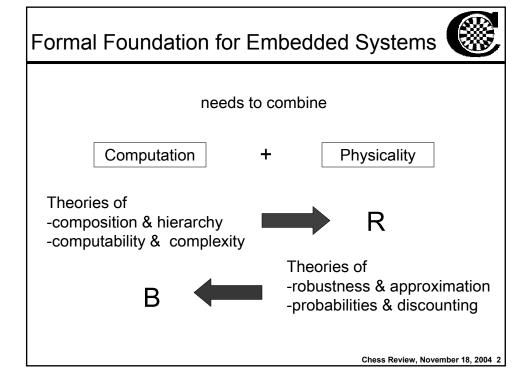
Hybrid Systems Theory

Edited and Presented by Thomas A. Henzinger, Co-PI UC Berkeley

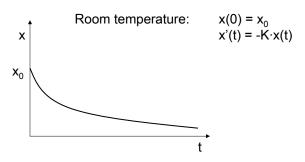
Chess Review November 18, 2004 Berkeley, CA



Continuous Dynamical Systems

State space: Rn

Dynamics: initial condition + differential equations



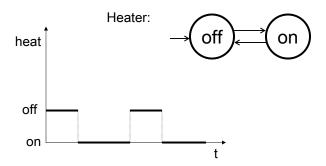
Analytic complexity.

Chess Review, November 18, 2004 3

Discrete Transition Systems

State space: B^m

Dynamics: initial condition + transition relation



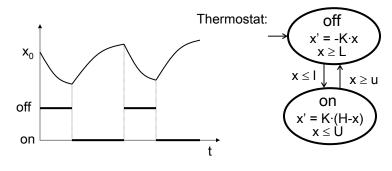
Combinatorial complexity.

Hybrid Automata

State space: $B^m \times R^n$

Dynamics: initial condition + transition relation

+ differential equations

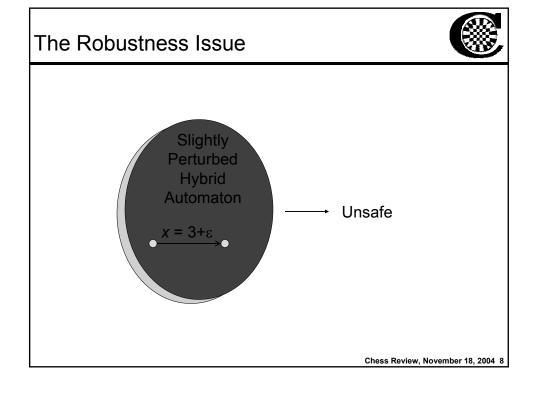


Chess Review, November 18, 2004 5

Four Problems with Hybrid Automata

- 1 Robustness
- 2 Uncertainty
- 3 Compositionality
- 4 Computationality

The Robustness Issue Hybrid Automaton Safe Chess Review, November 18, 2004 7



Robust Hybrid Automata

value(Model, Property): States \rightarrow B

value(Model,Property): States $\rightarrow R$

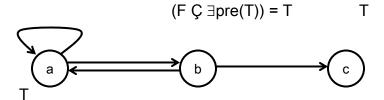
Semantics: de Alfaro, H, Majumdar [ICALP 03]

Computation: de Alfaro, Faella, H, Majumdar, Stoelinga [TACAS 04]

Metrics on models: Chatterjee et al. [submitted]

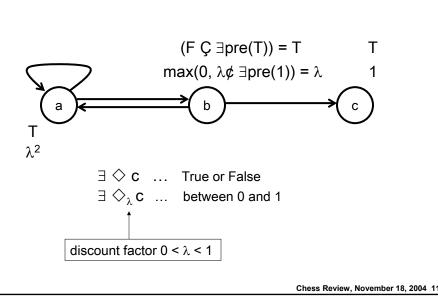
Chess Review, November 18, 2004 9

Boolean-valued Reachability



 $\exists \diamondsuit c \dots$ True or False

Real-valued Reachability



Robust Hybrid Automata

Continuity Theorem:

If discountedBisimilarity(m_1, m_2) > 1 - ε , then |discountedValue(m_1, p) - discountedValue(m_2, p)| < $f(\varepsilon)$.

