Design of Embedded Systems:
Methodologies, Tools and Applications

Alberto Sangiovanni-Vincentelli
Dept. of EECS
University of California
Berkeley

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Foundations of Hybrid and Embedded Software Systems

Disaggregation:
Electronic Systems Design Chain < 7

Chess/ISIS/MSI 2

Outline

%

- Automotive Applications

- Distributed System Design Methodology

and Flow
* Platform-based Design
- UAV Control Example
* Metropolis

Chess/ISIS/MSI 3

The Automotive Electronic Design Chain %

Product Definition

G Plcn‘formsﬁ

Design And Assembly]

[=

Briving Machine

Interfaces ;—
TOSHIBA >/ 4

= WindRwer

N Ec Empowered by Innovatiory

Chess/ISIS/MSI 4

Automotive Supply Chain:
Car Manufacturers

Electronics for the Car: A Distributed Syste

-
c
g g | Mobile Communications Navngatlon TOdCly, ULl
Information E |_9 than 80
Systems | 8 | L | Lost — Microprocessors
] Th
F | 8| Firewire ,_Flre_l qnd millions of
| wall lines of code
2 Theft
Electronics SE Condit = >
3
3 Gate
= Way
£
22
£8 .
g B Engine
£ Management
Body =1
Electronics | @ u
25| ¥
25 (L8
cd |38 Steer by
-5 Wire
'™
FlexRay
Chess/ISIS/MSI 6

Automotive Supply Chain:
Tier 1 Subsystem Providers

Automotive Supply Chain:
Tier 2 Platform & IP Providers

Application Platform layer
(010% of total SW)

gi

(cation Customer
lbraies _ Libraries ccp |
iBl5ol:
i §'_coox | Application KWP 2000
H 8“3’ Ell Specific Transport
SW Platform layer Eeg Software
(> 60% of total SW) 2D

Application Programming Interfface OSEK

1/0 drivers & handlers
i—-‘(> 20 configurable modules

| pControllers Library

HW layer H Nec7sk | HC08 |‘ HC12 H H8s26 | mBoo |[sT10 |

57

LESTOZ TG Il E=Ni{o]i i Ml RTOS and communication layer
=“Hardware” platform: |Hardware and 10 drivers

Chess/ISIS/MSI 8

Complexity, Quality, Time-to-Market:
TODAY %7

INSTRUMENT TELEMATIC
CLUSTER UNIT

PWT UNIT BODY GATEWAY

=N

——— 2
-‘ m e
MEMORY 256 KB 128 KB 184 KB 8 MB
LINES OF CODE 50.000 30.000 45.000 300.000

PRODUCTIVITY 6 LINES/DAY 10 LINES/DAY | 6 LINES/DAY 10 LINES/DAY*

RESIDUAL DEFECT
RATE @ END OF DEV 3000 PPM 2500 PPM 2000PPM 1000 PPM

CHANGING RATE 3 YEARS 2 YEARS 1YEAR <1YEAR

DEV. EFFORT 40 MAN-YEAR 12 MAN-YEAR | 30 MAN-YEAR | 200 MAN-YEAR

VALIDATION TIME 5 MONTHS 1 MONTH 2 MONTHS 2 MONTHS
TIME TO MARKET 24 MONTHS 18 MONTHS 12 MONTHS <12 MONTHS
® B chessissmsi o

Embedded Software Design: Our Take \%

- Embedded Software Design must not be seen
as a problem in isolation, it is an, albeit
essential, aspect of EMBEDDED SYSTEM
DESIGN

* Our vision is to change the way in which ESW
is developed today by linking it:
- Upwards in the abstraction layers to system
functionality

- Downwards in the programmable platforms that
support it thus providing the means fo verify whether
the constraints posed on Embedded Systems are met.

Chess/ISIS/MSI 10

Outline

%]

* Automotive Applications

- Distributed System Design Methodology

and Flow
* Platform-based Design
+ UAV Control Example
* Metropolis

Chess/ISIS/MSI 11

Virtual Integration is key for
System Design

Distributed

Fctq

S%ec and Validation

Sim.

