
1

Chess Review
November 18, 2004
Berkeley, CA

Advanced Tool Architectures

Edited and Presented by
Edward A. Lee, Co-PI
UC Berkeley

Chess Review, November 18, 2004 2

Tool Projects

• Concurrent model-based design
– E machine & S machine (Henzinger)
– Giotto (Henzinger)
– NP-Click (Keutzer)
– Metropolis (Sangiovanni-Vincentelli)
– Ptolemy II (Lee)
– Streambit (Bodik)

• Meta modeling
– GME (Sztipanovits, Vanderbilt)
– GREAT=Language,Engine,C/G,Debugger (Karsai, Vanderbilt)
– MOF-based Metamodeling (Sztipanovits, Vanderbilt)
– DESERT - Design Space Exploration Tool (Karsai, Vanderbilt)
– UDM - Universal Data Model (Karsai, Vanderbilt)

• Verification
– Blast (Henzinger)
– CCured (Necula)
– Chic (Henzinger)
– SMoLES (Karsai, Vanderbilt)

investigator
in charge

2

Chess Review, November 18, 2004 3

Tool Building vs. Architecture Principles

• Bottom up: We build tools and applications
to make principles concrete and to develop
deeper understanding of methods and
problems.

• Top down: We identify guiding principles
such as meta modeling, abstract syntax,
and abstract semantics.

Chess Review, November 18, 2004 4

• Abstract Syntax
• Concrete Syntax
• Syntax-Based Static Analysis: Type Systems
• Abstract Semantics
• Concrete Semantics
• Semantics-Based Static Analysis: Verification

Outline
Separable Tool Architecture Issues

3

Chess Review, November 18, 2004 5

Example: HyVisual

In HyVisual, models of
hybrid systems are
hierarchical compositions
of components that
represent state machines
and dynamical systems.

What is the underlying
structure?

Chess Review, November 18, 2004 6

An Abstract Syntax

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

• Entities
• Attributes on entities (parameters)
• Ports in entities
• Links between ports
• Width on links (channels)
• Hierarchy

Abstract syntaxes similar to this can be used to describe
• concurrent objects
• interconnected actors
• state machines
• …

4

Chess Review, November 18, 2004 7

Meta-Modeling of an Abstract Syntax

OutputPort
<<Atom>>

InputPort
<<Atom>>

Port
<<Atom>>

Relation
<<Atom>>

IndirectLink
<<Connection>>

CompositeEntity
<<Model>>

ComponentEntity
<<Model>>

Computation
<<Set>>

inputs : field
outputs : field
computation : field

DirectLink
<<Connection>>

0..*

0..*

0..*

0..*

0..*

0..* 0..*0..*

0..*

0,1 0,1

0..*

Using GME (from
Vanderbilt) an
abstract syntax is
specified as an object
model (in UML) with
constraints (in OCL),
or alternatively, with
MOF.

Such a spec can be
used to synthesize
visual editors and
models transformers.

Meta-model of Ptolemy
II abstract syntax,
constructed in GME by
H. Y. Zheng.

Chess Review, November 18, 2004 8

Outline
Separable Tool Architecture Issues

• Abstract Syntax
• Concrete Syntax
• Syntax-Based Static Analysis: Type Systems
• Abstract Semantics
• Concrete Semantics
• Semantics-Based Static Analysis: Verification

5

Chess Review, November 18, 2004 9

Concrete Syntax

Example concrete syntax in XML:
...
<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">

<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">

...
</port>
...

</entity>
...
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>
...

XML and XSLT have made concrete syntax even less
important than it used to be. Going a step further,
GReAT (from Vanderbilt) works with GME to
synthesize model transformers from meta models.

Chess Review, November 18, 2004 10

Outline
Separable Tool Architecture Issues

• Abstract Syntax
• Concrete Syntax
• Syntax-Based Static Analysis: Type Systems
• Abstract Semantics
• Concrete Semantics
• Semantics-Based Static Analysis: Verification

6

Chess Review, November 18, 2004 11

Actor-Oriented Type Systems
Interfaces: Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

p4

p2

p3

subtype

While types in object-
oriented languages are
governed by the methods
and fields of objects, in
actor-oriented languages
they are governed by the
ports and parameters.

