Embedded Systems

galsC:

A Language for Event-Driven

Elaine Cheong

University of California, Berkeley

Jie Liu
Palo Alto Research Center

Motivation

Ad-hoc sensor networks are flexible

and easy to deploy...

...but their ad-hoc, reactive nature
makes them difficult to program.

TinyOS is an event-driven operating
system for networked sensors. Its flat
hierarchy makes it difficult to predict
the flow of control between
synchronous and asynchronous parts
of the application.

nesC / TinyOS Architecture

Yy ¥Y¥-
StdControl | Timer _ — [

- — conf igur TimerC
LT I
L A A Jit

Jurakticn
provides
interface EtdControl;
StdContrl | Timar interface Ti
Timeri

1n Timer;
J
1

|
Clock implementation |
components TimerM, HWClock;
EtdControl = TimerM.5tdControl;
Timer = TimerM.Timer;
Clock

HW Clock TimerM.Clk -= HWClock.Clock;
1

Timers

galsC extends nesC (the language
used to specity TinyOS programs) to
provide a GALS programming model
that separates the rates of control of
the system — the reactive part and
the computational part— via
asynchrony. galsC programs have
minimal overhead, are easy to write
and allow reuse of software
components.

StdControl = POT

Execution Model

The "locally
synchronous" aspect of
TinyGALS is realized by
method calls between
componentsgThe

Programming Model

Our programming model,
TinyGALS, is based on the
GALS (Globally
Asynchronous, Locally
Synchronous) model of

actor Sense {
port {
1n messagecCount;
} parameter {
uintl6_t sensorData;
} implementation {
components SenseToInt, TimerC, Photo;

application SenseToLeds {
parameter {
uintl6e_t sensorData;

} implementation { SenseToInt.Timer ->

Computation, actor Sense, Display; ”globally asynchronous" TimerC.Timer[unique("Timer")];
. . SenseToInt.Timercontrol -> TimercC;
i sensorData = Sense.sensorbData; aSpeCt 1S reahzed by SenseToInt.ADC -> Photo;

We also mClude sensorData = Display.displaybData; . SenseToInt.ADCControl -> Photo;

. message passing SenseToInt.IntOutput.output -> sensorData;
TIHYGUYS as dan Display.messageCount =[64]=> b t t A messageCount ->
0 timization fOI' rotected Sense.messagecount; etween actors. SenseToInt.IntOutput.outputComplete;

P! p ’ appstart { scheduler activates the )
qllle access 1o gIObal // No initial tokens. actors to process the SenseToInt.StdControl;
data. } }

} messages. }

Software Syﬁthesis

After the programmer specifies the
actors comprising the application
and the connections between actor
ports, the galsC compiler generates
code for the scheduling of and
communication between actors.

Guarded Variable

Asynchronous Write Synchronous Read

—)

- sensorData

s sensorData

actor Display

asynchronous
outport communication

- IntToLeds |—»] > T >

synchronous
communication

TinyOS components

The galsC compiler also generates
access functions for TinyGUYS,
access calls, and buffers for the

StdControl
data.

Example: Peak Finding

actor Clock actor Sensing O actor Receiving O

Future Work

- Generate from Ptolemy domain
(compare to CI).

- Blocking write: retry when queue is full.

- Priority scheduling algorithm with

gueue insertions.

g e {GenERc_comm) - Determine queue sizes automatically.

| " - Run-time reconfigurability of actors.

- Heterarchy: distributed multi-tasking.

[receive packets update local data]

>"[get sensor dataHsend local data]
CLOCK P} clock logic T l T 1
StdControl_ PHOTO I—»[GENERIC_COMM] StdControl - generic_comm| Ll update routing table]
global_nodedata;
global_parent_id;

actor BLESS_forward

actor BLESS send O

»T_>[send BLESS mesg]_jk

actor BLESS receive

[GENERIC_COMM]

Supported by an Intel Open Collaborative Research Fellowship, Palo Alto Research Center, and UC Berkeley CHESS (Center for Hybrid and Embedded Software Systems).