ECU SW Scheduling Adoption

Functional Network Definition and
Validation (Timed and un-Timed)

tomorrow

S ELATL Chess/ISIS/MSI 12

DeSign Flow | ReqUirement|Specification I
_ Algorithm Specifications

Vo |
A 4 #
—>| Algorithm Analysis Algorithm Design I Eé‘:;?hnm::{:;t

i p Virtual Protofyping
> Bh:(t)lg;:ic:]rgl | Architectural Modeling Id—
¢ % Architecture
Authoring
h 4
»{ Mapping I
Distributed
Architecture Analysis Y v
ECU Scheduling Synthesis
Analysis Export
Algorithm
Performance

Performance Simulation

Compile/Link

— =2
ILoad g Chess/ISIS/MSI 13

Focus on Safety-Critical Real Time

* Most challenging problem

* Needs tight integration between
algorithms and implementation

- Constraints include timing and fault
tolerance

 Fault tolerance can be addressed at all
levels of abstraction

Chess/ISIS/MSI 14

Safety Critical Issues: Fault Analysis \%

on
ller (CC)

er
BD

< >

[rasky| (fTaska

Chess/ISIS/MSI 15

DRAFTS: Distributed Real-time Applications
Fault Tolerant Scheduling <

* Automatic (off-line) synthesis of fault tolerant
schedules for periodic algorithms on a distributed
architecture

-+ Automatic (off-line) verification that all intended
faults are covered

Long -term goals:

- Design Methodology for Safety Critical
Distributed Systems

* Manage the desigh complexity of modern Drive-
By-Wire applications

C. Pinello, UCB, T. Demmeler and J. Ehret, BMW

Chess/ISIS/MSI 16

DRAFTS Strategy %

« Identify critical functionality and possible
faults

* Replicate critical functionality to withstand
faults

- Exploit architecture redundancy to speed-
up execution (in absence of faults)

- Functional Verification that all intended
faults are covered

Chess/ISIS/MSI 17

o S
Outline %

- Automotive Applications

- Distributed System Design Methodology
and Flow

* Platform-based Design
- UAV Control Example
* Metropolis

Chess/ISIS/MSI 18

ASV Triangles

Application Space

Application Instance

Platform
Mapping
.......................... System
Platform (HW and SW)
Platform
Design-Space
Export

_ C—e
Platform Instance
Architectural Space

Chess/ISIS/MSI 19

Platforms: Evolution

In general, a platform is an abstraction layer that
covers a number of possible refinements into a
lower level. The platform representation is a
library of components including interconnects
from which the lower level refinement can choose.

Platform

Mapping Tools

-‘—__ < ‘;*,’" Platform
® - .

Chess/ISIS/MSI 20

Principles of Platform methodology:
Meet-in-the-Middle K

- Top-Down:
- Define a set of abstraction layers

- From specifications at a given level, select a
solution (controls, components) in terms of
components (Platforms) of the following layer
and propagate constraints

* Bottom-Up:

- Platform components (e.g., micro-controller,
RTOS, communication primitives) at a given level
are abstracted to a higher level by their
functionality and a set of parameters that help
guiding the solution selection process. The
selection process is equivalent to a covering
problem if a common semantic domain is used.

Chess/ISIS/MSI 21

Outline \%

* Automotive Applications

- Distributed System Design Methodology
and Flow

* Platform-based Design
- UAV Control Example
* Metropolis

Chess/ISIS/MSI 22

Platform-Based Design of Unmanned %
Aerial Vehicles (source: J. Liebman)

Platform- Synchronous Synchronous
Based Design UAV System Embedded Platform Based
Control UAV Design

Chess/ISIS/MSI 23

UAV System: sensor Overview %I

Goal: basic autonomous flight
R-50 Hovering * Need: UAV with allowable payload

+ Need: combination of GPS and
Inertial Navigation System (INS)

GPS (senses using triangulation)
* Outputs accurate position data
* Available at /ow rate & has
Jamming
INS (senses using accelerometer and
rotation sensor)

+ Outputs estimated position with
unbounded drift over time

* Available at Aigh rate

Fusion of GPS & INS provides needed
high rate and accuracy

PS An‘renn

Chess/ISIS/MSI 24

VAV Sysfem: Sensor Configurations

Sensors may differ in:

Data formats, initialization schemes (usually
requiring some bit level coding), rates, accuracies,
data communication schemes, and even data types

Differing Communication schemes requires the most
custom written code per sensor

|Software Request|

Pull Configuration

Software

EZ S 7 —

ai] [ws]