Subtyping needs to be
rethought. We have
developed an actor-oriented
type system that depends
only an abstract syntax.

Chess Review, November 18, 2004 12

Actor-Oriented Type Systems
Classes, Subclasses, and Inheritance

instance

instance

subclass

inherited actors

override actors

local class
definition

execution

This type system
builds on abstract
syntax (not
semantics) so it
applies very broadly
to actor-oriented
models, including
hybrid systems.

7

Chess Review, November 18, 2004 13

Outline
Separable Tool Architecture Issues

• Abstract Syntax
• Concrete Syntax
• Syntax-Based Static Analysis: Type Systems
• Abstract Semantics
• Concrete Semantics
• Semantics-Based Static Analysis: Verification

Chess Review, November 18, 2004 14

Where We Are Headed

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)

8

Chess Review, November 18, 2004 15

Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

port may be an input or an output,
or neither or both. It is irrelevant.

signal is a member of a set of signals,
where the set depends on the model of
computation and resolved data type of
the connection.

11 Ss ∈ 22 Ss ∈

a “process” is a subset of the
signals with which it interacts.

21 SSP ×⊂

This outlines a general abstract semantics that gets
specialized. When it becomes concrete you have a
model of computation.

Chess Review, November 18, 2004 16

A Finer Abstraction Semantics

Functional Abstract Semantics:

port is now either an
input or an output (or both).

11 Ss ∈
22 Ss ∈

a process is now a function from
input signals to output signals.

21: SSF →

This outlines an abstract semantics for deterministic
producer/consumer actors.

9

Chess Review, November 18, 2004 17

Uses for Such an Abstract Semantics

• Give structure to the sets of signals
– e.g. Use the Cantor metric to get a metric space.

• Give structure to the functional processes
– e.g. Contraction maps on the Cantor metric space.

• Develop static analysis techniques
– e.g. Conditions under which a hybrid systems is

provably non-Zeno.

Chess Review, November 18, 2004 18

Another Finer Abstract Semantics

Process Networks Abstract Semantics:

port is either an
input or an output or both.

sets of signals are monoids, which allows
us to incrementally construct them. E.g.
• stream
• event sequence
• rendezvous points …

11 Ss ∈ 22 Ss ∈

A process is a sequence of
operations on its signals where the
operations are the associative
operation of a monoid

This outlines an abstract semantics for actors constructed
as processes that incrementally read and write port data.

21 SSP ×⊂

process is not necessarily functional
(can be nondeterministic).

10

Chess Review, November 18, 2004 19

Concrete Semantics that Conform with the
Process Networks Abstract Semantics

• Communicating Sequential Processes (CSP) [Hoare]
• Calculus of Concurrent Systems (CCS) [Milner]
• Kahn Process Networks (KPN) [Kahn]
• Nondeterministic extensions of KPN [Various]
• Actors [Hewitt]

Some Implementations:
• Occam, Lucid, and Ada languages
• Ptolemy Classic and Ptolemy II (PN and CSP domains)
• System C
• Metropolis

Chess Review, November 18, 2004 20

Process Network Abstract Semantics in
Ptolemy II

ptolemy.actor.Director

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

«Interface»
Actor

+getDirector() : Director

IOPort

+get(channelIndex : int) : Token
+hasRoom(channelIndex : int) : boolean
+hasToken(channelIndex : int) : boolean
+isInput() : boolean
+isOutput() : boolean
+send(channelIndex : int, token : Token)

creates

actor contains ports

port contains receivers

director creates
receivers

receiver implements communication

monoid operation to
incrementally construct signals

11

Chess Review, November 18, 2004 21

Several Concrete Semantics
Refine this Abstract Semantics

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

communicating sequential processes

Kahn process networks

Chess Review, November 18, 2004 22

Process Network Abstract Semantics in
Metropolis

process P{
port reader X;
port writer Y;
thread(){
while(true){
...
z = f(X.read());
Y.write(z);

}}}

medium M implements reader, writer{
int storage;
int n, space;
void write(int z){

await(space>0; this.writer ; this.writer)
n=1; space=0; storage=z;

}
word read(){ ... }

}

interface reader extends Port{
update int read();
eval int n();

}

interface writer extends Port{
update void write(int i);
eval int space();

