(\neg s_1, t_1)] \)
2. \(\text{AG}[s_1, t_1 \Rightarrow \text{AX}\neg(\neg s_0, t_0)] \)

Output of b/a is not allowed before a/b is received:

1. \(\text{AG}[s_1, t_0 \Rightarrow \text{AX}\neg(s_0 t_0)] \)
2. \(\text{AG}[s_0, t_1 \Rightarrow \text{AX}\neg(s_1 t_1)] \)

Ref: *Convertibility Verification and Converter Synthesis: Two Faces of the Same Coin*
Passerone, Luca de Alfaro, Thomas A. Henzinger and Alberto L. Sangiovanni-Vincentelli, ICCAD’02
Lock-Step Composition

- Converter-based solution
 - Protocol-models move if and only if the converter allows that move
 - Converter cannot block any outputs

- Let \(c_i \) be composed with \((s_i, t_i) \) then \((s_i, t_i) \xrightarrow{a} (s_j, t_j) \) is allowed if and only if \(c_i \) can move on \((a') \)
Converter Synthesis

\[(s,t)/c \models \Phi\]

\[(s_1,t_1)/c_1 \models \Phi_1 \quad (s_2,t_2)/c_2 \models \Phi_2 \ldots \quad (s_k,t_k)/c_k \models \Phi_k\]

- The antecedent holds if and only if the consequents hold
- Local, top-down approach similar to tableau-based CTL model checking
Tableau Rules

\[(s,t) // c \models \Psi \]

\[\exists \pi \subseteq \Pi : \forall \sigma \in \pi : (s_\sigma, t_\sigma) // c_\sigma \models \Psi_{AX} \]

\[
\begin{aligned}
\Psi_{AX} &= \{ \Phi \mid AX\Phi \in \Psi \} \\
\Pi &= \{ \sigma \mid (s,t) \overset{\sigma}{\rightarrow} (s_\sigma, t_\sigma) \} \\
c_\sigma : c \overset{\sigma'}{\rightarrow} c_\sigma \quad \text{and} \quad D(\sigma, \sigma')
\end{aligned}
\]

\(\Psi \) only contains formulas of the form \(AX\Phi \)
1. Identify the set of possible transitions from \((s,t)\): \(\Pi \)
2. Enable a subset of possible transitions using converter:
 \[c \rightarrow c_\sigma \]
3. All enabled transition leads to states satisfying \(\Phi \)'s

Enabled transition set must include all possible output transitions. Also, resulting machine has to be responsive to \(T \) input.
Example

\(\Phi_1 = s_0t_0 \Rightarrow A\neg (\neg s_1, t_1)\)
\(\Phi_2 = s_1t_1 \Rightarrow A\neg (\neg s_0, t_0)\)
\(\Phi_3 = s_1t_0 \Rightarrow A\neg (s_0t_0)\)

\(s_0t_0//c_0 \vdash \{ AG[s_0t_0\Rightarrow A\neg (\neg s_1, t_1)], AG[s_1t_1\Rightarrow A\neg (\neg s_0, t_0)], AG[s_1t_0\Rightarrow A\neg (s_0t_0)] \} \)
Example

$\phi_1 = s_0t_0 \Rightarrow AX \neg(s_1t_1)$

$\phi_2 = s_1t_1 \Rightarrow AX \neg(s_0t_0)$

$\phi_3 = s_1t_0 \Rightarrow AX \neg(s_0t_0)$

$s_0t_0/c_0 \vdash \{AG[\phi_1], AG[\phi_2], AG[\phi_3] \}$
Example

\[\Phi_1 = s_0t_0 \Rightarrow AX(\neg s_1t_1) \]
\[\Phi_2 = s_1t_1 \Rightarrow AX(\neg s_0t_0) \]
\[\Phi_3 = s_1t_0 \Rightarrow AX(\neg s_0t_0) \]

\[s_0t_0//c_0 \models \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \]

\[s_0t_0//c_0 \models \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \]
Example