Further Advantages of Discounting:

- -approximability because of geometric convergence (avoids non-termination of verification algorithms)
- -applies also to probabilistic systems and to games (enables reasoning under uncertainty, and control)

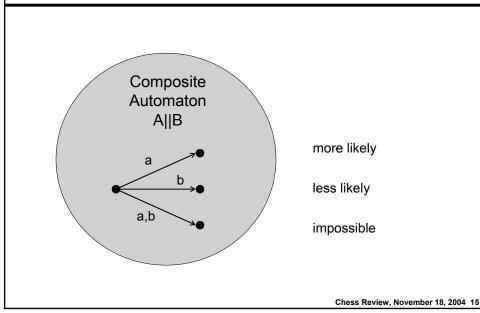
Four Problems with Hybrid Automata

- 1 Robustness
- 2 Uncertainty
- 3 Compositionality
- 4 Computationality

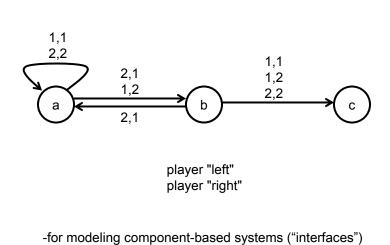
Chess Review, November 18, 2004 13

The Uncertainty Issue Hybrid Automaton A 0 < x < 2 a 1 < y < 3 b Chess Review, November 18, 2004 14

The Uncertainty Issue

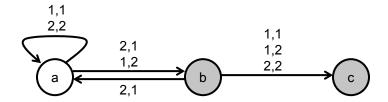


Concurrent Games



-for strategy synthesis ("control")

Concurrent Games

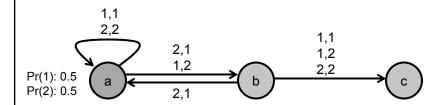


 $\exists_{\mathsf{left}} \ \forall_{\mathsf{right}} \diamondsuit \mathsf{c} \ \dots \ \mathsf{player}$ "left" has a deterministic strategy to reach c

$$(\mu X)$$
 (c $\vee \exists_{\mathsf{left}} \forall_{\mathsf{right}} \mathsf{pre}(X)$)

Chess Review, November 18, 2004 17

Concurrent Games

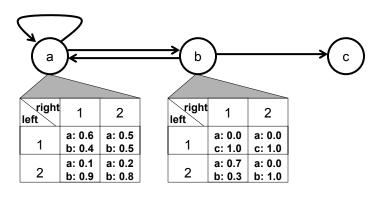


 $\exists_{\mathsf{left}} \ orall_{\mathsf{right}} \diamondsuit \mathsf{c} \ \dots$ player "left" has a deterministic strategy to reach c $\exists_{\mathsf{left}} \ orall_{\mathsf{right}} \diamondsuit \mathsf{c} \ \dots$ player "left" has a randomized strategy to reach c

$$(\mu X)$$
 $(c \vee \exists_{left} \forall_{right} pre(X))$

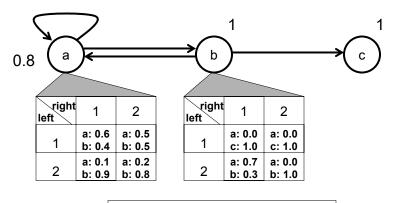
Stochastic Games

Probability with which player "left" can reach c?



Chess Review, November 18, 2004 19

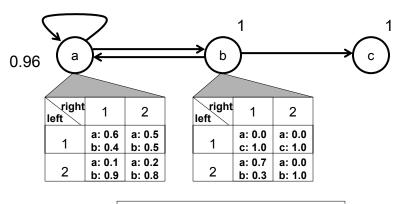
Probability with which player "left" can reach c?



 (μX) max(c, $\exists_{left} \forall_{right} pre(X)$)

Stochastic Games

Probability with which player "left" can reach c?

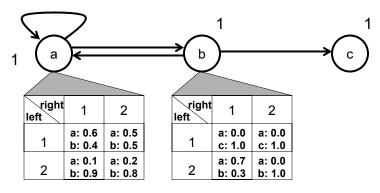


 $(\mu X) \max(c, \exists_{left} \forall_{right} pre(X))$

Chess Review, November 18, 2004 21

Stochastic Games

Probability with which player "left" can reach c?



