Semantics of Hybrid Systems

Roberto Passerone Cadence Berkeley Laboratories

with contributions from E. Lee, A. Pinto, A. Sangiovanni-Vincentelli, H. Zheng

Chess Review November 18, 2004 Berkeley, CA

Summary

Language	<u>Nature</u>	<u>Main Featues</u>	Featuring Also
<u>CHARON</u>	Modelling Language	Formal semantic for hierarchy, concurrency, refinement	Simulator, Type Checker, Java interface
CHECKMATE	Verification Toolbox	Formal semantic for simulation, exploration, verification	Based on MATLAB/SIMULINK/STATEFLOW
HSIF	Interchange Format	Modelling of networks of hybrid automata	Simulation through HyVisual
HYVISUAL	Visual Modeller	Hierarchy support, block diagram editor and simulator	Ptolemy-II BASED
MASACCIO	Formal Model	Support for concurrent sequential and timed compositionality	Enables assume/guarantee reasoning
METROPOLIS	Design Environment	Heterogeneity, formal refinement, mapping	Verification, Simulation
MODELICA	Modelling Language	Object Oriented, non-causal modelling	Commercial and open simulator available
<u>scicos</u>	Hybrid System Toolbox	Modelling and simulation of hybrid systems	C code generation, interface to Syndex
<u>Shift</u>	Programming Language	Modelling of dynamic networks of hybrid components	C code generation
<u>SIMULINK</u>	Interactive Tool	Simulator, hierarchy, model discretizer	MATLAB-based, library of predefined blocks.
			Chess Review, November 18, 2004 3

Summary

Language	Continuous/Discrete Signals	Derivative	Automata	State/Dynamics mapping		
<u>CHECKMATE</u>	Separation between FSM and dynamical system. Communication through event generator.	YES	STATEFLOW model	Discrete output form FSM to dynamical system.		
HYVISUAL	Signal attribute. Automatic detection of type or enforced by user.	Integration	Graphical Editor	State refinement into continuous time models		
MODELICA	Defined by a language modifier	YES	Described by algorithm sections.	Different equation sets depending on events.		
<u>scicos</u>	Defined by port attribute	Integration	Implemented by interconnection of conditional blocks.	Implemented by connection of events selectors.		
HYSDEL	Real and Boolean signals	Discrete difference	Implemented by logic functions	Discrete output form FSM to dynamical system.		
Chess Review, November 18, 2004						

Summary

<u>Language</u>	Hierarchy	Object Oriented	<u>Non-Causal Modelling</u>
CHECKMATE	N	N	N
HYVISUAL	Y	Y	Ν
MODELICA	Y	Y	Y
<u>scicos</u>	Y	Ν	N
HYSDEL	Ν	Ν	N
		с	hess Review, November 18,

Summary Language Discrete/Continuous Communication Algebraic Loops Dirac Pulses CHECKMATE Event Generator and First Order Hold Ν Ν HYVISUAL ToContinuous and ToDiscrete actors Y Ν MODELICA Indirect through when statements Y Y Interaction between discrete state and continuous state SCICOS Ν Ν Event Generator and First Order Hold. There are no continuous signals HYSDEL Ν Ν

Chess Review, November 18, 2004 6

Conclusions

Some Semantics Questions

Metropolis Meta-Model

HyVisu

Conclusions

- Comparative study shows a fragmented landscape
 - Underlying models mostly incompatible
 - Key issues approached differently
- Consolidated view needed to advance the research
 - Evidence from industry using ad-hoc translators
 - Difficult for practitioners to choose the right model
- Our activities are complementary ways of providing a consolidated view
 - HyVisual: Solid and clean semantics for hybrid systems
 - Metropolis Interchange Format for hybrid systems
 - Conservative Approximations for incompatible models

Chess Review, November 18, 2004 27