\(\Phi_1 = s_0t_0 \Rightarrow AX\neg(s_1,t_1) \)
\(\Phi_2 = s_1t_1 \Rightarrow AX\neg(s_0,t_0) \)
\(\Phi_3 = s_1t_0 \Rightarrow AX\neg(s_0t_0) \)

\[
\begin{align*}
s_0t_0/c_0 & \models \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \\
s_0t_0/c_0 & \models \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \\
s_0t_0/c_0 & \models \{ AXAG[\Phi_1], AX\neg(s_1,t_1), AXAG[\Phi_2], AXAG[\Phi_3] \}
\end{align*}
\]
Example

\[\Phi_1 = s_0 t_0 \Rightarrow AX \neg (\neg s_1, t_1) \]
\[\Phi_2 = s_1 t_1 \Rightarrow AX \neg (\neg s_0, t_0) \]
\[\Phi_3 = s_1 t_0 \Rightarrow AX \neg (s_0 t_0) \]

\[
\begin{align*}
s_0 t_0 \sslash c_0 & \models \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \\
s_0 t_0 \sslash c_0 & \models \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \\
s_0 t_0 \sslash c_0 & \models \{ AXAG[\Phi_1], AX \neg (\neg s_1, t_1), AXAG[\Phi_2], AXAG[\Phi_3] \} \\
s_0 t_0 \sslash c_0' & \models \{ AG[\Phi_1], (\neg s_1, t_1), AG[\Phi_2], AG[\Phi_3] \} \\
s_0 t_1 \sslash c_1 & \models \{ AG[\Phi_1], (\neg s_1, t_1), AG[\Phi_2], AG[\Phi_3] \} \\
s_1 t_1 \sslash c_2 & \models \{ AG[\Phi_1], (\neg s_1, t_1), AG[\Phi_2], AG[\Phi_3] \} \\
s_1 t_0 \sslash c_3 & \models \{ AG[\Phi_1], (\neg s_1, t_1), AG[\Phi_2], AG[\Phi_3] \}
\end{align*}
\]
\(\Phi_1 = s_0t_0 \Rightarrow AX(\neg s_1,t_1) \)
\(\Phi_2 = s_1t_1 \Rightarrow AX(\neg s_0,t_0) \)
\(\Phi_3 = s_1t_0 \Rightarrow AX(\neg s_0t_0) \)

Example

\[
\begin{align*}
s_0t_0/c_0 & \models \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \\
\{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \\
\{ AXAG[\Phi_1], AX(\neg s_1t_1), AXAG[\Phi_2], AXAG[\Phi_3] \} \\
\{ AG[\Phi_1], \neg (\neg s_1t_1), AG[\Phi_2], AG[\Phi_3] \}
\end{align*}
\]
\[\Phi_1 = s_0t_0 \Rightarrow AX\neg(s_1t_1) \]
\[\Phi_2 = s_1t_1 \Rightarrow AX\neg(s_0t_0) \]
\[\Phi_3 = s_1t_0 \Rightarrow AX\neg(s_0t_0) \]

Example

\[
\begin{align*}
s_{00}/c_0 & \vdash \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \\
s_{00}/c_0' & \vdash \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \\
s_{00}/c_0 & \vdash \{ AXAG[\Phi_1], AX\neg(s_1t_1), AXAG[\Phi_2], AXAG[\Phi_3] \} \\
s_{00}/c_0' & \vdash \{ AG[\Phi_1], \neg(s_1t_1), AG[\Phi_2], AG[\Phi_3] \} \\
s_{00}/c_0' & \vdash \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \}
\end{align*}
\]

