Stochastic Zero-sum and

 Nonzero-sum ω-regular GamesA Survey of Results
Krishnendu Chatterjee

Chess Review
May 11, 2005

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open Problems.

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open Problems.

5/11/05

Stochastic Games

- Games played on game graphs with stochastic transitions.
- Stochastic games [Sha53]
- Framework to model natural interaction between components and agents.
- e.g., controller vs. system.

Stochastic Games

- Where:
- Arena: Game graphs.
- What for:
- Objectives - ω-regular.
- How:
- Strategies.

Game Graphs

- Two broad class:
- Turn-based games
- Players make moves in turns.
- Concurrent games
- Players make moves simultaneously and independently.

Classification of Games

- Games can be classified in two broad categories:
- Zero-sum games:
- Strictly competitive, e.g., Matrix games.
- Nonzero-sum games:
- Not strictly competitive, e.g., Bimatrix games.

Goals

- Determinacy: minmax and maxmin values for zero-sum games.
- Equilibrium: existence of equilibrium payoff for nonzero-sum games.
- Computation issues.
- Strategy classification: simplest class of strategies that suffice for determinacy and equilibrium.

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open Problems.

5/11/05

Turn-based Games

Turn-based Probabilistic Games

- A turn-based probabilistic game is defined as
- $\mathrm{G}=\left(\mathrm{V}, \mathrm{E},\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{0}\right)\right)$, where
- (V, E) is a graph.
- $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{0}\right)$ is a partition of V .
- V_{1} player 1 makes moves.
- V_{2} player 2 makes moves.
- V_{0} randomly chooses successors.

A Turn-based Probabilistic Game

Special Cases

- Turn-based deterministic games:
- $\mathrm{V}_{0}=\phi$ (emptyset).
- No randomness, deterministic transition.
- Markov decision processes (MDPs)
- $\mathrm{V}_{2}=\phi$ (emptyset).
- No adversary.

Applications

- MDPs (1 ½- player games)
- Control in presence of uncertainty.
- Games against nature.
- Turn-based deterministic games (2-player games)
- Control in presence of adversary, control in open environment or controller synthesis.
- Games against adversary.
- Turn-based stochastic games (2 $1 / 2$-player games)
- Control in presence of adversary and nature, controller synthesis of stochastic reactive systems.
- Games against adversary and nature.

Game played

- Token placed on an initial vertex.
- If current vertex is
- Player 1 vertex then player 1 chooses successor.
- Player 2 vertex then player 2 chooses successor.
- Player random vertex proceed to successors uniformly at random.
- Generates infinite sequence of vertices.

Concurrent Games

Concurrent game

- Players make move simultaneously.
- Finite set of states S.
- Finite set of actions Σ.
- Action assignments
$-\Gamma_{1}, \Gamma_{2}: S \rightarrow 2^{\Sigma} \backslash \phi$
- Probabilistic transition function
- $\delta\left(\mathrm{s}, \mathrm{a}_{1}, \mathrm{a}_{2}\right)(\mathrm{t})=\operatorname{Pr}\left[\mathrm{t} \mid \mathrm{s}, \mathrm{a}_{1}, \mathrm{a}_{2}\right]$

Concurrent game

Actions at s_{0} : a, b for player 1 , c, d for player 2 .

Concurrent games

- Games with simultaneous interaction.
- Model synchronous interaction.

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open problems.

5/11/05

Objectives

Plays

- Plays: infinite sequence of vertices or infinite trajectories.
- ${ }^{\text {© }}$: set of all infinite plays or infinite trajectories.

Objectives

- Plays: infinite sequence of vertices.
- Objectives: subset of plays, $\Psi_{1} \subseteq \mathrm{~V}^{\omega}$.
- Play is winning for player 1 if it is in Ψ_{1}
- Zero-sum game: $\Psi_{2}=\mathrm{V}^{\omega} \backslash \Psi_{1 .}$

Reachability and Safety

- Let $\mathrm{R} \subseteq \mathrm{V}$ set of target vertices. Reachability objective requires to visit the set R of vertices.
- Let $\mathrm{S} \subseteq \mathrm{V}$ set of safe vertices. Safety objective requires never to visit any vertex outside S .

Buchi Objective

- Let $\mathrm{B} \subseteq \mathrm{V}$ a set of Buchi vertices. Buchi objective requires that the set B is visited infinitely often.

Rabin-Streett

- Let $\left\{\left(\mathrm{E}_{1}, \mathrm{~F}_{1}\right),\left(\mathrm{E}_{2}, \mathrm{~F}_{2}\right), \ldots,\left(\mathrm{E}_{\mathrm{d}}, \mathrm{F}_{\mathrm{d}}\right)\right\}$ set of vertex set pairs.
- Rabin: requires there is a pair $\left(\mathrm{E}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}}\right)$ such that E_{j} finitely often and F_{j} infinitely often.
- Streett: requires for every pair $\left(E_{j}, F_{j}\right)$ if F_{j} infinitely often then E_{j} infinitely often.
- Rabin-chain: both a Rabin-Streett, complementation closed subset of Rabin.

