-

Advanced Tool Architectures

P

[

;—-.F.k';_:

=
Edited and Presented by [iﬂ
Edward A. Lee, Co-PI ’i.-r_‘,-.gl

ey
UC Berkeley F';_‘L‘

-
. —
-

Chess Review
November 18, 2004 T
Berkeley, CA ""i‘ :

Tool Projects ‘%

Concurrent model-based design
- E machine & S machine (Henzinger) —_—

- Giotto (Henzinger) investigator
- NP-Click (Keutzer) in ch
- Metropolis (Sangiovanni-Vincentelli) In charge

- Ptolemy IT (Lee)
Streambit (Bodik)
Me‘ra modeling
GME (Sztipanovits, Vanderbilt)
- GREAT=Language Engine,C/G,Debugger (Karsai, Vanderbilt)
- MOF-based Metamodeling (Sztipanovits, Vanderbilf)
- DESERT - Design Space Exploration Tool (Karsai, Vanderbilf)
- UDM - Universal Data Model (Karsai, Vanderbilt)
Verification
- Blast (Henzinger)
- CCured (Necula)
- Chic (Henzinger)
- SMoLES (Karsai, Vanderbilt)

Chess Review, November 18, 2004 2

Tool Building vs. Architecture Principles Semns

* Bottom up: We build tools and applications
to make principles concrete and to develop
deeper understanding of methods and

=
.
problems. u

+ Top down: We identify guiding principles
such as meta modeling, abstract syntax,
and abstract semantics.

Chess Review, November 18, 2004 3

Outline %
Separable Tool Architecture Issues

 Abstract Syntax

- Concrete Syntax

« Syntax-Based Static Analysis: Type Systems
- Abstract Semantics

- Concrete Semantics

+ Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 4

Example: HyVisual

In HyVisual, models of sosForce)» Sickiness
hybr.ld sys-'-ems are Separate.p1 = P1; Separate.p2 = P1; Separate.v1 = V1; Separate.v2 = V1
hierarchical compositions
of components that

represent state machines

and dynamical sysfems. CTEmbedded

This model gives two separate ordinary differential
equations, one for each point mass attached to a spring.
The ZeroCrossingDetector actor detects the collision

of the point masses and emits the "touched" event.

What is the underlying
structure?

V1 integrator P1 integrator

Expression

P1

e

= & V2 integrator Ve P2 integrator
Xpression: - r. -
It !

Y |—i 20'20-2.0'P2 g], *
W1 and V2 are velocities,

ZeroCrossingDetector and P1 and P2 are positions
of the two masses.

AddSubtract
touched

An Abstract Syntax

connection

Entity Entity

Relation
Port
Attributes

Attributes

* Entities

* Attributes on entities (parameters)
* Ports in entities

* Links between ports

» Width on links (channels)

* Hierarchy

Entity

Attributes

Abstract syntaxes similar to this can be used to describe
» concurrent objects

* interconnected actors

« state machines

Chess Review, November 18, 2004 6

Meta-Modeling of an Abstract Syntax (=
. S 4
[o.*
Co::ggttitlon USing GME (ff'om
s feld Vanderbilt) an
outputs: field abstract SynTGX is
computation : field ComponentEntity

<<Model>>

0.

specified as an object
model (in UML) with
constraints (in OCL),

| <ctiome» | | o> or alternatively, with
x - - MOF.
0.*
- Such a spec can be
<<Comeion> used to synthesize
l visual editors and
InputPort | | QutputPort 0.*
putPort || Sutbutbort models transformers.
01 01
Meta-model of Ptolemy
i IT abstract syntax,
DirectLink CompositeEntity constructed in GME by
<<Connection>> <<Model>> v H. Y. Zheng.
* [} —[Chess Review, November 18, 2004 7
Outline

Separable Tool Architecture Issues

@

Abstract Syntax
Concrete Syntax

Syntax-Based Static Analysis: Type Systems
Abstract Semantics
Concrete Semantics
Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 8

Concrete Syntax

Example concrete syntax in XML:

<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">
</port>
</entity>
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>

XML and XSLT have made concrete syntax even less
important than it used to be. Going a step further,
GReAT (from Vanderbilt) works with GME to
synthesize model fransformers from meta models.