Same formula state pair
Example

\[\Phi_1 = s0t0 \Rightarrow AX(\neg s1,t1) \]
\[\Phi_2 = s1t1 \Rightarrow AX(\neg s0,t0) \]
\[\Phi_3 = s1t0 \Rightarrow AX(\neg s0t0) \]

\[s0t0//c0 \equiv \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \]
\[s0t0//c0 \equiv \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \]
\[s0t0//c0 \equiv \{ AXAG[\Phi_1], AX(\neg s1,t1), AXAG[\Phi_2], AXAG[\Phi_3] \} \]
\[s0t0//c0' \equiv \{ AG[\Phi_1], \neg(\neg s1,t1), AG[\Phi_2], AG[\Phi_3] \} \]
\[s0t0//c0' \equiv \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \]
Example

\[\Phi_1 = s_0t_0 \Rightarrow AX(\neg s_1,t_1) \]
\[\Phi_2 = s_1t_1 \Rightarrow AX(\neg s_0,t_0) \]
\[\Phi_3 = s_1t_0 \Rightarrow AX(\neg s_0t_0) \]

<table>
<thead>
<tr>
<th>State</th>
<th>Guard Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0t0</td>
<td>{AG[\Phi_1], AG[\Phi_2], AG[\Phi_3]}</td>
<td></td>
</tr>
<tr>
<td>s0t0</td>
<td>{AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3}</td>
<td></td>
</tr>
<tr>
<td>s0t0</td>
<td>{AXAG[\Phi_1], AX(\neg s_1,t_1), AXAG[\Phi_2], AXAG[\Phi_3]}</td>
<td></td>
</tr>
<tr>
<td>s0t0/c0'</td>
<td>{AG[\Phi_1], \neg(\neg s_1,t_1), AG[\Phi_2], AG[\Phi_3]}</td>
<td>SUCCESS T in producer allowed</td>
</tr>
<tr>
<td>s0t1</td>
<td>{AG[\Phi_1], \neg(\neg s_1,t_1), AG[\Phi_2], AG[\Phi_3]}</td>
<td></td>
</tr>
<tr>
<td>s1t1</td>
<td>{AG[\Phi_1], \neg(\neg s_1,t_1), AG[\Phi_2], AG[\Phi_3]}</td>
<td></td>
</tr>
<tr>
<td>s1t0</td>
<td>{AG[\Phi_1], \neg(\neg s_1,t_1), AG[\Phi_2], AG[\Phi_3]}</td>
<td></td>
</tr>
</tbody>
</table>
Example

\(\Phi_1 = s_0t_0 \Rightarrow AX(\neg s_1,t_1)\)
\(\Phi_2 = s_1t_1 \Rightarrow AX(\neg s_0,t_0)\)
\(\Phi_3 = s_1t_0 \Rightarrow AX(\neg s_0t_0)\)

\[s_0t_0//c_0 \vdash \{AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \}\]
\[s_0t_0//c_0 \vdash \{AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \}\]
\[s_0t_0//c_0 \vdash \{AXAG[\Phi_1], AX(\neg s_1,t_1), AXAG[\Phi_2], AXAG[\Phi_3] \}\]
\[s_0t_1//c_1 \vdash \{AG[\Phi_1], \neg(\neg s_1,t_1), AG[\Phi_2], AG[\Phi_3] \}\]
Example

\[\Phi_1 = s_0 t_0 \Rightarrow AX \neg(s_1 t_1) \]
\[\Phi_2 = s_1 t_1 \Rightarrow AX \neg(s_0 t_0) \]
\[\Phi_3 = s_1 t_0 \Rightarrow AX \neg(s_0 t_0) \]

s0t0//c0 ⊨ \{AG[Φ1], AG[Φ2], AG[Φ3] \}

s0t0//c0 ⊨ \{AXAG[Φ1], Φ1, AXAG[Φ2], Φ2, AXAG[Φ3], Φ3 \}

s0t0//c0 ⊨ \{AXAG[Φ1], AX\neg(s_1 t_1), AXAG[Φ2], AXAG[Φ3] \}

s0t1//c1 ⊨ \{AG[Φ1], \neg(s_1 t_1), AG[Φ2], AG[Φ3] \}

FAIL
Example

\[\Phi_1 = \text{s0t0} \Rightarrow \text{AX} \neg (\neg \text{s1,t1}) \]
\[\Phi_2 = \text{s1t1} \Rightarrow \text{AX} \neg (\neg \text{s0,t0}) \]
\[\Phi_3 = \text{s1t0} \Rightarrow \text{AX} \neg (\text{s0t0}) \]

