
1

Chess Review
November 18, 2004
Berkeley, CA

Semantics of Hybrid Systems

Roberto Passerone
Cadence Berkeley Laboratories

with contributions from E. Lee, A. 
Pinto, A. Sangiovanni-Vincentelli, H. 
Zheng

Chess Review, November 18, 2004  2

Columbus: A Comparative Study

• Considered several existing models and tools
– Charon, Checkmate, Hysdel, HSIF, HyVisual, Masaccio, 

Metropolis, Modelica, Scicos, Shift, Simulink
• Systematically compared the models for

– Expressiveness
– Concurrency model
– Discrete/Continuous Communication
– Hierarchy and Object Oriented design
– Algebraic loops

• Compared models by running simple, but representative, 
examples
– Zeno behavior
– Level crossing detection



2

Chess Review, November 18, 2004  3

Summary

MATLAB-based, library of predefined blocks.Simulator, hierarchy, model discretizerInteractive ToolSIMULINK

C code generationModelling of dynamic networks of hybrid componentsProgramming LanguageSHIFT

C code generation, interface to SyndexModelling and simulation of hybrid systemsHybrid System ToolboxSCICOS

Commercial and open simulator availableObject Oriented, non-causal modellingModelling LanguageMODELICA

Verification, SimulationHeterogeneity, formal refinement, mappingDesign EnvironmentMETROPOLIS

Enables assume/guarantee reasoningSupport for concurrent sequential and timed compositionalityFormal ModelMASACCIO

Ptolemy-II BASEDHierarchy support, block diagram editor and simulatorVisual ModellerHYVISUAL

Simulation through HyVisualModelling of networks of hybrid automataInterchange FormatHSIF

Based on MATLAB/SIMULINK/STATEFLOWFormal semantic for simulation, exploration, verificationVerification ToolboxCHECKMATE

Simulator, Type Checker, Java interfaceFormal semantic for hierarchy, concurrency, refinementModelling LanguageCHARON

Featuring AlsoMain FeatuesNatureLanguage

Chess Review, November 18, 2004  4

Discrete output form FSM to dynamical 
system.Implemented by logic functionsDiscrete 

differenceReal and Boolean signalsHYSDEL

Implemented by connection of events 
selectors.

Implemented by interconnection of 
conditional blocks.IntegrationDefined by port attributeSCICOS

Different equation sets depending on 
events.Described by algorithm sections.YESDefined by a language modifierMODELICA

State refinement into continuous time 
modelsGraphical EditorIntegrationSignal attribute. Automatic detection of type or 

enforced by user.HYVISUAL

Discrete output form FSM to dynamical 
system.STATEFLOW modelYES

Separation between  FSM and dynamical 
system. Communication through event 
generator.

CHECKMATE

State/Dynamics mappingAutomataDerivativeContinuous/Discrete SignalsLanguage

Summary



3

Chess Review, November 18, 2004  5

NNNHYSDEL

NNYSCICOS

YYYMODELICA

NYYHYVISUAL

NNNCHECKMATE

Non-Causal ModellingObject OrientedHierarchyLanguage

Summary

Chess Review, November 18, 2004  6

NNEvent Generator and First Order Hold. There 
are no continuous signals HYSDEL

NNInteraction between discrete state and 
continuous state

SCICOS

YYIndirect through when statementsMODELICA

NYToContinuous and ToDiscrete actorsHYVISUAL

NNEvent Generator and First Order HoldCHECKMATE

Dirac PulsesAlgebraic LoopsDiscrete/Continuous CommunicationLanguage

Summary



4

Chess Review, November 18, 2004  7

Conclusions

• Comparative study shows a fragmented 
landscape
– Underlying models mostly incompatible
– Key issues approached differently

