The Metropolis Metamodel specification language is based on the process networks abstract semantics. Processes are independent threads of control within a system. They do not interact directly, instead, multiple processes can interact with media. Media may also interact with each other, but only under the influence of processes. This abstract semantics can be used to model:

- Dataflow
- Continuous Time
- Finite State Machines
- And many others...

Platforms eliminate iterations in the design process and allow cheaper design. Design space is restricted by utilizing regularity and structure. The number and location of platforms is often domain dependent.

Platform-Based Design
Facilitate design of complex systems by orthogonalizing key aspects

Separate:
1. Functionality vs. Architecture
2. Computation vs. Communication
3. Behavior vs. Performance

- Platforms eliminate iterations in the design process and allow cheaper design
- Design space is restricted by utilizing regularity and structure
- The number and location of platforms is often domain dependent

Metamodeling
The capability to describe designs with different models of computation within the same framework

- The Metropolis Metamodel specification language is based on the process networks abstract semantics
- Processes are independent threads of control within a system
- They do not interact directly, instead, multiple processes can interact with media
- Media may also interact with each other, but only under the influence of processes
- This abstract semantics can be used to model:
 - Dataflow
 - Continuous Time
 - Finite State Machines
 - And many others...

Imperative & Declarative Specification
Tailor the specification style to design needs

- Untimed sequential programs (traditional C/C++/Java) are not well suited for capturing interaction between multiple processes and the environment
- Metropolis supports the traditional imperative paradigm, but also allows declarative constraints to formally capture these complex interactions
- Declarative statements are written over events in a specified logic. An event is just a particular action carried out by a particular process
- Metropolis currently supports two different logics: Linear Temporal Logic (LTL), and Logic of Constraints (LoC)
- Examples:

 \[E(output[i+1]) - E(output[i]) < 10 \]
 "Energy consumption between subsequent outputs is less than 10 units"

 \[t(output[i+2]) - t(output[i]) = 10 \]
 "Two outputs are produced every 10 time units"

 \[e_1 \rightarrow e_2, e_2 \rightarrow e_1 \]
 "Event e_2 is occurs simultaneously with Event e_1"

Case Studies:

Architectural Design Space Exploration and Fault Tolerant Allocation and scheduling

Implementation of multiple wireless protocols on an architectural platform

Design Space exploration for imaging systems

Automated characterization of architectural models for instances of the Virtex II platform