\[\text{s0t0//c0} \models \{ \text{AG}[\Phi_1], \text{AG}[\Phi_2], \text{AG}[\Phi_3] \} \]
\[\text{s0t0//c0} \models \{ \text{AXAG}[\Phi_1], \Phi_1, \text{AXAG}[\Phi_2], \Phi_2, \text{AXAG}[\Phi_3], \Phi_3 \} \]
\[\text{s0t0//c0} \models \{ \text{AXAG}[\Phi_1], \text{AX} \neg (\neg \text{s1,t1}), \text{AXAG}[\Phi_2], \text{AXAG}[\Phi_3] \} \]
\[\text{s0t0//c0'} \models \{ \text{AG}[\Phi_1], \neg (\neg \text{s1,t1}), \text{AG}[\Phi_2], \text{AG}[\Phi_3] \} \quad \text{SUCCESS T in producer allowed} \]
\[\text{s0t1//c1} \models \{ \text{AG}[\Phi_1], \neg (\neg \text{s1,t1}), \text{AG}[\Phi_2], \text{AG}[\Phi_3] \} \quad \text{FAIL T in producer blocked} \]
\[\text{s1t1//c2} \models \{ \text{AG}[\Phi_1], \neg (\neg \text{s1,t1}), \text{AG}[\Phi_2], \text{AG}[\Phi_3] \} \]
\[\text{s1t0//c3} \models \{ \text{AG}[\Phi_1], \neg (\neg \text{s1,t1}), \text{AG}[\Phi_2], \text{AG}[\Phi_3] \} \]
Example

\[\Phi_1 = s_{0t0} \Rightarrow AX(\neg s_{1t1}) \]
\[\Phi_2 = s_{1t1} \Rightarrow AX(\neg s_{0t0}) \]
\[\Phi_3 = s_{1t0} \Rightarrow AX(\neg s_{0t0}) \]

\[
\begin{align*}
s_{0t0}//c_0 & \vdash \{ AG[\Phi_1], AG[\Phi_2], AG[\Phi_3] \} \\
s_{0t0}//c_0 & \vdash \{ AXAG[\Phi_1], \Phi_1, AXAG[\Phi_2], \Phi_2, AXAG[\Phi_3], \Phi_3 \} \\
s_{0t0}//c_0 & \vdash \{ AXAG[\Phi_1], AX(\neg s_{1t1}), AXAG[\Phi_2], AXAG[\Phi_3] \} \\
s_{1t1}//c_2 & \vdash \{ AG[\Phi_1], \neg(\neg s_{1t1}), AG[\Phi_2], AG[\Phi_3] \} \\
\end{align*}
\]
Example

\[\Phi_1 = s_0t_0 \Rightarrow AX\neg(s_1,t_1) \]
\[\Phi_2 = s_1t_1 \Rightarrow AX\neg(s_0,t_0) \]
\[\Phi_3 = s_1t_0 \Rightarrow AX\neg(s_0t_0) \]
Example
Example
Example

T' → t0
a' → t1

s0 → s0
T' → T0
b' → s1

aT' → bT'
a' → t0
bb' → s1
t0 → t1

Ta' → Tb'
ba' → ab'
as1 → as0

T' T → c0
T' b → c34
a' T b'a → a' b

Converter
Types of Protocol Mismatch

- Control mismatches
- Data Mismatches
- Clock mismatch
Conclusion

- Two key problems
 - Component selection / matching
 - Component composition
 - Both problems solved in the context of SoCs and SOC.
- Key issues considered:
 - Control mismatches
 - Data-width / types
 - Clock
- Future work: Incremental design
References