Push Configuration

Shared
memory

Chess/ISIS/MSI 25

Platform Based Design for UAVs

+ Goal

- Abstract details of
sensors, actuators,
and vehicle
hardware from
control applications

* How?
- Synchronous
Embedded Programming
Language (i.e. Giotto)
Platform

Control Applications
(Matlab)

Synchronous

Application Space

Architectural
Space

Sensors: INS, GPS

Max

ctuators: Servo Interface
Vehicles: Yamaha R-50/R-

Chess/ISIS/MSI 26

Platform Based Design for UAVs

Device Platform
- Isolates details of
sensor/actuators from
embeddgd conTrf)I programs Control Applications
- Communicates witheach N~ (Matlab)————___

sensor/actuator according to
its own data format, context,

Application Space /Umgytlage Platform
Device
Platform

and timing requirements
Virtual Avionics
Sensors: INS, GPS irtual Avionic

- Presents an API to embedded
control programs for accessing
Plat
ctuators: Servo Interface Suiein
Vehicles: Yamaha R-50/R-

sensors/actuators
Max

Language Platform

- Provides an environment in
which synchronous control
programs can be scheduled and
run

- Assumes the use of generic
data formats for
sensors/actuators made
possible by the Device
Platform

Architectural
Space

Chess/ISIS/MSI 27

Outline

- Automotive Applications

- Distributed System Design Methodology
and Flow

* Platform-based Design
- UAV Control Example
* Metropolis

Chess/ISIS/MSI 28

Metropolis Framework

Application-specific methodologies

Multi-media, wireless communication, mechanical controls, processors

Meta-model Library \ % Meta-model Library
* Models of Mt * Architecture
computation * Metropolis meta-model platforms

- language

- modeling mechanisms
* Meta-model compiler

Tools

| simuator | [@ss || P16 || sTARs | | sPIN

Chess/ISIS/MSI 29

Met lis Project: nain participants
etropolis Projec "ﬂetro olisp p *

UC Berkeley (USA): methodologies, modeling,
Cadence Berkeley Labs (USA): methodologies, modeling,

Politecnico di Torino (Italy): modeling,
Universitat Politecnica de Catalunya (Spain): modeling,

Philips Research (Netherlands): methodologies (multi-media)
Nokia (USA, Finland): methodologies (wireless communication)
BWRC (USA): methodologies (wireless communication)

BMW (USA): methodologies (fault-tolerant automotive controls)
Intel (USA): methodologies (microprocessors)
STMicroelectronics (France, Italy): methodologies (wireless
platforms)

Cypress (USA): methodologies (network processors, pSOC, all
projects)

Chess/ISIS/MSI 30

Metropolis meta-model

Concurrent specification with a formal execution semantics:

« Computation : f:X—- Z /

"™ Key difference with respect to
-comm: UML, SystemC, ...!!

- medium : defines states and methods

» Coordination : constraints over concurrent actions
- quantity : annotation of each event (time, energy, memory, ...)
- logic : relates events and quantities, defines axioms on quantities

- quantity-manager : algorithm to realize annotation subject to
relational constraints

Chess/ISIS/MSI 31

Metropolis Meta-Model

Must describe objects at different levels of abstraction
- Do not commit to the semantics of any particular model of computation
Define a set of "building blocks"

- specifications with many useful MoCs can be described using the building
blocks

- Processes, communication media and schedulers separate computation,
communication and coordination

> P1 B}— —Ip P2 ®

| . |
P1.pZ.write() O P2.pX.read()

Chess/ISIS/MSI 32

Supporting Theory %

Provide a semantic foundations for integrating different
models of computation

- Independent of the design language

- Not just specific o the Metropolis meta-model
Maximize flexibility for using different levels of
abstraction

- For different parts of the design

- At different stages of the design process

- For different kinds of analysis

Support many forms of abstraction
- Model of computation (model of time, synchronization, etc.)
- Scoping
- Structure (hierarchy)

Chess/ISIS/MSI 33

Concluding Remarks %

* Applications are critical to drive research
and to test quality of results

- Safety-critical Real Time emphasis

- Rigorous methodology for distributed
systems

* General framework to express designs at
all levels of hierarchy and o support
integration of foreign tools and designs

Chess/ISIS/MSI 34

Embedded Software: Today \%'

Chess/ISIS/MSI 35

Embedded Software: Future? \%

Chess/ISIS/MSI 36