Chess Review, November 18, 2004 9

Outline %
Separable Tool Architecture Issues

Abstract Syntax

Concrete Syntax

Syntax-Based Static Analysis: Type Systems
Abstract Semantics

- Concrete Semantics

+ Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 10

Actor-Oriented Type Systems
Interfaces: Ports and Parameters

parameters:
a, = value
a, = value
input ports
output port
P
P3
P>
input/output ot
port
subtype
Ps
V)
P

While types in object-
oriented languages are
governed by the methods
and fields of objects, in
actor-oriented languages
they are governed by the
ports and parameters.

Subtyping needs to be
rethought. We have
developed an actor-oriented
type system that depends
only an abstract syntax.

Chess Review, November 18, 2004 11

Actor-Oriented Type Systems
Classes, Subclasses, and Inheritance

SDF Director

ignore:
sy instance of this class, right click onThe

Io‘céif“ ¥
d sfiniﬁaQ

This is an inStance

InstanceOfMNoisySinewave
of the above clas’
definition. Look

inside to see the
subclass definition.

7

This is an instance
ofthe base class
for the above class

SequencePlotter

g

This model illustrates the mechanisms in Ptolemy Il
for defining classes and subclasses with inheritance.

NaisySinewave 1his actor is a class definition, indicated by the blue halo. Itis
i nd senes as a declaration. To create an

"Create Instance” (or type Ctrl-N). To see the class definition, look T

| %] 4
Claan and Noisy Sime Wave aw

execution:}

definition [SOF Direcior
i i I £ Generate 8 sine wave.
l mnrotall 4@»«
This type system | Breasrr s
builds on abstract | E¥ameon
syntax (hot
Ramp

semantics) so it
applies very broadly
to actor-oriented
models, including
hybrid systems.

in

(FELOUPEY - # noiseSundardDeaton: 0.1
Génetala o siia Wi

— The objects highlighled in pink are

Q\) Froquancy: 440.0 dafined in the superciass. Such ohjscts

e eannat be ramaoved in this darivad ciass.

L35 bhase 00 Their paramaters can be changed, howerver

This implies thal they can be moved and
can ba assigned custom icons. To examing
the superclass, right cdick on the
background and select "Open Base Class™

TrigFunction

»ss Review, November 18, 2004 12

output

Outline AR
Separable Tool Architecture Issues)

Abstract Syntax

Concrete Syntax

Syntax-Based Static Analysis: Type Systems
Abstract Semantics

Concrete Semantics

Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 13

Where We Are Headed ‘%!

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)

Chess Review, November 18, 2004 14

Tagged Signal Abstract Semantics €55

Tagged Signal Abstract Semantics:

signal is a member of a set of signals,
where the set depends on the model of
computation and resolved data type of
the connection.

Pc S, xS, <> /

s, €8, P s, €8,

]

a “process” is a subset of the
signals with which it interacts.

port may be an input or an output,
or neither or both. It is irrelevant.

This outlines a general abstract semantics that gets
specialized. When it becomes concrete you have a
mode/ of computation.

Chess Review, November 18, 2004 15

A Finer Abstraction Semantics ‘%5

Functional Abstract Semantics:

a process is now a function from
input signals to output signals.

F:§5 -8,

\ FunctionalProcess
s, €85, F s, €8,

]

port is now either an
input or an output (or both).

This outlines an abstract semantics for deterministic
producer/consumer actors.

Chess Review, November 18, 2004 16

Uses for Such an Abstract Semantics

* Give structure to the sets of signals

- e.g. Use the Cantor metric to get a metric space.
* Give structure to the functional processes

- e.g. Contraction maps on the Cantor metric space.
» Develop static analysis techniques

- e.g. Conditions under which a hybrid systems is
provably non-Zeno.
ELEE

Position

=

i ghl meners
o e s =

6 IS I}l IIS J-O J-S Jlﬂ
fime (sec) Chess Review, November 18, 2004 17

Another Finer Abstract Semantics ‘%

Process Networks Abstract Semantics:

sets of signals are monoids, which allows
us to incrementally construct them. E.g.

« stream

« event sequence

* rendezvous points ...

A process is a sequence of
operations on its signals where the
operations are the associative
operation of a monoid

Pc§ xS, <
ThreadProcess /
s, €8, P g s, €8,
process is not necessarily functional port is either an
(can be nondeterministic). input or an output or both.

