
1

UC Berkeley, EECS

Congestion Control and 
Fairness for Many-to-One 
Routing in Sensor Networks

Cheng Tien Ee

UC Berkeley, EECSct-ee@eecs

Presentation Outline

Background
Problems
Congestion control
Fairness
Results
Conclusion



2

UC Berkeley, EECSct-ee@eecs

Background
Sensor motes gather data and send to central mote (base station)
Motes too far from base station requires intermediate motes to relay, 
or route, data
Routing structure formed is a tree, rooted at the base station

Base station
sensor mote

UC Berkeley, EECSct-ee@eecs

Problems
motes closer to the base station has to transmit packets generated 
locally as well as those generated by downstream motes
these motes likely to become bottlenecks in the system
results in

more packets originating further away being dropped (unfairness)
loss of packets due to queue overflow and interference during 
transmission (congestion)

unfairness may result in network not retrieving sufficient data from 
faraway motes to meet application requirements
congestion wastes scarce energy resources



3

UC Berkeley, EECSct-ee@eecs

Possible Solution
1. determine maximum application data generation rate
2. implement hop-by-hop Automatic Repeat Request (ARQ)

why does this work?
since motes generate data at a rate network can handle, congestion 
(queue overflow) should not occur
ARQ ensures all packets ultimately reach the base station

BUT
difficult to obtain maximum rate for every network configuration
underestimation of generation rate reduces effective bandwidth
what about transient congestion, eg. big metal truck goes by causing 
reflection etc. and thus interference
or temporary events that cause motes to generate more data than 
usual

UC Berkeley, EECSct-ee@eecs

Congestion Control
we want the network to adapt itself
first, distinguish between 2 different rates:

data generation rate: rate at which data is 
passed from application
transmission rate: rate at which packets, 
both locally produced and from downstream 
motes, are transmitted upstream

next, transmission rate of parent mote 
should ideally be greater than or equal to 
data generation rate of all motes 
downstream

transmission rate 
≥ 4 pkts/sec

each mote’s
data generation rate
= 1 pkt/sec

application

transport

network

datalink

physical

data 
generation 

rate

transmission
rate



4

UC Berkeley, EECSct-ee@eecs

basic idea: each mote
individually determines local maximum transmission rate
divide transmission rate by total number of downstream motes to give 
data generation rate
disseminate min(own_rate, parent_rate) downstream

why do this at each mote, why not just the base station?
because each mote’s environment is different, may not be able to
support parent mote’s rate due to, for instance, interference

my transmission rate
is 40 pkts/sec

each mote 
should send ≤ 10 

pkts/sec

UC Berkeley, EECSct-ee@eecs

so we need to:
determine effective transmission rate
determine number of downstream motes
disseminate data generation rate downstream

possibly several ways to determine effective transmission rate
MAC layer keeps transmitting until reception has been confirmed, for 
instance via ACK packet
transmission rate is then inverse of total effective time to send packet

no ack, 
timeout

data pkt data pkt no ack, 
timeout

data pkt

time

ack
pkt

total effective time to send packet



5

UC Berkeley, EECSct-ee@eecs

determine number of downstream motes
use data aggregation technique for counting motes (Sam Madden’s
work)
each mote sums children’s count, adds 1 (for itself), then transmits
count to parent

disseminate data generation rate downstream
via control packets, or
piggy-backed on data packets

1

2 1

4

UC Berkeley, EECSct-ee@eecs

Fairness
to be fair ⇒ at base station, same number of packets received from 
each mote
basic idea: within each period of time (or epoch), transmit number of 
packets from each subtree equal to size of that subtree

subtree B
size = 10

subtree C
size = 1000

subtree A
size = 1

within 1 epoch, send 1 from A, 10 
from B, 1000 from C, and 1 from 

myself



6

UC Berkeley, EECSct-ee@eecs

requires:
per child queue (does not depend on size of subtree, so can be small 
and constant)
FIFO queues
subtree size (obtained as before)

proof of correctness (by induction): see paper for more details

A

B

D E

F

C

B’s queue C’s queue

B
E
D
F

CA
A’s queue

UC Berkeley, EECSct-ee@eecs

Results
simulated algorithms

wrote simulator program
models interference
packet-level simulation
uses MACA as MAC protocol

check out results in paper
also implemented on mica2dot motes

MAC protocol: MACA, with modified ACKs
10 motes deployed indoors, within 15 feet of one another
let motes arbitrarily construct routing tree (algorithm is independent of tree 
structure)
compare with round-robin servicing of queues



7

UC Berkeley, EECSct-ee@eecs

BS

1

67

10 9

2 5

4

3 8

BS

1

6

7

10

9

2

5

4

3

8

Routing Topologies

for Epoch-based Proportional Selection (EPS) for round-robin servicing of queues

UC Berkeley, EECSct-ee@eecs



8

UC Berkeley, EECSct-ee@eecs

Conclusion
network adapts itself automatically

impossible to manually configure 1000s of motes
exact, same, simple code runs in each mote

reduces programming, debugging time
very scalable

size of queues can be small, constant
state required increases linearly with number of neighbors

congestion control and fairness can be implemented in transport 
layer, thus can be used with different MAC protocols

little or no modifications to MAC