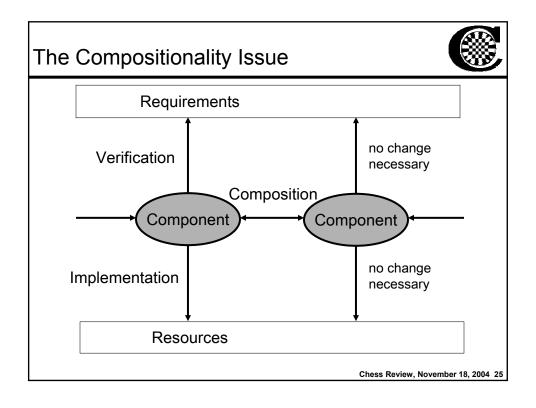
Limit gives correct answer: de Alfaro, Majumdar [JCSS 04] coNP Å NP computation: Chatterjee, de Alfaro, H [submitted]

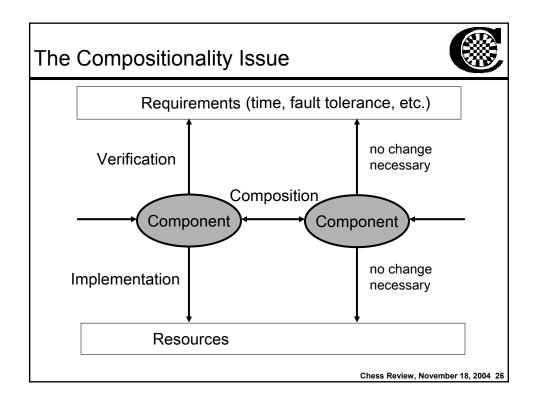
Four Problems with Hybrid Automata

- 1 Robustness
- 2 Uncertainty
- 3 Compositionality
- 4 Computationality

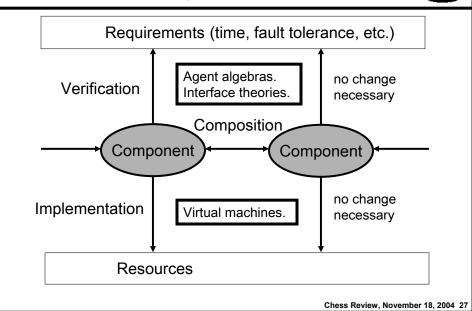
Chess Review, November 18, 2004 23

Requirements Verification automatic (model checking) Model Environment Implementation automatic (compilation) Resources Chess Review, November 18, 2004 24



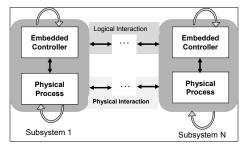


The Compositionality Issue



Heterogeneous Compositional Modeling

Consider hybrid system made up of interacting distributed subsystems:



- Physical subsystems coupled through a backbone
- Each unit includes ECDs that implement the control, monitoring, and fault diagnosis tasks
- > Subsystem interactions at two levels:
 - physical energy-based
 - logical information based, facilitated by LANs

Levels are not independent.

Question: How does one systematically model the interactions between the subsystems efficiently while avoiding the computational complexity of generating global hybrid models?

Implications: reachability analysis, design, control, and fault diagnosis

Four Problems with Hybrid Automata

- 1 Robustness
- 2 Uncertainty
- 3 Compositionality
- 4 Computationality

Chess Review, November 18, 2004 29

The Computationality Issue

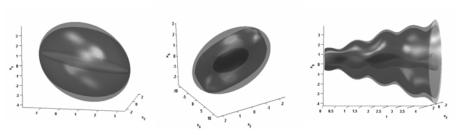
Reach Set Computation:

system
$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
 control $u(t) \in \mathcal{P}(t)$, initial state $x(t_0) \in \mathcal{X}^0$

Find reach set $\mathcal{X}(t, t_0, X^0)$ of all states that can be reached at time t starting in \mathcal{X}^0 at t_0 using open loop control u(t).

