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- Generate from Ptolemy domain
	(compare to CI).
- Blocking write: retry when queue is 
	full.
- Priority scheduling algorithm with 
	queue insertions.
- Run-time reconfigurability of actors.
- Heterarchy: distributed multi-tasking.
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galsC A Language for Event-Driven

Embedded Systems

After the programmer specifies the 
actors comprising the application 
and the connections between actor 
ports, the galsC compiler generates 
code for the scheduling of and 
communication between actors.

The galsC compiler also generates 
access functions for TinyGUYS, 
access calls, and buffers for the 
data.
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application SenseToLeds {
  parameter {
    uint16_t sensorData;
  } implementation {
    actor Sense, Display;
        
    sensorData = Sense.sensorData;
    sensorData = Display.displayData;

    Display.messageCount =[64]=> 
      Sense.messageCount;

    appstart {
      // No initial tokens.
    }
  }
}

actor Display {
  port {
    out displayComplete;
  } parameter {
    uint16_t displayData;
  } implementation {
    components TimerC, IntToLeds, Display;

    Display.Timer -> TimerC.Timer[unique("Timer")];
    Display.TimerControl -> TimerC;

    (Display.display, displayData) -> IntToLeds.IntOutput.output;
    IntToLeds.IntOutput.outputComplete -> displayComplete;
        
    actorControl {
      Display.StdControl;
      IntToLeds.StdControl;
    }
  }
}

actor Sense {
  port {
    in messageCount;
  } parameter {
    uint16_t sensorData;
  } implementation {
    components SenseToInt, TimerC, Photo;

    SenseToInt.Timer -> 
      TimerC.Timer[unique("Timer")];
    SenseToInt.TimerControl -> TimerC;
    SenseToInt.ADC -> Photo;
    SenseToInt.ADCControl -> Photo;
    SenseToInt.IntOutput.output -> sensorData;
    messageCount ->
      SenseToInt.IntOutput.outputComplete;
        
    actorControl {
      SenseToInt.StdControl;
    }
  }
}
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- Generate from Ptolemy domain
    (compare to CI).
- Blocking write: retry when queue is full.
- Priority scheduling algorithm with 
	queue insertions.
- Determine queue sizes automatically.
- Run-time reconfigurability of actors.
- Heterarchy: distributed multi-tasking.
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The "locally 
synchronous" aspect of 
TinyGALS is realized by 
method calls between 
components. The 
"globally asynchronous" 
aspect is realized by 
message passing 
between actors. A 
scheduler activates the 
actors to process the 
messages.

Motivation
Ad-hoc sensor networks are flexible 
and easy to deploy...

...but their ad-hoc, reactive nature 
makes them difficult to program.

galsC extends nesC (the language 
used to specify TinyOS programs) to 
provide a GALS programming model 
that separates the rates of control of 
the system  the reactive part and 
the computational part  via 
asynchrony. galsC programs have 
minimal overhead, are easy to write 
and allow reuse of software 
components.

Programming Model
Our programming model, 
TinyGALS, is based on the 
GALS (Globally 
Asynchronous, Locally 
Synchronous) model of 
computation.

We also include 
TinyGUYS as an 
optimization for protected, 
quick access to global 
data.

TinyOS is an event-driven operating 
system for networked sensors.  Its flat 
hierarchy makes it difficult to predict 
the flow of control between 
synchronous and asynchronous parts 
of the application.