The following slides discuss tableau construction to deal with data-width mismatches in SoCs followed by data-type mismatches in SOCs.
Complexity

\[O(|I| \times 2^{|S|} \times 2^{|\Phi|} \times 2^{|E|}) \]

- \(|I|\) is the size of the set of all counter valuations:
 - For 1 counter \(C\) with range \([0,R]\), there are \(R+3\) valuations (\(R+1\) valid values, 2 invalid)
 - For \(n\) counters where each counter \(C_i\)’s range is \([0,R_i]\), \(|I| = (R_1+3) \times \ldots \times (R_n+3)\).
Complexity

\[O(|I| \times 2^{|S|} \times 2^{|\Psi|} \times 2^{|E|}) \]

- \(|S|\) is the size of the synchronous parallel composition of all IPs.
- \(|\Psi|\) is the size of the formula set \(\Psi\).
- \(|E|\) is the size of the set of signals that can be buffered by the converter.
Introducing Data Counters

- P_1 and P_2 communicate using a 32-bit data buffer.
- P_1 writes 16-bit data ($DOut_{16}$) while P_2 reads 32-bit data (DIn_{32}).
Introducing Data Counters

- Data mismatches are possible:
 - P1 may write data when buffer is full (overflow).
 - P2 may read data when buffer is empty (underflow).

- Converter must ensure that the above situations are avoided.
Introducing Data Counters

- We introduce a **data counter** C, which is used by the converter to keep track of the number of bits contained in the data buffer after each transition in the system. C is initialized to 0.

- Whenever a DOut_{16} is encountered, C is incremented by 16.

- Whenever a DIn_{32} is encountered, C is decremented by 32.
Introducing Data Counters

- The following CTL specification is used to ensure that counter remains within bounds

\[AG \ (0 \leq c \leq 32) \]
Processing Data Counters

- **Init** → **DOut_{16}**
 - \(c = 0 \)

- **DOut_{16}** → **Wait**
 - \(c = 16 \)
 - \(c = 32 \)

- **Wait** → **DIn_{32}**
 - \(c = 32 \)
 - \(c = 0 \)

- **DOut_{16}** (loop)
 - \(c = 48 \)
STEP-4: CTL Specifications

- **AG EF DOut\(_{16}\), AG EF DIn\(_{32}\):** There must always exist a reachable state in the system where \(P_1\) can write data (\(P_2\) can read data).

- **AG AF (Idle\(_S\) \& Idle\(_T\) \& C=0):** The protocols must always eventually reset to a state where the data buffer is empty.
STEP 5 – Model Checking

- Given the protocol composition and a set of properties, we can use tableau-construction as before to generate a converter.
Example

$\Phi_1 = AG (0 \leq c \leq 32)$
$\Phi_2 = AG EF DOut_{16}$
$\Phi_3 = AG EF DIn_{32}$
$\Phi_4 = AG AF (Idle_S \land Idle_T \land c=0)$

$C0/s0t0ca0 \vdash \{\Phi_1, \Phi_2, \Phi_3, \Phi_4\}$
Example

\[\Phi_1 = AG (0 \leq c \leq 32) \]
\[\Phi_2 = AG EF DOut_{16} \]
\[\Phi_3 = AG EF DIn_{32} \]
\[\Phi_4 = AG AF (Idle_S \land Idle_T \land c=0) \]

C0//s0t0ca0 \models \{ \Phi_1, \Phi_2, \Phi_3, \Phi_4 \}

C0//s0t0ca0 \models \{(0 \leq c \leq 32), AX \Phi_1, EF DOut_{16}, AX \Phi_2, AX \Phi_3, EF DIn_{32}, AX \Phi_4, AF (Idle_S \land Idle_T \land c=0)\}
Example

\[\Phi_1 = AG (0 \leq C \leq 32) \]
\[\Phi_2 = AG EF DOut_{16} \]
\[\Phi_3 = AG EF DIn_{32} \]
\[\Phi_4 = AG AF (Idle_S \land Idle_T \land C=0) \]

