
• The Metropolis Metamodel specification
language is based on the process networks
abstract semantics

• Processes are independent threads of control
within a system

• They do not interact directly, instead, multiple
processes can interact with media

• Media may also interact with each other, but
only under the influence of processes

• This abstract semantics can be used to model:
• Dataflow
• Continuous Time
• Finite State Machines
• And many others …

[Abhijit Davare, Alberto Sangiovanni-Vincentelli, and the Metropolis Team]

Metropolis: Design Environment for Heterogeneous Systems
www.gigascale.org/metropolis

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space

Application Instance

Platform Instance

System
Platform

Separate:
1. Functionality vs. Architecture
2. Computation vs. Communication
3. Behavior vs. Performance

� Platforms eliminate iterations in
the design process and allow
cheaper design

�

Design space is restricted by
utilizing regularity and
structure

�

The number and
location of
platforms is
often domain
dependent

A. Sangiovanni-Vincentelli, Defining Platform-Based Design, EE Design, 2002

Platform-Based Design
Facilitate design of complex systems

by orthogonalizing key aspects

Metamodeling
The capability to describe designs with different

models of computation within the same framework

Imperative & Declarative Specification
Tailor the specification style to design needs

Main Characteristics:

Case Studies:
Architectural Design Space
Exploration and Fault Tolerant
Allocation
and
scheduling

Implementation of
multiple wireless
protocols on an
architectural platform

Design Space exploration
for imaging systems

Automated characterization
of architectural models for
instances of the Virtex II platform

Process

Media

• Untimed sequential programs (traditional C/C++/Java)
are not well suited for capturing interaction between
multiple processes and the environment

• Metropolis supports the traditional imperative
paradigm, but also allows declarative constraints to
formally capture these complex interactions

• Declarative statements are written over events in a
specified logic. An event is just a particular action
carried out by a particular process

• Metropolis currently supports two different logics:
Linear Temporal Logic (LTL), and Logic of Constraints
(LoC)

• Examples:

E(output[i+1]) – E(output[i]) < 10

“Energy consumption between subsequent

outputs is less than 10 units”

t(output[i+2]) – t(output[i]) = 10

“Two outputs are produced every 10 time units”

e1 => e2, e2 => e1
“Event e2 is occurs simultaneously with Event e1”

SIMD
Core 4

64 K
MEM

SIMD
Core 3

64 K
MEM

SIMD
Core 2

64 K
MEM

Shared Memory

96 K 96 K 96 K

SIMD
Core 1

64 K
MEM

Accel. Accel.

FIR Filter
Turbo/
Viterbi

SIMD Core Cluster
ARM/SC
L1 Ctrl
MAC
I & D

Cache

RF
Interface

Bus
Bridge

96 K

Multi-tasked SIMD Core

PE
0

PE
1

PE
2

PE
3

32 K Loc. MEMI & D Cache
16 K + 16 K

PE Array

Multi-Layer System Bus

Peripherals

PE Array
Controller

Multiple SIMD Cores (MuSIC)

Brake Control
(ABS/ TCS)

Steer
Control
(VGR)

Susp
Control
(MR)

Chassis CAN

Steering
Position

Yaw/Lat
Sensor

Supervisory Control
Module

(with VSES,
C/L AFS)

Task TaskTaskTask

Task Task

IPE

MACPE1 MACPE2

GPE OPE DCT

Global Register File Netlist GTime

…

GR Interface

Arbiter

Mem

MCH