This outlines an abstract semantics for actors constructed
as processes that incrementally read and write port data.

Chess Review, November 18, 2004 18

Concrete Semantics that Conform with the

Process Networks Abstract Semantics

+ Communicating Sequential Processes (CSP) [Hoare]

* Calculus of Concurrent Systems (CCS) [Milner]

+ Kahn Process Networks (KPN) [Kahn]

+ Nondeterministic extensions of KPN [Various]

* Actors [Hewitt]

Some Implementations:
+ Occam, Lucid, and Ada languages
+ Ptolemy Classic and Ptolemy IT (PN and CSP domains)
- System C

* Meftropolis

Chess Review, November 18, 2004 19

Process Network Abstract Semantics in

Ptolemy II

@

pya |

actor contains ports |

«Interface»
Actor

>

10Port

ptolemy.actor.Director:

+getDirector() : Directo,

director creates
receivers

+get(channelindex : int) : Token
+hasRoom(channelindex : int) : boolean
+hasToken(channelindex : int) : boolean
+isInput() : boolean

+isOutput() : boolean
+send(channellndex : int, token : Token)

«Interface»

creates

Receiver

+get() . Token

+getContainer() . IOP.
+hasRoom() . boolean
+hasToken() : boolean
+pul(t: Token)
+setContainer(poxt . IOPo)

| port contains receivers |

receiver implements communication |

monoid operation to

incrementally construct signals

Chess Review, November 18, 2004 20

Several Concrete Semantics
Refine this Abstract Semantics

I0Port
0.1 0.n
«Interface»
Receiver NoTokenException
thrlzws
throws

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

L f communicating sequential processes 1

«/nterfafe»
Mailbox /_ i Qi DEReceiver SDFReceiver
/ /7I - Hauorks
i — Kahn process-network
. ; 1.1
- 1.1
FIFOQueue ArrayFIFOQueue
CTI i CSF

Chess Review, November 18, 2004 21

Metropolis

Process Network Abstract Semantics in

Doug Densmore

Model p1 Y Medium I
5 e CRR
Process
process P{ interface reader extends Port{ | interface writer extends Port{
port reader X; update int read(); update void write(int i);
port writer Y; eval int n(); eval int space();
thread(){ } }
while(true){ medium M implements reader, writer{
int storage;
z = f(X.read()); int n, space;
Y.write(z); void write(int z){
m await(space>0; this.writer ; this.writer)
n=1; space=0; storage=z;
}
ord read(){ ...
Thanks to v 0}

Chess Review, November 18, 2004 22

Leveraging Abstract Syntax for Joint
Modeling of Architecture and Application

MyMapNetlist
B(P1, M.write) <=> B(mP1, mP1.writeCpu); E(P1, M.write) <=> E(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1, mP1.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=> E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyFncNetlist MyArchNetlist { T

&

The abstract syntax provides natural
points of the execution (where the
monoid operations are invoked) that
can be synchronized across models.
Here, this is used o model operations
of an application on a candidate
implementation architecture.

Chess Review, November 18, 2004 23

A Finer Abstract Semantics

Firing Abstract Semantics:

a process still a function from

input signals to output signals, signals are monoids (can be
but that function now is defined incrementally constructed) (e.g.
in terms of a firing function. streams, discrete-event signals).
. /
FiringActor
Ff
s, €8, . \ s, €S,

port is still either an
input or an output.

The process function F is the least fixed point of a
functional defined in terms of f.

Chess Review, November 18, 2004 24

Models of Computation that Conform to P
the Firing Abstract Semantics \

- Dataflow models (all variations)
- Discrete-event models
+ Time-driven models (Giotto)

In Ptolemy II, actors written to the firing
abstract semantics can be used with
directors that conform only to the
process network abstract semantics.