Ellipsoidal Toolbox

- Calculation of reach sets using ellipsoidal approximation algorithms
- · Visualization of their 3D projections



www.eecs.berkeley.edu/~akurzhan/ellipsoids

Chess Review, November 18, 2004 31

Putting It All Together

- 1 Robustness
- 2 Uncertainty
- 3 Compositionality
- 4 Computationality

Classification of 2-Player Games

- Zero-sum games: complementary payoffs.
- Non-zero-sum games: arbitrary payoffs.

1,-1	0,0
-1,1	2,-2

3,1	1,0
3,2	4,2

Chess Review, November 18, 2004 33

Classical Notion of Rationality

 $\begin{tabular}{ll} Nash\ equilibrium: none\ of\ the\ players\ gains\ by\ deviation. \end{tabular}$

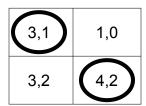
(row, column)

3,1	1,0
3,2	4,2

Classical Notion of Rationality

Nash equilibrium: none of the players gains by deviation.

(row, column)



Chess Review, November 18, 2004 35

New Notion of Rationality

Nash equilibrium: none of the players gains by deviation.

Secure equilibrium: none hurts the opponent by deviation.

(row, column)

3,1	1,0
3,2	4,2

Secure Equilibria

- Natural notion of rationality for component systems:
 - First, a component tries to meet its spec.
 - Second, a component may obstruct the other components.
- For Borel specs, there is always unique maximal secure equilibrium.

Chess Review, November 18, 2004 37

Borel Games on State Spaces

Synthesis:

- Zero-sum game controller versus plant.
- Control against all plant behaviors.

Verification:

- Non-zero-sum specs for components.
- Components may behave adversarially, but without threatening their own specs.

Borel Games on State Spaces

- · Zero-sum games:
 - Complementary objectives: $\phi_2 = : \phi_1$.
 - Possible payoff profiles (1,0) and (0,1).
- Non-zero-sum games:
 - Arbitrary objectives ϕ_1 , ϕ_2 .
 - Possible payoff profiles (1,1), (1,0), (0,1), and (0,0).

Chess Review, November 18, 2004 39

Zero-Sum Borel Games

- · Winning:
 - Winning-1 states s: $(9 \sigma) (8 \pi) \Omega^{\sigma,\pi}(s) 2 \phi_1$.
 - Winning-2 states s: $(9 \pi) (8 \sigma) \Omega^{\sigma,\pi}(s) 2 \phi_2$.
- Determinacy:
 - Every state is winning-1 or winning-2.
 - Borel determinacy [Martin 75].
 - Memoryless determinacy for parity games [Emerson/Jutla 91].

Secure Equilibria

• Secure strategy profile (σ,π) at state s:

$$\begin{array}{l} (8 \ \pi') \ (\ v_{1}^{\sigma,\pi'} \ (s) < v_{1}^{\sigma,\pi} \ (s) \) \ \ v_{2}^{\sigma,\pi'} \ (s) < v_{2}^{\sigma,\pi} \ (s) \) \\ (8 \ \sigma') \ (\ v_{2}^{\sigma',\pi} \ (s) < v_{2}^{\sigma,\pi} \ (s) \) \ \ v_{1}^{\sigma',\pi} \ (s) < v_{1}^{\sigma,\pi} \ (s) \) \end{array}$$

- A secure profile (σ,π) is a contract:
 if the player-1 deviates to lower player-2's payoff,
 her own payoff decreases as well, and vice versa.
- Secure equilibrium: secure strategy profile that is also a Nash equilibrium.

Chess Review, November 18, 2004 41

State Space Partition

Computing the Partition

hh2ii (:
$$\phi_1$$
 Ç ϕ_2)

 W_{10} hh1ii ($\phi_1 \not = \vdots \phi_2$)