Objectives

- ω-regular: $\cup^{\circ}{ }^{\circ}$, *, ω.
- Safety, Reachability, Liveness, etc.
- Rabin and Streett canonical ways to express.

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open problems.

5/11/05

Strategies

Strategy

- Given a finite sequence of vertices, (that represents the history of play) a strategy σ for player 1 is a probability distribution over the set of successor.
- $\sigma: \mathrm{V}^{*} \cdot \mathrm{~V}_{1} \rightarrow \mathrm{D}$

Subclass of Strategies

- Memoryless (stationary) strategies: Strategy is independent of the history of the play and depends on the current vertex.
- $\sigma: V_{1} \rightarrow \mathrm{D}$
- Pure strategies: chooses a successor rather than a probability distribution.
- Pure-memoryless: both pure and memoryless (simplest class).

Strategies

- The set of strategies:
- Set of strategy Σ for player 1 ; strategies σ.
- Set of strategy Π for player 2; strategies π.

Values

- Given objectives Ψ_{1} and $\Psi_{2}=V^{\omega} \backslash \Psi_{1}$ the value for the players are
- $\mathrm{V}_{1}\left(\Psi_{1}\right)(\mathrm{v})=\sup _{\sigma \in \Sigma} \inf _{\pi \in \Pi} \operatorname{Pr}_{\mathrm{V}}{ }^{\sigma, \pi}\left(\Psi_{1}\right)$.
- $\mathrm{V}_{2}\left(\Psi_{2}\right)(\mathrm{v})=\sup _{\pi \in \Pi} \inf _{\sigma \in \Sigma} \operatorname{Pr}_{\mathrm{V}}{ }^{\sigma, \pi}\left(\Psi_{2}\right)$.

Determinacy

- Determinacy: $\mathrm{v}_{1}\left(\Psi_{1}\right)(\mathrm{v})+\mathrm{v}_{2}\left(\Psi_{2}\right)(\mathrm{v})=1$.
- Determinacy means
- sup inf = inf sup.
- von Neumann's minmax theorem in matrix games.

Optimal strategies

- A strategy σ is optimal for objective Ψ_{1} if
- $\mathrm{v}_{1}\left(\Psi_{1}\right)(\mathrm{v})=\inf _{\pi} \operatorname{Pr}_{\mathrm{v}}{ }^{\sigma, \pi}\left(\Psi_{1}\right)$.
- Analogous definition for player 2.

Zero-sum and nonzero-sum games

- Zero sum: $\Psi_{2}=V^{\text {© }} \backslash \Psi_{1}$.
- Nonzero-sum: Ψ_{1} and Ψ_{2}
- happy with own goals.

Concept of rationality

- Zero sum game: Determinacy.
- Nonzero sum game: Nash equilibrium.

Nash Equilibrium

- A pair of strategies $\left(\pi_{1}, \pi_{2}\right)$ is an ε-Nash equilibrium if
- For all $\pi_{1}^{\prime}, \pi_{2}^{\prime}$:
- Value ${ }_{2}\left(\pi_{1}, \pi_{2}^{\prime}\right) \leq$ Value $_{2}\left(\pi_{1}, \pi_{2}\right)+\varepsilon$
- Value $_{1}\left(\pi_{1}^{\prime}, \pi_{2}\right) \leq \operatorname{Value}_{1}\left(\pi_{1}, \pi_{2}\right)+\varepsilon$
- Neither player has advantage of more than ε in deviating from the equilibrium strategy.
- A 0-Nash equilibrium is called a Nash equilibrium.
- Nash's Theorem guarantees existence of Nash equilibrium in nonzerosum matrix games.

Computational Issues

- Algorithms to compute values in games.
- Identify the simplest class of strategies that suffices for optimality or equilibrium.

Outline

1. Stochastic games: informal descriptions.
2. Classes of game graphs.
3. Objectives.
4. Strategies.
5. Outline of results.
6. Open problems.

Outline of results

History and results

- MDPs
- Complexity of MDPs. [PapTsi89]
- MDPs with ω-regular objectives.
[CouYan95,deAl97]

History and results

- Two-player games.
- Determinacy (sup inf = inf sup) theorem for Borel objectives. [Mar75]
- Finite memory determinacy (i.e., finite memory optimal strategy exists) for ω-regular objectives. [GurHar82]
- Pure memoryless optimal strategy exists for Rabin objectives. [EmeJut88]
- NP-complete.

