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Introduction ‘%

- Component-based design
- Object-oriented components
- Actor-oriented components

* Most Actor-oriented tools lack the class
mechanisms of Object-oriented languages.
- inheritance
- subclassing

* A preliminary approach to providing class-
like mechanisms in Ptolemy IT
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Component-based Design s

Component Component

Complex systems built primarily through composition.
Encapsulation of intellectual property.
Visual languages and design tools.

Component reuse.
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Object-Oriented Components ‘%5

Provides ports Requires ports
expose , expose
methods that <., Obiect  [">methods that
can be invoked this object

on this object might invoke.

This interface specification allows for consistency checking
of compositions.

However, this interface lacks important pieces of
information:

Method Requirements. (Sequencing? Preconditions?)

Concurrency constraints. (Deadlock? Re-entrancy?)
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Actor-Oriented Components

Input ports Output ports
expose flows expose flows
of data that <. Actor - of data that
this actor this actor
consumes. produces.

This interface specification allows for consistency checking
of compositions.

This interface also lacks important pieces of information:
+  How data is transported between ports
- Concurrency constraints between actors

These are largely orthogonal issues for actors
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Example of an Actor-Oriented Framework: %
Simulink
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IZ] cruisecontrolonoff *
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[LRE—3 = =] ] | e

a
aaaaaaaaaa
cccccccc

simple Cruise Control System

Ready 100% adeds
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Hierarchical Abstraction €=
‘Xl
Complex | |
Componen-‘-s CGn container container
encapsulate o
lerarchica
SmClI Ier' component copy
components.
Object-
oriented | | | || ] | |

delegation
pattern
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Class mechanisms ‘%

* Realization:
- Most components in a large system operate in
the same basic fashion.
- Object-oriented classes provide several
important capabilities.
- Central point of design.
- Basis for type checking.
- Static compilation.
- Extension and variation.

» But also present some complications.

- Run-time modifications become difficult.
- Source of inconsistencies.
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Classes and Hierarchy s,
Classes
simplify the
structure of
complex
models. I - — I
Classes extend /
the | | | |
containment
hierarchy with
an inheritance
hierarchy.
The First (?) Actor-Oriented @
Programming Language (1966)

Bert Sutherland with a light pen

Partially constructed actor-oriented
model with a class definition (top) and
instance (below).

Bert Sutherland used the first acknowledged object-oriented framework
(Sketchpad, created by his brother, Ivan Sutherland) to create the first actor-
oriented programming framework.




Key Problems <

Direct manipulation user interface of both
classes and instances.

- Maximize syntactic consistency.

Expressive uses of classes

- subclasses with extension and overriding

- nested classes

Interactive modification of classes

- Classes might be modified at runtime
Distinguishing overridden values from
inherited default values.
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Visual Class Representation ‘%:

SDF Director The convertToString algorithm (with blue halo)
is defined here as a single model that is
instantiated multiple times. This class definition
convertToStringClass is Ioca_al to the modgl and sto.red in the' same

XML file. Modifications to this class will propagate

P E}}}C} + to all instances.

Ramp rijndael convertToString Display
B
| ——{Bc }—[Bo ]
\ /

Each block is implicitly an instance of an actor class.
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An Actor Class s
. e 4
SDF Director
port Exprassion PadToTwoChars Accumulator DownSample
toHexString(input ("00" + input) substring(input length(}) I I
H oHexString |n|:|u)H input).substring{inputleng +—p . |

A J

SampleDelay UpSample
Const
i e —pt [ —

port2
Every subclass or instance of this actor class contains
at least this structure.
Parameter values of actors in a class give default values
for all instances of the class
Chess Review, May 8, 2003 13

Models with Classes ‘%!

Actor classes Derived
are explicitly objects
implied by

instantiated.

Intuition: Modifications to classes propagate to derived
objects, as long as local changes have not been made.
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A Simple Example

InstanceOfBaseClass

BaseClass  |stanceOfBaseClass2

InstanceOfBaseClass3

=

BaseClass

O

InstanceOfBaseClass

O

InstanceOfBaseClass?2

O

InstanceOfBaseClass3

Here the property of BaseClass is modified, which
does not propagate to Instance?2.

This example is simple because there is only one

propagation path.
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A Subclass

@

SequenceToArray

port1

Expression PadToTwoChars

Accumulator

SDF Director

DownSample

toHexString(input) H ("00" + input).substring(inputlength()) +—[>

UpSample

—

SampleDelay
Const
L e b—at [

I

-

N\

4

port2

//

Dotted lines show inherited objects that cannot be
deleted, while allowing syntax-directed editing.
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Models with SubClasses

Actor classes
are explicitly
subclassed.

| class |—|subclassf—]instance]

o
......

Derived
objects
implied by

Changes propagate to subclasses similarly o instances.

Subclasses allow for independent extension, while

instances do not.
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Nested Classes

@

SDF Director

Shox

Shift Row
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Models with Nested Classes

Nested classes result in multiple propagation paths.
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Approach: prioritize propagation so that localized
changes override global changes.

Summary

» Class mechanisms for modularity can be

integrated with actor-oriented modeling.

* Inherited changes in a syntactically-driven
environment can be tricky:
- Nested Classes

- Still many open questions..
- Consistency given multiple propagations?

- Is "Local Override" property the best one?
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