Chess Review, November 18, 2004 43

Computing the Partition

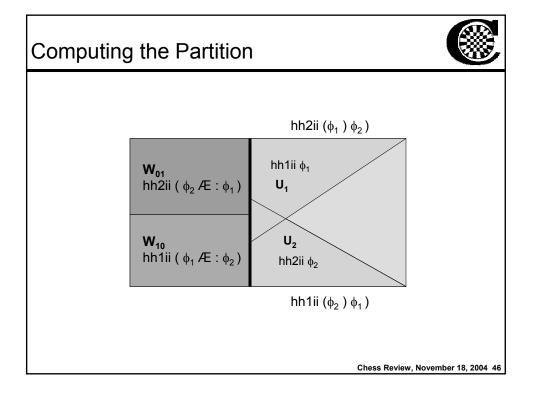
hh2ii
$$(\phi_1) \phi_2$$

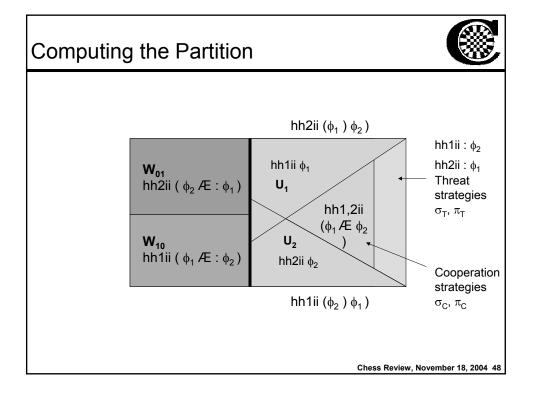
 W_{01} hh2ii ($\phi_2 \not E : \phi_1$)

 W_{10} hh1ii ($\phi_1 \not = \phi_2$)

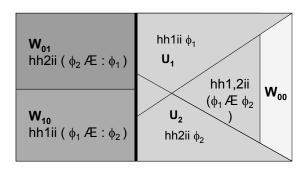
hh1ii (
$$\phi_2$$
) ϕ_1)

Computing the Partition $\begin{array}{c} hh2ii\ (\phi_1\)\ \phi_2\)\\ \hline\\ W_{01} \\ hh2ii\ (\phi_2\ \mathcal{A}:\phi_1) \\ \hline\\ W_{10} \\ hh1ii\ (\phi_1\ \mathcal{A}:\phi_2) \\ \end{array}$ $hh1ii\ (\phi_2\)\ \phi_1\)$ Chess Review, November 18, 2004 45





Computing the Partition

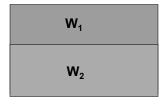


Chess Review, November 18, 2004 49

Generalization of Determinacy

Zero-sum games: $\phi_2 = :\phi_1$

Non-zero-sum games: ϕ_1 , ϕ_2



W ₀₁	\mathbf{W}_{00}
W ₁₀	W ₁₁

Application: Compositional Verification

$$P_1 \ 2 \ W_1 \ (\phi_1)$$

 $P_2 \ 2 \ W_2 \ (\phi_2)$
 $\phi_1 \not\leftarrow \Phi_2 \) \ \phi$

$$P_1||P_2|^2 \phi$$

Chess Review, November 18, 2004 51

Application: Compositional Verification

$$P_1||P_2|^2 \phi$$

$$P_1 \ 2 \ (\mathbf{W_{10}} \ [\ \mathbf{W_{11}}) \ (\phi_1)$$
 $P_2 \ 2 \ (\mathbf{W_{01}} \ [\ \mathbf{W_{11}}) \ (\phi_2)$
 $\phi_1 \not= \Phi_2 \) \ \phi$

$$P_1 || P_2^2 \phi$$

$$W_1 \frac{1}{2} W_{10} [W_{11} \\ W_2 \frac{1}{2} W_{01} [W_{11}$$

An assume/guarantee rule.

Related In-Depth Talks

Roberto Passerone (11:50 am):

-semantics of hybrid systems

Aaron Ames (12:10 pm):

-stochastic approximation of hybrid systems

-a categorical theory of hybrid systems

Chess Review, November 18, 2004 53

Related Posters

Robust Hybrid Systems:

Blowing up Hybrid Systems (Aaron Ames) Quantitative Verification (Vinayak Prabhu)

Compositional Hybrid Systems:

Rich Interface Theories (Arindam Chakrabarti)

Stochastic Hybrid Systems:

Stochastic Games (Krishnendu Chatterjee)

Computational Hybrid Systems:

Computation of Reach Sets (Alex Kurzhansky)