History and result

- 2 ½ - player games
- Reachability objectives: [Con92]
- Pure memoryless optimal strategy exists.
- Decided in NP \cap coNP.

History and results: Concurrent zero-sum games

- Detailed analysis of concurrent games [FilVri97].
- Determinacy theorem for all Borel objectives [Mar98].
- Concurrent ω-regular games:
- Reachability objectives [deAlHenKup98].
- Rabin-chain objectives [deAlHen00].
- Rabin-chain objectives [deAlMaj01].

Zero sum games

- Concurrent games with parity objectives
- Requires infinite memory strategies even for Buchi objectives [deAlHen00].
- Polynomial witnesses for infinite memory strategies and polynomial time verification procedure.
- Complexity: NP \cap coNP [CdeAlHen 05b].

History: Nonzero-sum Games

- Two-player nonzero-sum stochastic games with limit-average payoff. [Vie00a, Vie00b]
- Closed sets (Safety). [SecSud02]

Nonzero sum games

- For all n player concurrent games with reachability objectives for all players, ε-Nash equilibrium exist for all $\varepsilon>0$, in memoryless strategies [CMajJur 04].
- For all n player turn-based stochastic games with Borel objectives for the players, ε-Nash equilibrium exist for all $\varepsilon>0$, in pure strategies [CMajJur 04].
- The result strengthens to exact Nash equilibria in case of n player turn based deterministic games with Borel objectives, and n player turn based stochastic games with ω-regular objectives.

Nonzero sum games

- For 2-player concurrent games with ω-regular objectives for both players, ε-Nash equilibrium exist for all $\varepsilon>0$ [C 05].
- Polynomial witness and polynomial time verification procedure to compute an ε-Nash equilibrium.

Conclusion

- Stochastic games
- Rich theory.
- Communities: Descriptive Set Theory,

Stochastic Game Theory, Probability
Theory, Control Theory, Optimization
Theory, Complexity Theory, Formal
Verification

- Several open theoretical problems.

Joint work with

Thomas A. Henzinger
 Luca de Alfaro
 Rupak Majumdar
 Marcin Jurdzinski

References

- [Sha53] L.S. Shapley, "Stochastic Games",1953.
- MDPs:
- [PapTsi88] C. Papadimitriou and J. Tsisiklis, "The complexity of Markov decision processes", 1987.
- [deAl97] L. de Alfaro, "Formal verification of Probabilistic Systems", PhD Thesis, Stanford, 1997.
- [CouYan95] C. Courcoubetis and M. Yannakakis, "The complexity of probabilistic verification", 1995.
- Two-player games:
- [Mar75] Donald Martin, "Borel Determinacy", 1975.
- [GurHar82] Yuri Gurevich and Leo Harrington, "Tree automata and games", 1982.
- [EmeJut88] E.A.Emerson and C.Jutla, "The complexity of tree automata and logic of programs", 1988.
- $21 / 2$ - player games:
- [Con 92] A. Condon, "The Complexity of Stochastic Games", 1992.

References

- Concurrent zero-sum games:
- [FilVri97] J.Filar and F.Vrieze, "Competitive Markov Decision Processes", (Book) Springer, 1997.
- [Mar98] D. Martin, "The determinacy of Blackwell games", 1998.
- [deALHenKup98] L. de Alfaro, T.A. Henzinger and O. Kupferman, "Concurrent reachability games",1998.
- [deAlHen00] L. de Alfaro and T.A. Henzinger, "Concurrent ω-regular games", 2000.
- [deAlMaj01] L. de Alfaro and R. Majumdar, "Quantitative solution of ω-regular games", 2001.
- Concurrent nonzero-sum games:
- [Vie00a] N. Vieille, "Two player Stochastic games I: a reduction", 2000.
- [Vie00b] N. Vieille, "Two-player Stochastic games II: the case of recursive games", 2000.
- [SecSud01] P. Seechi and W. Sudderth, "Stay-in-a-set-games", 2001.

References

- [CJurHen 03] K. Chatterjee, M. Jurdzinski and T.A. Henzinger, "Simple stochastic parity games", 2003.
- [CJurHen 04] K. Chatterjee, M. Jurdzinski and T.A. Henzinger, "Quantitative stochastic parity games", 2004.
- [CMajJur 04] K. Chatterjee, R. Majumdar and M. Jurdzinski, "On Nash equilibrium in stochastic games", 2004.
- [CdeAlHen 05a] K. Chatterjee, L. de Alfaro and T.A. Henzinger, " The complexity of stochastic Rabin and Streett games", 2005.
- [CdeAlHen 05b] K. Chatterjee, L. de Alfaro and T.A. Henzinger, "The complexity of quantitative concurrent parity games", 2005.
- [C 05] K. Chatterjee, "Two-player nonzero-sum ω regular games", 2005.
http://www-cad.eecs.berkeley.edu/~c_krish