}

MP1X Y P2X Y

Env1 Env2

Model

Process

Medium

Thanks to
Doug Densmore

12

Chess Review, November 18, 2004 23

Leveraging Abstract Syntax for Joint
Modeling of Architecture and Application

Bus
ArbiterBus

Mem

Cpu OsSched

MyArchNetlist

mP1 mP2mP1 mP2

MyFncNetlist

MP1 P2

Env1 Env2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); E(P1, M.write) <=> E(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1, mP1.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=> E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist

Bus
ArbiterBus

Mem

Cpu OsSched

MyArchNetlist
…

…
…

The abstract syntax provides natural
points of the execution (where the
monoid operations are invoked) that
can be synchronized across models.
Here, this is used to model operations
of an application on a candidate
implementation architecture.

Chess Review, November 18, 2004 24

A Finer Abstract Semantics

Firing Abstract Semantics:

port is still either an
input or an output.

signals are monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

11 Ss ∈ 22 Ss ∈

a process still a function from
input signals to output signals,
but that function now is defined
in terms of a firing function.

21: SSF →

The process function F is the least fixed point of a
functional defined in terms of f.

13

Chess Review, November 18, 2004 25

Models of Computation that Conform to
the Firing Abstract Semantics

• Dataflow models (all variations)
• Discrete-event models
• Time-driven models (Giotto)

In Ptolemy II, actors written to the firing
abstract semantics can be used with
directors that conform only to the
process network abstract semantics.

Such actors are said to be behaviorally
polymorphic.

Chess Review, November 18, 2004 26

Leveraging the Abstract Semantics to
get “Schedule Carrying Code” (SCC)

Embedded (E) code
environment interaction
task release

Scheduling (S) code
task execution
communication schedule

Giotto code
firings that are concurrent
yet atomic
periodic tasks and drivers
unit-delay state semantics
multi-modal

14

Chess Review, November 18, 2004 27

xGiotto and Metropolis

xGiotto
Formal

Verification

xGiotto functional
description

xGiotto-to-
Metropolis

MMM functional
description

Mapping1

Mapping2

Mapping3

Platform1
Metropolis
Description

Platform2
Metropolis
Description

Platform3
Metropolis
Description

WCET Estimator

Schedulability
Results

Simulator Platform Selection

xGiotto Code
Verification

Code for the
Target platform

Platform
Estimation

Chess Review, November 18, 2004 28

Actor Language for the
Firing Abstract Semantics: Cal

Cal is an experimental actor language designed to
provide statically inferable actor properties w.r.t.
the firing abstract semantics. E.g.:

Inferable firing rules and firing functions:

actor Select () S, A, B ==> Output:

action S: [sel], A: [v] ==> [v]
guard sel end
action S: [sel], B: [v] ==> [v]
guard not sel end

end

{ }
{ })()(,),false(:,:)(,),false(

)(),(),true(:,:),(),true(

22

11

vvfvvU

vvfvvU

a

a

⊥∈⊥=

⊥∈⊥=

Z

Z

Thanks to Jorn Janneck, Xilinx

15

Chess Review, November 18, 2004 29

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

port is still either an
input or an output.

11 Ss ∈ 22 Ss ∈

a process still a function from
input signals to output signals,
but that function now is defined
in terms of two functions.

21: SSF →

The function f gives outputs in terms of inputs and the
current state. The function g updates the state.

21: SSf →Σ×
Σ→Σ×1: Sg

state space

signals are monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

Chess Review, November 18, 2004 30

Models of Computation that Conform to
the Stateful Firing Abstract Semantics

• Synchronous reactive
• Continuous time
• Hybrid systems

Stateful firing supports iteration to a fixed point,
which is required for hybrid systems modeling.

In Ptolemy II, actors written to the stateful firing
abstract semantics can be used with directors that
conform only to the firing abstract semantics or to
the process network abstract semantics.

Such actors are said to be behaviorally polymorphic.

16

Chess Review, November 18, 2004 31

Leveraging This Abstract Semantics in
HyVisual (based on Ptolemy II)

Masses on Springs

Consider two masses on
springs which, when they
collide, will stick
together with a
decaying stickiness until
the force of the springs
pulls them apart again.