C0//s0t0ca0 ⊨ {Φ1, Φ2, Φ3, Φ4}

C0//s0t0ca0 ⊨ { (0 ≤ C ≤ 32), AX Φ1, EF DOut_{16}, AX Φ2, AX Φ3, EF DIn_{32}, AX Φ4, AF (Idle_S \land Idle_T \land C=0) }

UNR tableau rule

C0//s0t0ca0 ⊨ { AX Φ1, DOut_{16} \lor EXEF DOut_{16}, AX Φ2, AX Φ3, DIn_{32} \lor EXEF DIn_{32}, AX Φ4, (Idle_S \land Idle_T \land C=0) \lor AX AF (Idle_S \land Idle_T \land C=0) }
Example

\[\Phi_1 = AG \{0 \leq C \leq 32\} \]
\[\Phi_2 = AG \text{EF} \text{DOut}_{16} \]
\[\Phi_3 = AG \text{EF} \text{DIn}_{32} \]
\[\Phi_4 = AG \text{AF} (\text{Idle}_S \land \text{Idle}_T \land C=0) \]

\[C_0 = 0 \]
\[\text{Buf} = {} \]

\[C_0/s_0/t_0/c_0 = \{ \Phi_1, \Phi_2, \Phi_3, \Phi_4 \} \]

\[C_0/s_0/t_0/c_0 \models \{(0 \leq C \leq 32), AX \Phi_1, EF \text{DOut}_{16}, AX \Phi_2, AX \Phi_3, EF \text{DIn}_{32}, AX \Phi_4, AF (\text{Idle}_S \land \text{Idle}_T \land C=0)\} \]

\[C_0/s_0/t_0/c_0 \models \{AX \Phi_1, \text{DOut}_{16} \lor EXEF \text{DOut}_{16}, AX \Phi_2, AX \Phi_3, \text{DIn}_{32} \lor EX \text{EF \ DIn}_{32}, AX \Phi_4, (\text{Idle}_S \land \text{Idle}_T \land C=0) \lor AX AF (\text{Idle}_S \land \text{Idle}_T \land C=0)\} \]

\[C_0/s_0/t_0/c_0 \models \{AX \Phi_1, EXEF \text{DOut}_{16}, AX \Phi_2, AX \Phi_3, EX \text{EF \ DIn}_{32}, AX \Phi_4, (\text{Idle}_S \land \text{Idle}_T \land C=0)\} \]
Example

$\Phi_1 = \text{AG } (0 \leq c \leq 32)$
$\Phi_2 = \text{AG EF DOut}_{16}$
$\Phi_3 = \text{AG EF DIn}_{32}$
$\Phi_4 = \text{AG AF (Idle}_S \land \text{Idle}_T \land c=0)$

C0//s0t0ca0 $\vdash \{\Phi_1, \Phi_2, \Phi_3, \Phi_4\}$

C0//s0t0ca0 $\vdash \{(0 \leq c \leq 32), \text{AX } \Phi_1, \text{EF DOut}_{16}, \text{AX } \Phi_2, \text{AX } \Phi_3, \text{EF DIn}_{32}, \text{AX } \Phi_4,$
$\text{AF (Idle}_S \land \text{Idle}_T \land c=0)\}$

C0//s0t0ca0 $\vdash \{\text{AX } \Phi_1, \text{DOut}_{16} \lor \text{EXEF DOut}_{16}, \text{AX } \Phi_2, \text{AX } \Phi_3, \text{DIn}_{32} \lor \text{EX EF DIn}_{32}, \text{AX } \Phi_4,$
$\text{(Idle}_S \land \text{Idle}_T \land c=0) \lor \text{AX AF (Idle}_S \land \text{Idle}_T \land c=0)\}$

C0//s0t0ca0 $\vdash \{\text{AX } \Phi_1, \text{EXEF DOut}_{16}, \text{AX } \Phi_2, \text{AX } \Phi_3, \text{EX EF DIn}_{32}, \text{AX } \Phi_4,$
$\text{(Idle}_S \land \text{Idle}_T \land c=0)\}$

