
1

Chess Review
May 8, 2003
Berkeley, CA

Classes and Inheritance in Actor-
Oriented Models

Stephen Neuendorffer
Edward Lee
UC Berkeley

Chess Review, May 8, 2003 2

Introduction

• Component-based design
– Object-oriented components
– Actor-oriented components

• Most Actor-oriented tools lack the class
mechanisms of Object-oriented languages.
– inheritance
– subclassing

• A preliminary approach to providing class-
like mechanisms in Ptolemy II

2

Chess Review, May 8, 2003 3

Component-based Design

Component Component

Complex systems built primarily through composition.

Encapsulation of intellectual property.

Visual languages and design tools.

Component reuse.

Chess Review, May 8, 2003 4

Object-Oriented Components

Object

Provides ports
expose
methods that
can be invoked
on this object

Requires ports
expose
methods that
this object
might invoke.

This interface specification allows for consistency checking
of compositions.

However, this interface lacks important pieces of
information:

• Method Requirements. (Sequencing? Preconditions?)

• Concurrency constraints. (Deadlock? Re-entrancy?)

3

Chess Review, May 8, 2003 5

Actor-Oriented Components

Actor

Input ports
expose flows
of data that
this actor
consumes.

Output ports
expose flows
of data that
this actor
produces.

This interface specification allows for consistency checking
of compositions.

This interface also lacks important pieces of information:

• How data is transported between ports

• Concurrency constraints between actors

These are largely orthogonal issues for actors

Chess Review, May 8, 2003 6

Example of an Actor-Oriented Framework:
Simulink

basic abstraction
mechanism is
hierarchy.

4

Chess Review, May 8, 2003 7

Hierarchical Abstraction

• Complex
components can
encapsulate
smaller
components.

• Object-
oriented
delegation
pattern

hierarchical
component copy

container container

Chess Review, May 8, 2003 8

Class mechanisms

• Realization:
– Most components in a large system operate in

the same basic fashion.
• Object-oriented classes provide several

important capabilities.
– Central point of design.
– Basis for type checking.
– Static compilation.
– Extension and variation.

• But also present some complications.
– Run-time modifications become difficult.
– Source of inconsistencies.

5

Chess Review, May 8, 2003 9

Classes and Hierarchy

• Classes
simplify the
structure of
complex
models.

• Classes extend
the
containment
hierarchy with
an inheritance
hierarchy.

Chess Review, May 8, 2003 10

The First (?) Actor-Oriented
Programming Language (1966)

MIT Lincoln Labs TX-2 Bert Sutherland with a light pen

Partially constructed actor-oriented
model with a class definition (top) and
instance (below).

Bert Sutherland used the first acknowledged object-oriented framework
(Sketchpad, created by his brother, Ivan Sutherland) to create the first actor-
oriented programming framework.

6

Chess Review, May 8, 2003 11

Key Problems

• Direct manipulation user interface of both
classes and instances.
– Maximize syntactic consistency.

• Expressive uses of classes
– subclasses with extension and overriding
– nested classes

• Interactive modification of classes
– Classes might be modified at runtime

• Distinguishing overridden values from
inherited default values.

Chess Review, May 8, 2003 12

Visual Class Representation

Each block is implicitly an instance of an actor class.

7

Chess Review, May 8, 2003 13

An Actor Class

Every subclass or instance of this actor class contains
at least this structure.
Parameter values of actors in a class give default values
for all instances of the class

Chess Review, May 8, 2003 14

Models with Classes

class

instance

instance

instance

model
Derived
objects
implied by
class

Intuition: Modifications to classes propagate to derived
objects, as long as local changes have not been made.

Actor classes
are explicitly
instantiated.

8

Chess Review, May 8, 2003 15

A Simple Example

Here the property of BaseClass is modified, which
does not propagate to Instance2.

This example is simple because there is only one
propagation path.

Chess Review, May 8, 2003 16

A Subclass

Dotted lines show inherited objects that cannot be
deleted, while allowing syntax-directed editing.

9

Chess Review, May 8, 2003 17

Models with SubClasses

class

instance

subclass

instance

model
Derived
objects
implied by
class

Changes propagate to subclasses similarly to instances.

Subclasses allow for independent extension, while
instances do not.

Actor classes
are explicitly
subclassed. instance

Chess Review, May 8, 2003 18

Nested Classes

10

Chess Review, May 8, 2003 19

Models with Nested Classes

class

instance

class instance

instance

model

Nested classes result in multiple propagation paths.

Approach: prioritize propagation so that localized
changes override global changes.

Chess Review, May 8, 2003 20

Summary

• Class mechanisms for modularity can be
integrated with actor-oriented modeling.

• Inherited changes in a syntactically-driven
environment can be tricky:
– Nested Classes

• Still many open questions..
– Consistency given multiple propagations?
– Is “Local Override” property the best one?

