
Execution Model

Software Synthesis

Future Work

Example: Peak Finding
TaskInternal

state

TinyOS Component

accepts signals

uses handles

Commands Events

- Generate from Ptolemy domain
	(compare to CI).
- Blocking write: retry when queue is
	full.
- Priority scheduling algorithm with
	queue insertions.
- Run-time reconfigurability of actors.
- Heterarchy: distributed multi-tasking.

nesC / TinyOS Architecture

Task
Queue

Run Task

Post Task

Guarded Variable

Synchronous ReadAsynchronous Write
TinyGUYS

actor A

StdControl TinyOS
Component

synchronous
communication

__ outportA1

actor B

asynchronous
communication

inportB1

Scheduler

actor Clock actor Sensing

actor BLESS_send

actor BLESS_forward

global_nodedata;
global_parent_id;

galsC A Language for Event-Driven

Embedded Systems

After the programmer specifies the
actors comprising the application
and the connections between actor
ports, the galsC compiler generates
code for the scheduling of and
communication between actors.

The galsC compiler also generates
access functions for TinyGUYS,
access calls, and buffers for the
data.

Event
Queue

TinyOS
Component

TinyOS
Component

Scheduler

StdControl

clock logic

POT

CLOCK

get sensor data send local data

GENERIC_COMM

send BLESS mesg

actor BLESS_receive

GENERIC_COMM

routing table GENERIC_COMM

actor Receiving

GENERIC_COMM

receive packets update local data

update routing tablePHOTO

Supported by an Intel Open Collaborative Research Fellowship, Palo Alto Research Center, and UC Berkeley CHESS (Center for Hybrid and Embedded Software Systems).

StdControl StdControl

Guarded Variable

Synchronous ReadAsynchronous Write
TinyGUYS

actor A

StdControl TinyOS
Component

synchronous
communication

__ outportA1

actor B

asynchronous
communication

inportB1

Scheduler

Event
Queue

TinyOS
Component

TinyOS
Component

application SenseToLeds {
 parameter {
 uint16_t sensorData;
 } implementation {
 actor Sense, Display;

 sensorData = Sense.sensorData;
 sensorData = Display.displayData;

 Display.messageCount =[64]=>
 Sense.messageCount;

 appstart {
 // No initial tokens.
 }
 }
}

actor Display {
 port {
 out displayComplete;
 } parameter {
 uint16_t displayData;
 } implementation {
 components TimerC, IntToLeds, Display;

 Display.Timer -> TimerC.Timer[unique("Timer")];
 Display.TimerControl -> TimerC;

 (Display.display, displayData) -> IntToLeds.IntOutput.output;
 IntToLeds.IntOutput.outputComplete -> displayComplete;

 actorControl {
 Display.StdControl;
 IntToLeds.StdControl;
 }
 }
}

actor Sense {
 port {
 in messageCount;
 } parameter {
 uint16_t sensorData;
 } implementation {
 components SenseToInt, TimerC, Photo;

 SenseToInt.Timer ->
 TimerC.Timer[unique("Timer")];
 SenseToInt.TimerControl -> TimerC;
 SenseToInt.ADC -> Photo;
 SenseToInt.ADCControl -> Photo;
 SenseToInt.IntOutput.output -> sensorData;
 messageCount ->
 SenseToInt.IntOutput.outputComplete;

 actorControl {
 SenseToInt.StdControl;
 }
 }
}

TimerC Display IntToLeds

TimerC Photo

actor Sense

StdControl
SenseToInt

inport

StdControl

actor Display

synchronous
communication

outport

Guarded Variable

Synchronous ReadAsynchronous Write

TinyGUYS

Scheduler

Event
Queue

asynchronous
communication

- Generate from Ptolemy domain
 (compare to CI).
- Blocking write: retry when queue is full.
- Priority scheduling algorithm with
	queue insertions.
- Determine queue sizes automatically.
- Run-time reconfigurability of actors.
- Heterarchy: distributed multi-tasking.

sensorData
sensorData

TinyOS components

Elaine Cheong
University of California, Berkeley

Jie Liu
Palo Alto Research Center

The "locally
synchronous" aspect of
TinyGALS is realized by
method calls between
components. The
"globally asynchronous"
aspect is realized by
message passing
between actors. A
scheduler activates the
actors to process the
messages.

Motivation
Ad-hoc sensor networks are flexible
and easy to deploy...

...but their ad-hoc, reactive nature
makes them difficult to program.

galsC extends nesC (the language
used to specify TinyOS programs) to
provide a GALS programming model
that separates the rates of control of
the system  the reactive part and
the computational part  via
asynchrony. galsC programs have
minimal overhead, are easy to write
and allow reuse of software
components.

Programming Model
Our programming model,
TinyGALS, is based on the
GALS (Globally
Asynchronous, Locally
Synchronous) model of
computation.

We also include
TinyGUYS as an
optimization for protected,
quick access to global
data.

TinyOS is an event-driven operating
system for networked sensors. Its flat
hierarchy makes it difficult to predict
the flow of control between
synchronous and asynchronous parts
of the application.