Such actors are said to be behaviorally

polymorphic.
Leveraging the Abstract Semantics to %
get "Schedule Carrying Code” (SCC)
Giotto code ‘ ‘ ‘ ‘

= firings that are concurrent
yet atomic

= periodic tasks and drivers
* unit-delay state semantics
* multi-modal

Embedded (E) code j\ ;

= environment interaction
= task release
Scheduling (S) code

* task execution)
* communication schedule

Chess Review, November 18, 2004 26

xGiotto and Metropolis

xGiotto Code
Verification

Code for the
XGiotto functional T Target platform

Simulator Platform
Estimation

xGiotto-to- jm— = —————— jIm— === ————
Metropolis Platform1
Mapping1

description

Platform Selection

Metropolis

Description

l Platform2
)'éGIOttC: MMM functional Mapping2 Metrqpqlis
vV r?c_rm?_ a description Description
SN . Platform3
Mapping3

Metropolis
Description

Schedulability
Results

WCET Estimator |

Chess Review, November 18, 2004 27

Actor Language for the
Firing Abstract Semantics: Cal

Cal is an experimental actor language designed to
provide statically inferable actor properties w.r.t.
the firing abstract semantics. E.g.:

actor Select () S, A, B ==> Output:

action S: [sel], A: [v] ==> [V]
guard sel end

action S: [sel], B: [v] ==> [V]
guard not sel end
end

Inferable firing rules and firing functions:

U, = {<(true),(v),J_> ve Z}, 1, +((true), (v), L) (v)
U, ={((false), L,(v)):v e Z}, £, :{(false), L)) (v)

Thanks to Jorn Janneck, Xilinx

Chess Review, November 18, 2004 28

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

a process still a function from

input signals to output signals, signals are monoids (can be
but that function now is defined incrementally constructed) (e.g.
in terms of two functions. streams, discrete-event signals).
. /
F:5 -8, DN
StatefulActor
s, €5, F.f g s, €S,
S xX—>S
f 1 2 state space port is still either an
g : Sl % z N 2 input or an output.

The function f gives outputs in terms of inputs and the
current state. The function g updates the state.

Chess Review, November 18, 2004 29

Models of Computation that Conform to %
the Stateful Firing Abstract Semantics

Synchronous reactive
Continuous time
Hybrid systems

Stateful firing supports iteration to a fixed point,
which is required for hybrid systems modeling.

In Ptolemy IT, actors written to the stateful firing
abstract semantics can be used with directors that
conform only to the firing abstract semantics or to
the process network abstract semantics.

Such actors are said to be behaviorally polymorphic.

Chess Review, November 18, 2004 30

Leveraging This Abstract Semantics in
HyVisual (based on Ptolemy II)

StickyMasses. TimedPlotter

Masses on Springs

Special Help

Position vs. Time

Position

oo = =

om D oo owm

Time (sec)

Continuous Time (CT) Diractor

This model shows a hybrid system, which mixes continuous-time modeling

with finite state machines. In this example, two point masses on springs
oscillate. However, they may collide, in which case, they stick together,

and oscillate together. The stickiness decays, and they eventually come

apart again. This is an example of a modal model, where there are two modes,
"together” and "separate”. Each mode is modeled by a state in an FSM, and
each state refines to a continuous-time model of the dynamics in that mode.

Sticky Mass madel Plot Positions vs Time

Consider fwo masses on
springs which, when they
collide, will stick
together with a
decaying stickiness until
the force of the springs
pulls them apart again.

Chess Review, November 18, 2004 31

Structure of the Spring-Masses

Model

Sticky Mass model Plot Positions vs Time

S

The sticky masses system has two modes of operation,
“"Separate” and “Together,” corresponding to whether
the point masses are stuck together. The "init" state
has a transition that is used to initialize the "Separate"
model (double click an that transition to see its actions).

abs{Farce] > Stickiness
\/

true
P1=pi, P2=p2

touched_isPresent && (V1-V2) > 0.0
Together.p = P1; Together.v = (V1+V2)2.0; Togetherdickiness = 10.0

Separate pl = P1; Separate.p2 = P1; Separate vl = V1, Separate.v2 = V1

A component in the continuous-time top-level
model is defined by a finite state machine. The
continuous time model requires the stateful
firing abstract semantics for the ODE solver
to work properly across these levels of the

hierarchy.