• Consolidated view needed to advance the 
research and rate of adoption
– Evidence from industry using ad-hoc translators
– Difficult for engineers and practitioners to 

choose the right model
• Our activities are complementary ways of 

providing a consolidated view

Chess Review, November 18, 2004  8

Overview

Solid and clean semantics
for hybrid systems

Interchange Format
for hybrid systems

Approximations
for incompatible models



5

Chess Review, November 18, 2004  9

Operational Semantics for Hybrid Systems

• A solid and complete executable semantics for 
simulation
– Robust and with no ambiguities
– Designed to cover embedded software issues

• Focuses on deterministic behavior
– It is incorrect to choose one trajectory
– Creating deterministic models must be easy
– Non-deterministic models must be explored either 

exhaustively or using Monte Carlo methods
• Avoids continuous time models to represent 

discrete behaviors
– Inaccurate for software
– Truly heterogeneous models are more faithful 

abstractions

Chess Review, November 18, 2004  10

HyVisual: Hybrid Systems as Networks of 
Automata



6

Chess Review, November 18, 2004  11

Some Semantics Questions

• Expressiveness of model
– non-deterministic, guard expression language, actions, …

• Coordination between subsystems (both discrete and continuous)
– synchronous, time-driven, event-driven, dataflow, …
– can outputs and updates be separated?

• What is the meaning of directed cycles?
– fixed point, error, infinite loop, …

• What is the meaning of simultaneous events?
– secondary orderings, such as data precedences, priorities, …

• Discontinuous signals must have zero transition times
– Precise transition times
– Accurate model of Zeno conditions

• Discrete signals should have values only at discrete times
– Accurately heterogeneous model (vs. continuous approximation)

• Sampling of discontinuous signals must be well-defined
– Avoid unnecessary nondeterminism

• Transient states must be active for zero time
– Properly represent glitches

Chess Review, November 18, 2004  12

Transient States and Glitches



7

Chess Review, November 18, 2004  13

Overview

Solid and clean semantics
for hybrid systems

Interchange Format
for hybrid systems

Approximations
for incompatible models

Chess Review, November 18, 2004  14

Interchange Format for Hybrid Systems

• Define a common format that can be used 
to exchange data between different tools
– Similar to other standards, such as LEF-DEF, 

Edif, and more recently OpenAccess
– Avoid a proliferation of ad-hoc translators

• Flexible model that doesn’t tie you into one 
particular semantics
– Unlike HSIF, avoid casting a preferred 

semantics in stone
– Instead, a proper IF needs to include a meta 

model describing the semantics



8

Chess Review, November 18, 2004  15

• Basic elements can be composed to build a 
domain specific Model of Computation
– Semantics formally defined as Action Automata

• Flexible infrastructure that supports
– Heterogeneous modeling
– Flexible communication semantics
– Non-determinism
– Hierarchical, Object Oriented design
– Explicit causality and scheduling
– Declarative constraints (invariant, equations)
– Refinement

Metropolis Meta-Model

Chess Review, November 18, 2004  16

Anatomy of a model

State

Analog Process

Transition

Analog variable

Equations



9

Chess Review, November 18, 2004  17

Application Scenarios

Chess Review, November 18, 2004  18

Towards a Manipulable Semantics

• Action automata determine the semantics of a 
model through its quantity managers
– However, if not careful, extracting the automata and 

analyzing them could be very expensive
– We are investigating ways of defining quantity manager 

in simpler and more manageable terms
• When intractable, translations and analysis could 

be obtained by ignoring certain aspects
– This is sometimes desirable to decrease the complexity 

of a model for formal verification
– This is essential when the information that is ignored is 

irrelevant
• Models of hybrid systems can be related through 

approximations



10

Chess Review, November 18, 2004  19

Overview

Solid and clean semantics
for hybrid systems

Interchange Format
for hybrid systems

Approximations
for incompatible models

Chess Review, November 18, 2004  20

Conservative Approximations

• Use conservative abstractions to relate 
different models
– Why use abstraction A as opposed to 

abstraction B?
• Study preservation properties of 

abstractions
– If a property holds before applying the 

abstraction, does it also hold after the 
abstraction?

