Classes and Inheritance in Actor-

Oriented Models ¥y
Y
=

Stephen Neuendorffer h'l“l ;

Edward Lee gLy
ey

UC Berkeley | SV
SLANT
{'iH
"f","-'- 1

Chess Review ‘" ' = i

May 8, 2003 SREE

Ber‘keley CA ot

Introduction ‘%

- Component-based design
- Object-oriented components
- Actor-oriented components

* Most Actor-oriented tools lack the class
mechanisms of Object-oriented languages.
- inheritance
- subclassing

* A preliminary approach to providing class-
like mechanisms in Ptolemy IT

Chess Review, May 8, 2003 2

Component-based Design s

Component Component

Complex systems built primarily through composition.
Encapsulation of intellectual property.
Visual languages and design tools.

Component reuse.

Chess Review, May 8, 2003 3

Object-Oriented Components ‘%5

Provides ports Requires ports
expose , expose
methods that <., Obiect [">methods that
can be invoked this object

on this object might invoke.

This interface specification allows for consistency checking
of compositions.

However, this interface lacks important pieces of
information:

Method Requirements. (Sequencing? Preconditions?)

Concurrency constraints. (Deadlock? Re-entrancy?)

Chess Review, May 8, 2003 4

Actor-Oriented Components

Input ports Output ports
expose flows expose flows
of data that <. Actor - of data that
this actor this actor
consumes. produces.

This interface specification allows for consistency checking
of compositions.

This interface also lacks important pieces of information:
+ How data is transported between ports
- Concurrency constraints between actors

These are largely orthogonal issues for actors

Chess Review, May 8, 2003 5

Example of an Actor-Oriented Framework: %
Simulink

PA =) cruisecontrolonoff/Enabled Subsystem1 *

File Edit Wiew Simulstion Format Tools Help

hed& BEL & »

Enable

Zero-Order Contraller

Hold (simple gain)

IZ] cruisecontrolonoff *

File Edit Wiew Simulation Format Tooks Help

[LRE—3 = =]] | e

a
aaaaaaaaaa
cccccccc

simple Cruise Control System

Ready 100% adeds

Chess Review, May 8, 2003 6

Vo
Hierarchical Abstraction €=
‘Xl
Complex | |
Componen-‘-s CGn container container
encapsulate o
lerarchica
SmClI Ier' component copy
components.
Object-
oriented | | | ||] | |

delegation
pattern

Chess Review, May 8, 2003 7

Class mechanisms ‘%

* Realization:
- Most components in a large system operate in
the same basic fashion.
- Object-oriented classes provide several
important capabilities.
- Central point of design.
- Basis for type checking.
- Static compilation.
- Extension and variation.

» But also present some complications.

- Run-time modifications become difficult.
- Source of inconsistencies.

Chess Review, May 8, 2003 8

Classes and Hierarchy s,
Classes
simplify the
structure of
complex
models. I - — I
Classes extend /
the | | | |
containment
hierarchy with
an inheritance
hierarchy.
The First (?) Actor-Oriented @
Programming Language (1966)

Bert Sutherland with a light pen

Partially constructed actor-oriented
model with a class definition (top) and
instance (below).

Bert Sutherland used the first acknowledged object-oriented framework
(Sketchpad, created by his brother, Ivan Sutherland) to create the first actor-
oriented programming framework.

Key Problems <

Direct manipulation user interface of both
classes and instances.

- Maximize syntactic consistency.

Expressive uses of classes

- subclasses with extension and overriding

- nested classes

Interactive modification of classes

- Classes might be modified at runtime
Distinguishing overridden values from
inherited default values.

Chess Review, May 8, 2003 11

Visual Class Representation ‘%:

SDF Director The convertToString algorithm (with blue halo)
is defined here as a single model that is
instantiated multiple times. This class definition
convertToStringClass is Ioca_al to the modgl and sto.red in the' same

XML file. Modifications to this class will propagate

P E}}}C} + to all instances.

Ramp rijndael convertToString Display
B
| ——{Bc }—[Bo]
\ /

Each block is implicitly an instance of an actor class.

Chess Review, May 8, 2003 12

V i
I Aoy %
™
An Actor Class s
. e 4
SDF Director
port Exprassion PadToTwoChars Accumulator DownSample
toHexString(input ("00" + input) substring(input length(}) I I
H oHexString |n|:|u)H input).substring{inputleng +—p . |

A J

SampleDelay UpSample
Const
i e —pt [—

port2
Every subclass or instance of this actor class contains
at least this structure.
Parameter values of actors in a class give default values
for all instances of the class
Chess Review, May 8, 2003 13

Models with Classes ‘%!

Actor classes Derived
are explicitly objects
implied by

instantiated.

Intuition: Modifications to classes propagate to derived
objects, as long as local changes have not been made.

Chess Review, May 8, 2003 14

A Simple Example

InstanceOfBaseClass

BaseClass |stanceOfBaseClass2

InstanceOfBaseClass3

=

BaseClass

O

InstanceOfBaseClass

O

InstanceOfBaseClass?2

O

InstanceOfBaseClass3

Here the property of BaseClass is modified, which
does not propagate to Instance?2.

This example is simple because there is only one

propagation path.

Chess Review, May 8, 2003 15

A Subclass

@

SequenceToArray

port1

Expression PadToTwoChars

Accumulator

SDF Director

DownSample

toHexString(input) H ("00" + input).substring(inputlength()) +—[>

UpSample

—

SampleDelay
Const
L e b—at [

I

-

N\

4

port2

//

Dotted lines show inherited objects that cannot be
deleted, while allowing syntax-directed editing.

Chess Review, May 8, 2003 16

Models with SubClasses

Actor classes
are explicitly
subclassed.

| class |—|subclassf—]instance]

o
......

Derived
objects
implied by

Changes propagate to subclasses similarly o instances.

Subclasses allow for independent extension, while

instances do not.

Chess Review, May 8, 2003 17

Nested Classes

@

SDF Director

Shox

Shift Row

Mix Column

ArrayToSequence2

Ext

=

ToAmay UpSample

T Qs at =l

SDF Director

Ele]

InstanceOfvul Two

Hpressi

afbichd

ion

4
>

n2

Distributor

port E{

*

I I |

InstanceOfivul Tw$3

spressiond
agh#cid

-

InstanceOMul Thife:

——

—

MiulThreed
S

T asbitcid

Commutator

port2

8, 2003 18

Models with Nested Classes

Nested classes result in multiple propagation paths.

Chess Review, May 8, 2003 19

Approach: prioritize propagation so that localized
changes override global changes.

Summary

» Class mechanisms for modularity can be

integrated with actor-oriented modeling.

* Inherited changes in a syntactically-driven
environment can be tricky:
- Nested Classes

- Still many open questions..
- Consistency given multiple propagations?

- Is "Local Override" property the best one?

Chess Review, May 8, 2003 20