Chess Review, November 18, 2004 32

Structure of the Spring-Masses PR

=
L \FEE

ode it s
Sticky Mass model Plot Positions vs Time
55—

The sticky masses system has two modes of operation, 1

"Separate” and "Together," corresponding to, Ref S0l

the point masses are stuck her. The "jfft| olneMentSoher This model gives two separate ordinary differential

has a transition that is used to initialize "Sel equations, one for each point mass attached to a spring.

model (double click on that transition 16 see its| The ZeroCrossingDetector actor detects the collision

- of the point masses and emits the "touched" event.
absiForce] > Stickfiass
Separata pi = 4 Separata p2 =

_} parat
true
P1=pl;P2=p2
touched_|sXesent && (V1-V2) > 0 P 2 ;
Together p \p1: Togathery = (V1 Expression2 V2 integratar P2 integrator
Each state has a
P2
w . "
refinement,
M : AddSubtract ZeroCrossingDetector V1 and V2 are velocities,
WhICh Isa - o + -= (] and P1 and P2 are positions
contained model = of the two messes.

defining behavior. This requires a composable abstract semantics.

Chess Review, November 18, 2004 33

Where We Are %

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Chess Review, November 18, 2004 34

Where We Are FGa

Tagged Signal Semantics

Kahn process
networks

Process Networks Semantics
synchronous/

discrete
reactive events

hybrid systems

continuous
time

Chess Review, November 18, 2004 35

Meta Frameworks: Ptolemy IT ‘%5

Tagged Signal Semantics

Process Networks Semantics

Chess Review, November 18, 2004 36

Meta Frameworks: Metropolis ey

Tagged Signal Semantics

Chess Review, November 18, 2004 37

Outline %
Separable Tool Architecture Issues '

« Abstract Syntax

- Concrete Syntax

« Syntax-Based Static Analysis: Type Systems
- Abstract Semantics

- Concrete Semantics

+ Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 38

Verification
Semantics-Based Static Analysis

Refinement verification in Metropolis
CHIC model checker for interface checking
CHIC integration with Ptolemy IT

* Blast

Chess Review, November 18, 2004 39

Leveraging the Abstract Semantics for %
Refinement Verification in Metropolis

Example: a unbounded FIFO v.s. a bounded FIFO with the finer service.

Writer process Writeead() Reader process

| Unbounded FIFO Level |
| Bounded FIFO Level |

* Implement the upper level services
using the current services

* Bounded FIFO API, e.g. release space,
move data

» FIFO width and length parameterized

=——> : refinement relation

» Metropolis represent both levels of abstraction explicitly, rather than replacing the upper level.

» Refinement relation is associated with properties to preserve through the refinement.

Thanks to DOUQ Densmore Chess Review, November 18, 2004 40

Chic: A Tool for Checking Interface Compatibility

(Thomas A. Henzinger et. al.)

Interface: Expresses assumptions made by module Resource interfaces: automata-based type system for
about environment, and guarantees made by module if =~ compositional resource-aware analysis of embedded
assumptions are satisfied. software. eg. Node Limit Interfaces express
Interface = Behavioral type requirements like mutex, limited buffer size, limited
Outout " peak power. Path Limit Interfaces express requirements
utput guarantee Input assumption like limited battery capacity. Compositional and
frue frue scalable.
X Web Service interfaces allow checking temporal
Y Tzu properties of interaction between service components.
rue
x=0 = y=0 Chic 1.1 is available as a plug-in for JBuilder, Ptolemy".

Implemented in Java. Supports static, dynamic
(including pushdown) and resource interfaces. Support
X for web service interfaces is under development.
b z

Y

l vx. (true = (x=0 = y=0)) ‘

i P
Software Module interfaces allow pushdown i '_1_1 5
analysis to check safety properties of recursive —— == aszcBsomgli—te"— "0 -

software components. Download Chic 1.1 today !! http://www.eecs.berkeley.edu/~tah/Chic/
Chess Review, November 18, 2004 41

BLAST

Berkeley Lazy Abstraction Software Verification Tool

C Program ___ £>Safe
(Source) BL AST
Safety Property ___ LError Trace
(API usage Rules)

- Automatic counterexample-guided abstraction-refinement
- Scales to 100Kloc

Chess Review, November 18, 2004 42

The Big Question: How to Give Semantic =~ &%
Meta Models that are Usefully Manipulable <&

Key ideas guiding us:
- Abstract semantics
* Ptolemy IT directors
* Metropolis quantity managers
* The Metropolis language of constraints
* Interface theories
- Behavioral type systems
 Temporal logics (e.g. TLA)
- Set-valued semantics

Chess Review, November 18, 2004 43

