
1

Timed Languages for
Embedded Software

Ethan Jackson
Advisor: Dr. Janos Szitpanovits

Institute for Software Integrated Systems
Vanderbilt University

Embedded System Design

M

R

Design methodologies and patterns
with tools that support pattern reuse:
Numerous non-trivial case studies

Combine formal abstractions with
correct-by-construction programming
languages: Provably correct systems,
but tool flow may be overly restrictive

Combine formal abstractions with
model checking and verification:
Provably correct systems, when proof
can be produced.

Want to rethink concepts so that well-tested design
methodologies help designers better understand correct-by-
construction systems and/or build more analyzable systems.

2

The “Isomorphic” Approach
View MoCs as DSMLs, and describe these languages using MIC.
The isomorphic approach makes a one-to-one mapping between a
DSML and an already existing language that supports a MoC.

start Degraded{

mode Degraded(navigation_output) period 8000 {
exitfreq 1 do Normal(switch_driver);
taskfreq 1 do Control(control_driver);
actfreq 1 do display_actuator(display_driver);
taskfreq 2 do Navigation(navigation_driver);

}

mode Normal(navigation_output) period 8000 {
exitfreq 2 do Degraded(switch_driver);
actfreq 1 do display_actuator(display_driver);
taskfreq 4 do Navigation(navigation_driver);
taskfreq 1 do Control(control_driver);

}
}

integer Time;
)
(
% ----Equation box CounterEquations---- %
|start ^= sec ^+ go
|start := true when go default start$
|count := (count$) + 1 when started = true
% ----Equation box RunnerEquations---- %
|Time := count when (distance >= Length) and (distance$ < Length)
|distance := distance$ + Speed when started = true
|)
where
boolean started;
integer distance, count;
end;

This importation of an existing syntax makes DSML construction
and code generation easy, but it does not exercise the full
capabilities of MIC.

How Could MIC Help?
It is clear that the previous approach does not yield great results,
so what should a better approach yield?
1. MIC deals with DSMLs and DSML design patterns. One would like to

find some common structure among the languages that express various
MoCs, and cast these similarities as patterns in MIC.

2. MIC provides design time constraint checking with OCL. One would like
to describe MoCs so that certain rules could check behavioral
properties (or conservative approximations of such properties) during
design time.

3. MIC provides aspect oriented modeling, which partitions the concepts
in a DSML. One would like to use aspects to partition MoC concepts,
and to modularize available design time reasoning.

4. MIC requires the designer to “anchor” a DSML to a semantic domain,
which attaches meaning to the abstract syntax. One would like to reuse
parts of anchorings across similar models of computation.

3

In Search of Patterns
• Ptolemy recognizes that scheduling under a certain MoC is largely
independent of the underlying dataflow. Ptolemy captures this
notion with directors, which can be swapped out to change to MoC.

• However, it can become tricky to find MoC dependent
errors when the scheduler is a “black box”.

In Search of Patterns
• Giotto treats timing and computation as orthogonal aspects.

• In Giotto, scheduling is not “black box” because the timing
specification is scheduling specific information. However, it is
not clear how to extend this model to handle other MoCs.

start Degraded{

mode Degraded(navigation_output) period 8000 {
exitfreq 1 do Normal(switch_driver);
taskfreq 1 do Control(control_driver);
actfreq 1 do display_actuator(display_driver);
taskfreq 2 do Navigation(navigation_driver);

}

mode Normal(navigation_output) period 8000 {
exitfreq 2 do Degraded(switch_driver);
actfreq 1 do display_actuator(display_driver);
taskfreq 4 do Navigation(navigation_driver);
taskfreq 1 do Control(control_driver);

}
}

4

Interacting Partitions of Time and Data
• Using MIC, we can create a DSML for “time models” and a DSML
for computation. This is a design pattern that will be reused in the
semantic domain and the implementation.

Aspect T Aspect C

Non-orthogonal
aspect interactions

Semantics
T

Semantics
C

Implementation

T
Implementation

C

Required interface

Meta-modeling and modeling

Abstract semantics

Implementation of semantics

Aspect Oriented
Semantics

Hierarchical Fine-Grained Modal Models
Synchronous Reactive Example

+A

B

C

D

C

1

2

3
Dataflow Graph

Fine-grained Modes

Mode Machine

5

Well-formedness Rules,
Accessible Properties

The Dataflow should have no dangling inputs (bounded memory)

The modes should have none of these subgraphs
Synchrony Constraints Causality Deterministic Merge

This model (with some extensions) is sufficient to
capture the semantics of Signal.

Hierarchical Fine-Grained Modal Models
Giotto Example

A

B

D

C
T1

T2

T1

T2

T1

T2

T1

T2 T2

Read Inputs Write output

Write outputs

p1
p2

6

Well-formedness Rules
Dataflow Well-formedness rules ensure communication model

Tasks read from global memories,
and senors and tasks write to
“private” memories

Actuators read from
global memories

Global memories read
from private memories

The fine-grained modal structure is regular, so it does not need to modeled directly.

1
1

2

1
1

2

p
1
1

2

1
1

p’
Mode switch

Well-formedness rule: Modes switches should be well-timed

Conclusions
Metamodel patterns define the first class citizens of
data and time DSMLs. These patterns are used to
construct MoC specific data and time DSMLs.

Aspect support maintains consistency between data
and time aspects. Design time well-formedness rules
can verify some behavioral property.

Aspect oriented semantics give an SOS to MoCs by
composing a “data” SOS and a “time” SOS.

The composition is defined over a minimal
set of the semantics, so implementations
can realize the composition once. This has
been realized with TinyModes.

7

Future Directions
Distributing Giotto programs across many hosts make the instantaneous
communication assumption unrealistic. Current research by the Giotto
team shows that distributed Giotto programs can be extended with worst
case communication times.

1t
2

2

1

3

2t

3t

4t
1h
2h

Promising results show that when a developer changes the timing properties
of a Giotto component, the entire system can be verified using:
• A linear time algorithm in the size of the component
• Timing information local to the host

Perhaps some well-formedness rules can be found that would allow design-
time checking of distributed Giotto programs?

The End

Questions?