C0//s0t0ca0 $\vdash \{\text{AX } \Phi_1, \text{EXEF DOut}_{16}, \text{AX } \Phi_2, \text{AX } \Phi_3, \text{EX EF DIn}_{32}, \text{AX } \Phi_4\}$
Example

$\Phi_1 = AG \left(0 \leq c \leq 32\right)$
$\Phi_2 = AG \ EF \ DOut_{16}$
$\Phi_3 = AG \ EF \ DIn_{32}$
$\Phi_4 = AG \ AF \ (Idle_S \land Idle_T \land c=0)$

$\Psi_{AX} = \{ \Phi_1, \Phi_2, \Phi_3, \Phi_4 \}$
$\Psi_{EX} = \{ EF \ DOut_{16}, EF \ DIn_{32} \}$

$C0//s0t0ca0 \vdash \{ AX \ \Phi_1, \ EXEF \ DOut_{16}, AX \ \Phi_2, AX \ \Phi_3, EX \ EF \ DIn_{32}, AX \ \Phi_4 \}$
Example

$\Phi_1 = AG (0 \leq c \leq 32)$
$\Phi_2 = AG EF DOut_{16}$
$\Phi_3 = AG EF DIn_{32}$
$\Phi_4 = AG AF (Idle_S \land Idle_T \land c=0)$

$C_0//s_0t_0ca_0 \models \{AX \ \Phi_1 , \ EXEF \ DOut_{16} , \ AX \ \Phi_2 , \ AX \ \Phi_3 , \ EX \ EF \ DIn_{32} , \ AX \ \Phi_4\}$

$\Psi_{AX} = \{\Phi_1, \Phi_2, \Phi_3, \Phi_4\}$
$\Psi_{EX} = \{EF \ DOut_{16}, \ EF \ DIn_{32}\}$

$\Pi = \{(s_0,t_0,ca_1), (s_0,t_1,ca_1)\}$

$\pi \subseteq \Pi = \{(s_0,t_0,ca_1), (s_0,t_1,ca_1)\}$
Example

$\Phi_1 = \text{AG } (0 \leq c \leq 32)$
$\Phi_2 = \text{AG } EF \text{ DO}_{16}$
$\Phi_3 = \text{AG } EF \text{ DI}_{32}$
$\Phi_4 = \text{AG } AF (\text{Idle}_S \land \text{Idle}_T \land c=0)$

$C_0//s_0t_0ca_0 \models \{ \text{AX } \Phi_1, \text{EX } EF \text{ DO}_{16}, \text{AX } \Phi_2, \text{AX } \Phi_3, \text{EX } EF \text{ DI}_{32}, \text{AX } \Phi_4 \}$

$\Psi_{AX} = \{ \Phi_1, \Phi_2, \Phi_3, \Phi_4 \}$
$\Psi_{EX} = \{ \text{EF } \text{ DO}_{16}, \text{EF } \text{ DI}_{32} \}$

$\Pi = \{ (s_0,t_0,ca_1), (s_0,t_1,ca_1) \}$
$\pi \subseteq \Pi = \{ (s_0,t_0,ca_1), (s_0, \text{X}) \}$

• Signal a is not present in buffers.
• Transition to (s_0,t_1,ca_1) will lead to counter value to become negative.
Example

$\Phi_1 = AG \ (0 \leq c \leq 32)$
$\Phi_2 = AG \ EF \ DOut_{16}$
$\Phi_3 = AG \ EF \ DIn_{32}$
$\Phi_4 = AG \ AF \ (Idle_S \land Idle_T \land c=0)$

$C_0/s_0 t_0 c_{a_0}$ \implies \{AX \ \Phi_1, \ EXEF \ DOut_{16}, \ AX \ \Phi_2, \ AX \ \Phi_3, \ EX \ EF \ DIn_{32}, \ AX \ \Phi_4\}$