• What are the properties of interest?
– Compositionality or commutativity
– Preservation of the refinement relation



11

Chess Review, November 18, 2004  21

Preservation of refinement

• Each model defines refinement differently
– A block (actor) implements another when you can 

replace the former for the latter
– Refinement denoted by the symbol ≤ (partial or 

pre-order)
• Refinement verification in the abstract is 

potentially more efficient, but does it hold in the 
concrete?
– In other words, does the abstraction preserve 

refinement?
– Verification will necessarily be conservative, but 

is it sound?

Chess Review, November 18, 2004  22

Preservation of refinement

• Refinement preserving approximation
– A function H between two models

preserves refinement if and only if
H(p1) ≤ H(p2) implies p1 ≤ p2

– In other words, H is “inverse” monotonic
– Analogy (not) for real numbers r and s

if  r ≤ s then not r ≤ s

• Inverse monotonic functions are not useful
– Say H(p1) = H(p2).  Then  p1 = p2

– In other words, H is injective (not giving up 
information)

– Hence H is not an abstraction at all!

• One function does not fit all

H

concrete

abstract



12

Chess Review, November 18, 2004  23

Preservation of refinement

• Conservative approximation
– A pair of functions Ψ = (Ψl, Ψu) is a

conservative approximation if and only if
Ψu(p1) ≤ Ψl(p2)   implies  p1 ≤ p2

– Analogy: if  r ≤ s then  r ≤ s
– Abstract implies detailed

• Conservative approximations are useful
– Implication going in the right direction
– Ψl and Ψu are both abstractions (they need not 

be injective)
• Refinement verification is always sound

Ψu Ψl

concrete

abstract

Chess Review, November 18, 2004  24

Verification problem

• A specification q requires that action “b” always be preceded 
by action “a”
– Going from reals to integers, the order between events during 

the same integer interval is lost
– Verification unsound when the specification is not represented 

exactly at the abstract level
• Conservative approximations detect when the solution would 

be unsound
– But Ψl( q ) is not empty!
– It has all the behaviors for which a and b are separated by at 

least one time unit
– Verification possible if the implementation is “slow enough”

• There is a relation between our sampling frequency and the 
ability to verify in the abstract
– Subtle interaction between implementation and verification 

strategy
– Conservative approximations separate those concerns



13

Chess Review, November 18, 2004  25

Inverse of conservative approximation

• The inverse of an abstraction does 
not necessarily exist
– H( p ) does not determine p uniquely
– Similarly, Ψu( p ) and Ψl( p ) do not 

determine p uniquely

• Inverse defined when upper and 
lower bound coincide
– If Ψu(p) = Ψl(p), then p can be 

represented exactly at the abstract level
– p is uniquely determined in this case

H

concrete

abstract

Ψu Ψl

concrete

abstract

Chess Review, November 18, 2004  26

Abstraction and Refinement

• Ψinv identifies actors that can be 
used indifferently in either 
domain
– If Q’ is an abstraction of Q, then 

Ψinv is an injection from Q’ to Q

– Actors are “domain polymorphic”

• Other actors are only 
approximated in the other 
semantic domain
– Ψu and Ψl are different “views”

– Ψinv ° Ψu is a closure operator

– Ψinv ° Ψl is an interior operator

Ψu Ψl

Q

Q’

Ψinv



14

Chess Review, November 18, 2004  27

Conclusions

• Comparative study shows a fragmented landscape
– Underlying models mostly incompatible
– Key issues approached differently

• Consolidated view needed to advance the research
– Evidence from industry using ad-hoc translators
– Difficult for practitioners to choose the right model

• Our activities are complementary ways of 
providing a consolidated view
– HyVisual: Solid and clean semantics for hybrid systems
– Metropolis Interchange Format for hybrid systems
– Conservative Approximations for incompatible models


