Overview

Interchange formats are notoriously difficult to finish. hyper addresses this problem for hybrid systems, not from the perspective of a tool interchange format, but rather that of tool availability in a toolbox.

These discoveries give us the foundation upon which to build semantic capabilities, and to work toward operational interaction between tools based on matched operational semantics.

Goals

- A domain-specific, unambiguous way to specify hybrid systems models
- Ability to perform analysis, simulation, controller synthesis, and other algorithms/executions, using proven tools
- Following characteristics
 - High performance simulation
 - High robustness factor
 - High level modeling (with refinement)
 - High number of interacting tools

Publications:

Contact Information:

Project Leadership:
Dr. Jonathan Sprinkle, UC Berkeley
Prof. S. Shankar Sastry, UC Berkeley

Affiliated Students & Faculty:
Aaron D. Ames, UC Berkeley
Haiyang Zheng, UC Berkeley
Alessandro Pinto, UC Berkeley
Alessandro Abate, UC Berkeley
Dr. J. Mikael Eklund, UC Berkeley
Prof. Alberto Sangiovanni-Vincentelli, UC Berkeley
Prof. Edward A. Lee, UC Berkeley

Collaborators:
Prof. T. John Koo, Vanderbilt University
Prof. Ian A. Mitchell, University of British Columbia