$\Psi_{AX} = \{\Phi_1, \Phi_2, \Phi_3, \Phi_4\}$
$\Psi_{EX} = \{EF \ DOut_{16}, \ EF \ DIn_{32}\}$

$\Pi = \{(s_0,t_0,c_{a_1}), (s_0,t_1,c_{a_1})\}$

$\pi \subseteq \Pi = \{(s_0,t_0,c_{a_1})\}$
Example

\(\Phi_1 = AG (0 \leq c \leq 32) \)
\(\Phi_2 = AG EF DOut_{16} \)
\(\Phi_3 = AG EF DIn_{32} \)
\(\Phi_4 = AG AF (Idle_S \land Idle_T \land c=0) \)

\(\Psi_{AX} = \{ \Phi_1, \Phi_2, \Phi_3, \Phi_4 \} \)
\(\Psi_{EX} = \{ EF DOut_{16}, EF DIn_{32} \} \)
\(\Pi = \{(s_0,t_0,ca_1), (s_0,t_1,ca_1)\} \)
\(\pi \subseteq \Pi = \{(s_0,t_0,ca_1)\} \)

\(C_0/s_0t_0ca_0 \models \{ AX \Phi_1, EX EF DOut_{16}, AX \Phi_2, AX \Phi_3, EX EF DIn_{32}, AX \Phi_4 \} \)

\(C_1/s_0t_0ca_1 \models \{ \Phi_1, EF DOut_{16}, \Phi_2, \Phi_3, EF DIn_{32}, \Phi_4 \} \)
Example

φ₁ = AG (0 ≤ C ≤ 32)
φ₂ = AG EF DOut₁₆
φ₃ = AG EF DIn₃₂
φ₄ = AG AF (Idleₛ ∧ Idleₜ ∧ C=0)

C₁/s₀t₀ca₁ ⊨ {φ₁, EF DOut₁₆, φ₂, φ₃, EF DIn₃₂, φ₄}

C₁/s₀t₀ca₁ ⊨ {(0 ≤ C ≤ 32), AXφ₁, DOut₁₆ ∨ EX EF DOut₁₆, AX φ₂, EF DIn₃₂, AX φ₃, AF (Idleₛ ∧ Idleₜ ∧ C=0), AX φ₄}
Example

$\Phi_1 = \text{AG (} 0 \leq C \leq 32 \text{)}$
$\Phi_2 = \text{AG EF DOut}_{16}$
$\Phi_3 = \text{AG EF DIn}_{32}$
$\Phi_4 = \text{AG AF (Idle}_S \land \text{Idle}_T \land C=0)$

$C_1/s0t0ca1 \vdash \{ \Phi_1, \text{EF DOut}_{16}, \Phi_2, \Phi_3, \text{EF DIn}_{32}, \Phi_4 \}$

$C_1/s0t0ca1 \vdash \{ (0 \leq C \leq 32), \text{AX}\Phi_1, \text{DOut}_{16} \lor \text{EX EF DOut}_{16}, \text{AX} \Phi_2, \text{EF DIn}_{32}, \text{AX} \Phi_3, \text{AF (Idle}_S \land \text{Idle}_T \land C=0), \text{AX} \Phi_4 \}$

and so on....
A Too for SoC Composition
The currency converter revisited

Click for Demo
Auto-FSM via WSDL

Currency Conv Example

GeoIP Service - http://www.webservicex.net/geoipservice.asmx?WSDL
Item Service – localhost:80
Auto Connect
Auto+Manual Connect
Redundant Connections
Goal specifications

- The price must not be calculated until destination country is known.
- Conversion should be made from item’s currency to user’s currency.
- There must exist a path to a state where the converted rate can be obtained.
Specifying the Goal

GOAL: Obtain the converted rate

CTL: EF(Label=calc.multiply)
Specifying the Goal

Constraint 1: The price must not be calculated until destination country is known.

CTL: ~\((\text{Label}=\text{item.price}) \land \text{AU}(\text{Label}=\text{item.CountryToShip})\)