
• The Metropolis Metamodel specification 
language is based on the process networks 
abstract semantics

• Processes are independent threads of control 
within a system

• They do not interact directly, instead, multiple 
processes can interact with media

• Media may also interact with each other, but 
only under the influence of processes

• This abstract semantics can be used to model:
• Dataflow
• Continuous Time
• Finite State Machines
• And many others …

[Abhijit Davare, Alberto Sangiovanni-Vincentelli, and the Metropolis Team]

Metropolis: Design Environment for Heterogeneous Systems
www.gigascale.org/metropolis
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� Platforms eliminate iterations in 
the design process and allow 
cheaper design

�

Design space is restricted by 
utilizing regularity and 
structure

�

The number and 
location of 
platforms is 
often domain 
dependent

A. Sangiovanni-Vincentelli, Defining Platform-Based Design, EE Design,  2002

Platform-Based Design
Facilitate design of complex systems 

by orthogonalizing key aspects

Metamodeling
The capability to describe designs with different 

models of computation within the same framework

Imperative & Declarative Specification
Tailor the specification style to design needs

Main Characteristics:

Case Studies:
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and 
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Implementation of 
multiple wireless 
protocols on an 
architectural platform

Design Space exploration
for imaging systems

Automated characterization
of architectural models for 
instances of the Virtex II platform 
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• Untimed sequential programs (traditional C/C++/Java) 
are not well suited for capturing interaction between 
multiple processes and the environment

• Metropolis supports the traditional imperative 
paradigm, but also allows declarative constraints to 
formally capture these complex interactions

• Declarative statements are written over events in a 
specified logic. An event is just a particular action 
carried out by a particular process

• Metropolis currently supports two different logics: 
Linear Temporal Logic (LTL), and Logic of Constraints 
(LoC)

• Examples:

E(output[i+1]) – E(output[i]) < 10

“Energy consumption between subsequent 

outputs is less than 10 units”

t(output[i+2]) – t(output[i]) = 10

“Two outputs are produced every 10 time units”

e1 => e2, e2 => e1
“Event e2 is occurs simultaneously with Event e1”

SIMD 
Core 4

64 K
MEM

SIMD 
Core 3

64 K
MEM

SIMD 
Core 2

64 K
MEM

Shared Memory

96 K 96 K 96 K

SIMD 
Core 1

64 K
MEM

Accel. Accel.

FIR Filter
Turbo/
Viterbi

SIMD Core Cluster
ARM/SC 
L1 Ctrl
MAC
I & D 

Cache

RF
Interface

Bus 
Bridge

96 K

Multi-tasked SIMD Core

PE
0

PE
1

PE
2

PE
3

32 K Loc. MEMI & D Cache
16 K + 16 K

PE Array

Multi-Layer System Bus

Peripherals

PE Array
Controller

Multiple SIMD Cores (MuSIC)

Brake Control
(ABS/ TCS)

Steer
Control
(VGR)

Susp
Control
(MR)

Chassis CAN

Steering 
Position 

Yaw/Lat
Sensor  

Supervisory Control 
Module

(with VSES, 
C/L AFS)

Task TaskTaskTask

Task Task

IPE

MACPE1 MACPE2

GPE OPE DCT

Global Register File Netlist GTime

…

GR Interface

Arbiter

Mem

MCH