Chess Review, November 18, 2004 32

Structure of the Spring-Masses
Model

A component in the continuous-time top-level
model is defined by a finite state machine. The
continuous time model requires the stateful
firing abstract semantics for the ODE solver
to work properly across these levels of the
hierarchy.

17

Chess Review, November 18, 2004 33

Structure of the Spring-Masses
Model

Each state has a
“refinement,”
which is a
contained model
defining behavior. This requires a composable abstract semantics.

Chess Review, November 18, 2004 34

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing Semantics

18

Chess Review, November 18, 2004 35

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

Giotto

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Chess Review, November 18, 2004 36

Meta Frameworks: Ptolemy II

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

dataflow

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Ptolemy II emphasizes construction of “behaviorally
polymorphic” actors with stateful firing semantics
(the “Ptolemy II actor semantics”), but also provides
support for broader abstract semantic models via its
abstract syntax and type system.

19

Chess Review, November 18, 2004 37

Meta Frameworks: Metropolis

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

dataflow

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Metropolis provides a process networks abstract
semantics and emphasizes formal description of
constraints, communication refinement, and joint
modeling of applications and architectures.

Chess Review, November 18, 2004 38

Outline
Separable Tool Architecture Issues

• Abstract Syntax
• Concrete Syntax
• Syntax-Based Static Analysis: Type Systems
• Abstract Semantics
• Concrete Semantics
• Semantics-Based Static Analysis: Verification

20

Chess Review, November 18, 2004 39

Verification
Semantics-Based Static Analysis

• Refinement verification in Metropolis
• CHIC model checker for interface checking
• CHIC integration with Ptolemy II
• Blast

Chess Review, November 18, 2004 40

Leveraging the Abstract Semantics for
Refinement Verification in Metropolis

Y2T
write() Th,Wk

T2Y
read()

• Implement the upper level services
using the current services

: refinement relation

• Metropolis represent both levels of abstraction explicitly, rather than replacing the upper level.

• Refinement relation is associated with properties to preserve through the refinement.

Writer process Reader process
∞

write(), read()

Example: a unbounded FIFO v.s. a bounded FIFO with the finer service.

Unbounded FIFO Level

• Bounded FIFO API, e.g. release space,
move data
• FIFO width and length parameterized

Bounded FIFO Level

Thanks to Doug Densmore

21

Chess Review, November 18, 2004 41

Chic: A Tool for Checking Interface Compatibility
(Thomas A. Henzinger et. al.)

Output guarantee

true
x
y z

true

Input assumption
true

x=0 ⇒ y=0

x
y

z

truey = 0

∀x. (true ⇒ (x=0 ⇒ y=0))

Interface: Expresses assumptions made by module
about environment, and guarantees made by module if
assumptions are satisfied.
Interface = Behavioral type

Compatibility checking is a game between
System and Environment; winning strategy of
Environment gives correct way to use System.

Web Service interfaces allow checking temporal
properties of interaction between service components.

Chic 1.1 is available as a plug-in for JBuilder, Ptolemy*.
Implemented in Java. Supports static, dynamic
(including pushdown) and resource interfaces. Support
for web service interfaces is under development.
(* Thanks to Eleftherios Matsikoudis)

Download Chic 1.1 today !! http://www.eecs.berkeley.edu/~tah/Chic/

Software Module interfaces allow pushdown
analysis to check safety properties of recursive
software components.

Resource interfaces: automata-based type system for
compositional resource-aware analysis of embedded
software. eg. Node Limit Interfaces express
requirements like mutex, limited buffer size, limited
peak power. Path Limit Interfaces express requirements
like limited battery capacity. Compositional and
scalable.

Chess Review, November 18, 2004 42

BLAST

Berkeley Lazy Abstraction Software Verification Tool

- Automatic counterexample-guided abstraction-refinement
- Scales to 100Kloc

C Program
(Source)

Safe

Error Trace

Yes

NoSafety Property
(API usage Rules)

BLAST

22

Chess Review, November 18, 2004 43

The Big Question: How to Give Semantic
Meta Models that are Usefully Manipulable

Key ideas guiding us:
• Abstract semantics
• Ptolemy II directors
• Metropolis quantity managers
• The Metropolis language of constraints
• Interface theories
• Behavioral type systems
• Temporal logics (e.g. TLA)
• Set-valued semantics
• …

